Properties

Label 624.6.c.d.337.1
Level $624$
Weight $6$
Character 624.337
Analytic conductor $100.080$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(337,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.337"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,54,0,0,0,0,0,486,0,0,0,530] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(9.96927 - 9.96927i\) of defining polynomial
Character \(\chi\) \(=\) 624.337
Dual form 624.6.c.d.337.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -86.8538i q^{5} -98.7774i q^{7} +81.0000 q^{9} -610.754i q^{11} +(592.276 - 143.186i) q^{13} -781.684i q^{15} -1148.60 q^{17} -2267.14i q^{19} -888.996i q^{21} -433.224 q^{23} -4418.59 q^{25} +729.000 q^{27} +7669.59 q^{29} -7367.13i q^{31} -5496.79i q^{33} -8579.19 q^{35} +10575.0i q^{37} +(5330.48 - 1288.67i) q^{39} -3699.17i q^{41} +6061.57 q^{43} -7035.16i q^{45} -8740.69i q^{47} +7050.03 q^{49} -10337.4 q^{51} +34784.8 q^{53} -53046.3 q^{55} -20404.3i q^{57} +11949.6i q^{59} -45400.2 q^{61} -8000.97i q^{63} +(-12436.2 - 51441.4i) q^{65} +45698.1i q^{67} -3899.01 q^{69} +23826.9i q^{71} +37759.1i q^{73} -39767.3 q^{75} -60328.7 q^{77} +35307.0 q^{79} +6561.00 q^{81} -31484.4i q^{83} +99760.7i q^{85} +69026.3 q^{87} +59051.5i q^{89} +(-14143.5 - 58503.5i) q^{91} -66304.2i q^{93} -196910. q^{95} +4965.78i q^{97} -49471.1i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 54 q^{3} + 486 q^{9} + 530 q^{13} - 836 q^{17} + 416 q^{23} + 718 q^{25} + 4374 q^{27} + 18788 q^{29} - 6112 q^{35} + 4770 q^{39} + 24200 q^{43} - 3038 q^{49} - 7524 q^{51} - 42396 q^{53} - 124656 q^{55}+ \cdots - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 86.8538i 1.55369i −0.629693 0.776844i \(-0.716819\pi\)
0.629693 0.776844i \(-0.283181\pi\)
\(6\) 0 0
\(7\) 98.7774i 0.761925i −0.924590 0.380963i \(-0.875593\pi\)
0.924590 0.380963i \(-0.124407\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 610.754i 1.52190i −0.648813 0.760948i \(-0.724734\pi\)
0.648813 0.760948i \(-0.275266\pi\)
\(12\) 0 0
\(13\) 592.276 143.186i 0.971999 0.234986i
\(14\) 0 0
\(15\) 781.684i 0.897023i
\(16\) 0 0
\(17\) −1148.60 −0.963936 −0.481968 0.876189i \(-0.660078\pi\)
−0.481968 + 0.876189i \(0.660078\pi\)
\(18\) 0 0
\(19\) 2267.14i 1.44077i −0.693574 0.720386i \(-0.743965\pi\)
0.693574 0.720386i \(-0.256035\pi\)
\(20\) 0 0
\(21\) 888.996i 0.439898i
\(22\) 0 0
\(23\) −433.224 −0.170763 −0.0853813 0.996348i \(-0.527211\pi\)
−0.0853813 + 0.996348i \(0.527211\pi\)
\(24\) 0 0
\(25\) −4418.59 −1.41395
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 7669.59 1.69347 0.846734 0.532016i \(-0.178566\pi\)
0.846734 + 0.532016i \(0.178566\pi\)
\(30\) 0 0
\(31\) 7367.13i 1.37687i −0.725296 0.688437i \(-0.758297\pi\)
0.725296 0.688437i \(-0.241703\pi\)
\(32\) 0 0
\(33\) 5496.79i 0.878667i
\(34\) 0 0
\(35\) −8579.19 −1.18379
\(36\) 0 0
\(37\) 10575.0i 1.26991i 0.772547 + 0.634957i \(0.218982\pi\)
−0.772547 + 0.634957i \(0.781018\pi\)
\(38\) 0 0
\(39\) 5330.48 1288.67i 0.561184 0.135669i
\(40\) 0 0
\(41\) 3699.17i 0.343672i −0.985126 0.171836i \(-0.945030\pi\)
0.985126 0.171836i \(-0.0549700\pi\)
\(42\) 0 0
\(43\) 6061.57 0.499936 0.249968 0.968254i \(-0.419580\pi\)
0.249968 + 0.968254i \(0.419580\pi\)
\(44\) 0 0
\(45\) 7035.16i 0.517896i
\(46\) 0 0
\(47\) 8740.69i 0.577166i −0.957455 0.288583i \(-0.906816\pi\)
0.957455 0.288583i \(-0.0931841\pi\)
\(48\) 0 0
\(49\) 7050.03 0.419470
\(50\) 0 0
\(51\) −10337.4 −0.556529
\(52\) 0 0
\(53\) 34784.8 1.70098 0.850491 0.525990i \(-0.176305\pi\)
0.850491 + 0.525990i \(0.176305\pi\)
\(54\) 0 0
\(55\) −53046.3 −2.36455
\(56\) 0 0
\(57\) 20404.3i 0.831830i
\(58\) 0 0
\(59\) 11949.6i 0.446915i 0.974714 + 0.223457i \(0.0717344\pi\)
−0.974714 + 0.223457i \(0.928266\pi\)
\(60\) 0 0
\(61\) −45400.2 −1.56219 −0.781094 0.624414i \(-0.785338\pi\)
−0.781094 + 0.624414i \(0.785338\pi\)
\(62\) 0 0
\(63\) 8000.97i 0.253975i
\(64\) 0 0
\(65\) −12436.2 51441.4i −0.365095 1.51018i
\(66\) 0 0
\(67\) 45698.1i 1.24369i 0.783141 + 0.621844i \(0.213616\pi\)
−0.783141 + 0.621844i \(0.786384\pi\)
\(68\) 0 0
\(69\) −3899.01 −0.0985898
\(70\) 0 0
\(71\) 23826.9i 0.560946i 0.959862 + 0.280473i \(0.0904913\pi\)
−0.959862 + 0.280473i \(0.909509\pi\)
\(72\) 0 0
\(73\) 37759.1i 0.829305i 0.909980 + 0.414653i \(0.136097\pi\)
−0.909980 + 0.414653i \(0.863903\pi\)
\(74\) 0 0
\(75\) −39767.3 −0.816343
\(76\) 0 0
\(77\) −60328.7 −1.15957
\(78\) 0 0
\(79\) 35307.0 0.636492 0.318246 0.948008i \(-0.396906\pi\)
0.318246 + 0.948008i \(0.396906\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 31484.4i 0.501649i −0.968033 0.250824i \(-0.919298\pi\)
0.968033 0.250824i \(-0.0807017\pi\)
\(84\) 0 0
\(85\) 99760.7i 1.49766i
\(86\) 0 0
\(87\) 69026.3 0.977724
\(88\) 0 0
\(89\) 59051.5i 0.790235i 0.918631 + 0.395117i \(0.129296\pi\)
−0.918631 + 0.395117i \(0.870704\pi\)
\(90\) 0 0
\(91\) −14143.5 58503.5i −0.179042 0.740590i
\(92\) 0 0
\(93\) 66304.2i 0.794938i
\(94\) 0 0
\(95\) −196910. −2.23851
\(96\) 0 0
\(97\) 4965.78i 0.0535868i 0.999641 + 0.0267934i \(0.00852963\pi\)
−0.999641 + 0.0267934i \(0.991470\pi\)
\(98\) 0 0
\(99\) 49471.1i 0.507298i
\(100\) 0 0
\(101\) −125605. −1.22519 −0.612596 0.790396i \(-0.709875\pi\)
−0.612596 + 0.790396i \(0.709875\pi\)
\(102\) 0 0
\(103\) 126352. 1.17351 0.586756 0.809764i \(-0.300405\pi\)
0.586756 + 0.809764i \(0.300405\pi\)
\(104\) 0 0
\(105\) −77212.7 −0.683464
\(106\) 0 0
\(107\) −33067.8 −0.279219 −0.139610 0.990207i \(-0.544585\pi\)
−0.139610 + 0.990207i \(0.544585\pi\)
\(108\) 0 0
\(109\) 147666.i 1.19046i 0.803555 + 0.595230i \(0.202939\pi\)
−0.803555 + 0.595230i \(0.797061\pi\)
\(110\) 0 0
\(111\) 95174.7i 0.733186i
\(112\) 0 0
\(113\) 118111. 0.870152 0.435076 0.900394i \(-0.356722\pi\)
0.435076 + 0.900394i \(0.356722\pi\)
\(114\) 0 0
\(115\) 37627.1i 0.265312i
\(116\) 0 0
\(117\) 47974.4 11598.1i 0.324000 0.0783286i
\(118\) 0 0
\(119\) 113456.i 0.734447i
\(120\) 0 0
\(121\) −211970. −1.31616
\(122\) 0 0
\(123\) 33292.5i 0.198419i
\(124\) 0 0
\(125\) 112353.i 0.643147i
\(126\) 0 0
\(127\) −322666. −1.77518 −0.887592 0.460631i \(-0.847623\pi\)
−0.887592 + 0.460631i \(0.847623\pi\)
\(128\) 0 0
\(129\) 54554.2 0.288638
\(130\) 0 0
\(131\) 357874. 1.82202 0.911008 0.412390i \(-0.135306\pi\)
0.911008 + 0.412390i \(0.135306\pi\)
\(132\) 0 0
\(133\) −223942. −1.09776
\(134\) 0 0
\(135\) 63316.4i 0.299008i
\(136\) 0 0
\(137\) 347064.i 1.57982i −0.613221 0.789912i \(-0.710126\pi\)
0.613221 0.789912i \(-0.289874\pi\)
\(138\) 0 0
\(139\) 103030. 0.452299 0.226149 0.974093i \(-0.427386\pi\)
0.226149 + 0.974093i \(0.427386\pi\)
\(140\) 0 0
\(141\) 78666.2i 0.333227i
\(142\) 0 0
\(143\) −87451.4 361735.i −0.357624 1.47928i
\(144\) 0 0
\(145\) 666133.i 2.63112i
\(146\) 0 0
\(147\) 63450.3 0.242181
\(148\) 0 0
\(149\) 90695.3i 0.334672i 0.985900 + 0.167336i \(0.0535164\pi\)
−0.985900 + 0.167336i \(0.946484\pi\)
\(150\) 0 0
\(151\) 104288.i 0.372215i 0.982529 + 0.186107i \(0.0595873\pi\)
−0.982529 + 0.186107i \(0.940413\pi\)
\(152\) 0 0
\(153\) −93036.9 −0.321312
\(154\) 0 0
\(155\) −639863. −2.13923
\(156\) 0 0
\(157\) −314419. −1.01803 −0.509014 0.860758i \(-0.669990\pi\)
−0.509014 + 0.860758i \(0.669990\pi\)
\(158\) 0 0
\(159\) 313063. 0.982062
\(160\) 0 0
\(161\) 42792.7i 0.130108i
\(162\) 0 0
\(163\) 140732.i 0.414881i −0.978248 0.207441i \(-0.933487\pi\)
0.978248 0.207441i \(-0.0665134\pi\)
\(164\) 0 0
\(165\) −477417. −1.36517
\(166\) 0 0
\(167\) 108944.i 0.302281i −0.988512 0.151141i \(-0.951705\pi\)
0.988512 0.151141i \(-0.0482946\pi\)
\(168\) 0 0
\(169\) 330289. 169611.i 0.889563 0.456812i
\(170\) 0 0
\(171\) 183639.i 0.480257i
\(172\) 0 0
\(173\) 401188. 1.01914 0.509569 0.860430i \(-0.329805\pi\)
0.509569 + 0.860430i \(0.329805\pi\)
\(174\) 0 0
\(175\) 436456.i 1.07732i
\(176\) 0 0
\(177\) 107547.i 0.258026i
\(178\) 0 0
\(179\) 209535. 0.488792 0.244396 0.969676i \(-0.421410\pi\)
0.244396 + 0.969676i \(0.421410\pi\)
\(180\) 0 0
\(181\) 236277. 0.536075 0.268038 0.963408i \(-0.413625\pi\)
0.268038 + 0.963408i \(0.413625\pi\)
\(182\) 0 0
\(183\) −408602. −0.901929
\(184\) 0 0
\(185\) 918476. 1.97305
\(186\) 0 0
\(187\) 701515.i 1.46701i
\(188\) 0 0
\(189\) 72008.7i 0.146633i
\(190\) 0 0
\(191\) −509719. −1.01099 −0.505496 0.862829i \(-0.668690\pi\)
−0.505496 + 0.862829i \(0.668690\pi\)
\(192\) 0 0
\(193\) 58146.8i 0.112365i −0.998421 0.0561827i \(-0.982107\pi\)
0.998421 0.0561827i \(-0.0178929\pi\)
\(194\) 0 0
\(195\) −111926. 462973.i −0.210788 0.871905i
\(196\) 0 0
\(197\) 91830.0i 0.168585i 0.996441 + 0.0842925i \(0.0268630\pi\)
−0.996441 + 0.0842925i \(0.973137\pi\)
\(198\) 0 0
\(199\) −562291. −1.00653 −0.503267 0.864131i \(-0.667869\pi\)
−0.503267 + 0.864131i \(0.667869\pi\)
\(200\) 0 0
\(201\) 411283.i 0.718043i
\(202\) 0 0
\(203\) 757582.i 1.29030i
\(204\) 0 0
\(205\) −321287. −0.533960
\(206\) 0 0
\(207\) −35091.1 −0.0569208
\(208\) 0 0
\(209\) −1.38467e6 −2.19270
\(210\) 0 0
\(211\) −650662. −1.00612 −0.503059 0.864252i \(-0.667792\pi\)
−0.503059 + 0.864252i \(0.667792\pi\)
\(212\) 0 0
\(213\) 214442.i 0.323862i
\(214\) 0 0
\(215\) 526471.i 0.776745i
\(216\) 0 0
\(217\) −727706. −1.04907
\(218\) 0 0
\(219\) 339832.i 0.478800i
\(220\) 0 0
\(221\) −680291. + 164464.i −0.936944 + 0.226511i
\(222\) 0 0
\(223\) 302795.i 0.407743i −0.978998 0.203871i \(-0.934648\pi\)
0.978998 0.203871i \(-0.0653525\pi\)
\(224\) 0 0
\(225\) −357906. −0.471316
\(226\) 0 0
\(227\) 723191.i 0.931512i −0.884913 0.465756i \(-0.845782\pi\)
0.884913 0.465756i \(-0.154218\pi\)
\(228\) 0 0
\(229\) 1.39378e6i 1.75633i 0.478356 + 0.878166i \(0.341233\pi\)
−0.478356 + 0.878166i \(0.658767\pi\)
\(230\) 0 0
\(231\) −542958. −0.669478
\(232\) 0 0
\(233\) −319385. −0.385411 −0.192706 0.981257i \(-0.561726\pi\)
−0.192706 + 0.981257i \(0.561726\pi\)
\(234\) 0 0
\(235\) −759162. −0.896736
\(236\) 0 0
\(237\) 317763. 0.367479
\(238\) 0 0
\(239\) 1.52265e6i 1.72427i 0.506682 + 0.862133i \(0.330872\pi\)
−0.506682 + 0.862133i \(0.669128\pi\)
\(240\) 0 0
\(241\) 607839.i 0.674134i 0.941481 + 0.337067i \(0.109435\pi\)
−0.941481 + 0.337067i \(0.890565\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 612323.i 0.651726i
\(246\) 0 0
\(247\) −324623. 1.34277e6i −0.338561 1.40043i
\(248\) 0 0
\(249\) 283359.i 0.289627i
\(250\) 0 0
\(251\) 1.05049e6 1.05247 0.526234 0.850340i \(-0.323604\pi\)
0.526234 + 0.850340i \(0.323604\pi\)
\(252\) 0 0
\(253\) 264593.i 0.259883i
\(254\) 0 0
\(255\) 897846.i 0.864672i
\(256\) 0 0
\(257\) 236240. 0.223111 0.111555 0.993758i \(-0.464417\pi\)
0.111555 + 0.993758i \(0.464417\pi\)
\(258\) 0 0
\(259\) 1.04457e6 0.967580
\(260\) 0 0
\(261\) 621237. 0.564489
\(262\) 0 0
\(263\) −928964. −0.828151 −0.414076 0.910242i \(-0.635895\pi\)
−0.414076 + 0.910242i \(0.635895\pi\)
\(264\) 0 0
\(265\) 3.02119e6i 2.64280i
\(266\) 0 0
\(267\) 531464.i 0.456242i
\(268\) 0 0
\(269\) 827650. 0.697374 0.348687 0.937239i \(-0.386628\pi\)
0.348687 + 0.937239i \(0.386628\pi\)
\(270\) 0 0
\(271\) 660781.i 0.546555i −0.961935 0.273278i \(-0.911892\pi\)
0.961935 0.273278i \(-0.0881078\pi\)
\(272\) 0 0
\(273\) −127292. 526531.i −0.103370 0.427580i
\(274\) 0 0
\(275\) 2.69867e6i 2.15188i
\(276\) 0 0
\(277\) −1.38275e6 −1.08279 −0.541395 0.840769i \(-0.682104\pi\)
−0.541395 + 0.840769i \(0.682104\pi\)
\(278\) 0 0
\(279\) 596738.i 0.458958i
\(280\) 0 0
\(281\) 1.44893e6i 1.09467i 0.836915 + 0.547333i \(0.184357\pi\)
−0.836915 + 0.547333i \(0.815643\pi\)
\(282\) 0 0
\(283\) −1.22044e6 −0.905841 −0.452921 0.891551i \(-0.649618\pi\)
−0.452921 + 0.891551i \(0.649618\pi\)
\(284\) 0 0
\(285\) −1.77219e6 −1.29240
\(286\) 0 0
\(287\) −365394. −0.261853
\(288\) 0 0
\(289\) −100565. −0.0708279
\(290\) 0 0
\(291\) 44692.0i 0.0309384i
\(292\) 0 0
\(293\) 2.19465e6i 1.49347i −0.665123 0.746734i \(-0.731621\pi\)
0.665123 0.746734i \(-0.268379\pi\)
\(294\) 0 0
\(295\) 1.03787e6 0.694366
\(296\) 0 0
\(297\) 445240.i 0.292889i
\(298\) 0 0
\(299\) −256588. + 62031.5i −0.165981 + 0.0401268i
\(300\) 0 0
\(301\) 598746.i 0.380914i
\(302\) 0 0
\(303\) −1.13045e6 −0.707365
\(304\) 0 0
\(305\) 3.94318e6i 2.42715i
\(306\) 0 0
\(307\) 83619.1i 0.0506360i 0.999679 + 0.0253180i \(0.00805983\pi\)
−0.999679 + 0.0253180i \(0.991940\pi\)
\(308\) 0 0
\(309\) 1.13716e6 0.677528
\(310\) 0 0
\(311\) −491767. −0.288309 −0.144155 0.989555i \(-0.546046\pi\)
−0.144155 + 0.989555i \(0.546046\pi\)
\(312\) 0 0
\(313\) 896969. 0.517508 0.258754 0.965943i \(-0.416688\pi\)
0.258754 + 0.965943i \(0.416688\pi\)
\(314\) 0 0
\(315\) −694915. −0.394598
\(316\) 0 0
\(317\) 3.15449e6i 1.76312i −0.472074 0.881559i \(-0.656494\pi\)
0.472074 0.881559i \(-0.343506\pi\)
\(318\) 0 0
\(319\) 4.68423e6i 2.57728i
\(320\) 0 0
\(321\) −297610. −0.161207
\(322\) 0 0
\(323\) 2.60405e6i 1.38881i
\(324\) 0 0
\(325\) −2.61702e6 + 632679.i −1.37436 + 0.332258i
\(326\) 0 0
\(327\) 1.32900e6i 0.687312i
\(328\) 0 0
\(329\) −863382. −0.439757
\(330\) 0 0
\(331\) 597196.i 0.299604i 0.988716 + 0.149802i \(0.0478636\pi\)
−0.988716 + 0.149802i \(0.952136\pi\)
\(332\) 0 0
\(333\) 856572.i 0.423305i
\(334\) 0 0
\(335\) 3.96906e6 1.93230
\(336\) 0 0
\(337\) 3.61808e6 1.73541 0.867707 0.497077i \(-0.165593\pi\)
0.867707 + 0.497077i \(0.165593\pi\)
\(338\) 0 0
\(339\) 1.06300e6 0.502382
\(340\) 0 0
\(341\) −4.49951e6 −2.09546
\(342\) 0 0
\(343\) 2.35653e6i 1.08153i
\(344\) 0 0
\(345\) 338644.i 0.153178i
\(346\) 0 0
\(347\) 1.62893e6 0.726236 0.363118 0.931743i \(-0.381712\pi\)
0.363118 + 0.931743i \(0.381712\pi\)
\(348\) 0 0
\(349\) 2.60140e6i 1.14326i −0.820513 0.571628i \(-0.806312\pi\)
0.820513 0.571628i \(-0.193688\pi\)
\(350\) 0 0
\(351\) 431769. 104383.i 0.187061 0.0452231i
\(352\) 0 0
\(353\) 1.30441e6i 0.557155i 0.960414 + 0.278578i \(0.0898630\pi\)
−0.960414 + 0.278578i \(0.910137\pi\)
\(354\) 0 0
\(355\) 2.06945e6 0.871535
\(356\) 0 0
\(357\) 1.02110e6i 0.424033i
\(358\) 0 0
\(359\) 213674.i 0.0875013i −0.999042 0.0437507i \(-0.986069\pi\)
0.999042 0.0437507i \(-0.0139307\pi\)
\(360\) 0 0
\(361\) −2.66384e6 −1.07582
\(362\) 0 0
\(363\) −1.90773e6 −0.759888
\(364\) 0 0
\(365\) 3.27952e6 1.28848
\(366\) 0 0
\(367\) −1.15670e6 −0.448285 −0.224142 0.974556i \(-0.571958\pi\)
−0.224142 + 0.974556i \(0.571958\pi\)
\(368\) 0 0
\(369\) 299633.i 0.114557i
\(370\) 0 0
\(371\) 3.43595e6i 1.29602i
\(372\) 0 0
\(373\) 1.97983e6 0.736810 0.368405 0.929665i \(-0.379904\pi\)
0.368405 + 0.929665i \(0.379904\pi\)
\(374\) 0 0
\(375\) 1.01118e6i 0.371321i
\(376\) 0 0
\(377\) 4.54251e6 1.09818e6i 1.64605 0.397941i
\(378\) 0 0
\(379\) 3.86155e6i 1.38090i 0.723379 + 0.690451i \(0.242588\pi\)
−0.723379 + 0.690451i \(0.757412\pi\)
\(380\) 0 0
\(381\) −2.90399e6 −1.02490
\(382\) 0 0
\(383\) 1.55518e6i 0.541731i 0.962617 + 0.270866i \(0.0873099\pi\)
−0.962617 + 0.270866i \(0.912690\pi\)
\(384\) 0 0
\(385\) 5.23978e6i 1.80161i
\(386\) 0 0
\(387\) 490988. 0.166645
\(388\) 0 0
\(389\) 2.85249e6 0.955763 0.477881 0.878424i \(-0.341405\pi\)
0.477881 + 0.878424i \(0.341405\pi\)
\(390\) 0 0
\(391\) 497603. 0.164604
\(392\) 0 0
\(393\) 3.22087e6 1.05194
\(394\) 0 0
\(395\) 3.06655e6i 0.988911i
\(396\) 0 0
\(397\) 1.25222e6i 0.398752i −0.979923 0.199376i \(-0.936109\pi\)
0.979923 0.199376i \(-0.0638915\pi\)
\(398\) 0 0
\(399\) −2.01548e6 −0.633792
\(400\) 0 0
\(401\) 4.20050e6i 1.30449i 0.758009 + 0.652244i \(0.226172\pi\)
−0.758009 + 0.652244i \(0.773828\pi\)
\(402\) 0 0
\(403\) −1.05487e6 4.36337e6i −0.323546 1.33832i
\(404\) 0 0
\(405\) 569848.i 0.172632i
\(406\) 0 0
\(407\) 6.45870e6 1.93268
\(408\) 0 0
\(409\) 650694.i 0.192340i −0.995365 0.0961698i \(-0.969341\pi\)
0.995365 0.0961698i \(-0.0306592\pi\)
\(410\) 0 0
\(411\) 3.12358e6i 0.912111i
\(412\) 0 0
\(413\) 1.18035e6 0.340516
\(414\) 0 0
\(415\) −2.73454e6 −0.779406
\(416\) 0 0
\(417\) 927267. 0.261135
\(418\) 0 0
\(419\) 6.82010e6 1.89782 0.948912 0.315541i \(-0.102186\pi\)
0.948912 + 0.315541i \(0.102186\pi\)
\(420\) 0 0
\(421\) 3.11659e6i 0.856988i −0.903545 0.428494i \(-0.859044\pi\)
0.903545 0.428494i \(-0.140956\pi\)
\(422\) 0 0
\(423\) 707996.i 0.192389i
\(424\) 0 0
\(425\) 5.07521e6 1.36296
\(426\) 0 0
\(427\) 4.48451e6i 1.19027i
\(428\) 0 0
\(429\) −787062. 3.25562e6i −0.206474 0.854063i
\(430\) 0 0
\(431\) 4.88213e6i 1.26595i 0.774173 + 0.632974i \(0.218166\pi\)
−0.774173 + 0.632974i \(0.781834\pi\)
\(432\) 0 0
\(433\) 3.64275e6 0.933705 0.466852 0.884335i \(-0.345388\pi\)
0.466852 + 0.884335i \(0.345388\pi\)
\(434\) 0 0
\(435\) 5.99520e6i 1.51908i
\(436\) 0 0
\(437\) 982180.i 0.246030i
\(438\) 0 0
\(439\) 1.70122e6 0.421308 0.210654 0.977561i \(-0.432441\pi\)
0.210654 + 0.977561i \(0.432441\pi\)
\(440\) 0 0
\(441\) 571053. 0.139823
\(442\) 0 0
\(443\) 5.85057e6 1.41641 0.708205 0.706007i \(-0.249505\pi\)
0.708205 + 0.706007i \(0.249505\pi\)
\(444\) 0 0
\(445\) 5.12885e6 1.22778
\(446\) 0 0
\(447\) 816258.i 0.193223i
\(448\) 0 0
\(449\) 1.56399e6i 0.366115i −0.983102 0.183058i \(-0.941401\pi\)
0.983102 0.183058i \(-0.0585995\pi\)
\(450\) 0 0
\(451\) −2.25928e6 −0.523033
\(452\) 0 0
\(453\) 938596.i 0.214898i
\(454\) 0 0
\(455\) −5.08125e6 + 1.22842e6i −1.15065 + 0.278175i
\(456\) 0 0
\(457\) 336948.i 0.0754697i 0.999288 + 0.0377349i \(0.0120142\pi\)
−0.999288 + 0.0377349i \(0.987986\pi\)
\(458\) 0 0
\(459\) −837332. −0.185510
\(460\) 0 0
\(461\) 3.89174e6i 0.852887i 0.904514 + 0.426444i \(0.140234\pi\)
−0.904514 + 0.426444i \(0.859766\pi\)
\(462\) 0 0
\(463\) 6.34214e6i 1.37494i 0.726213 + 0.687470i \(0.241279\pi\)
−0.726213 + 0.687470i \(0.758721\pi\)
\(464\) 0 0
\(465\) −5.75877e6 −1.23509
\(466\) 0 0
\(467\) −2.48691e6 −0.527677 −0.263839 0.964567i \(-0.584989\pi\)
−0.263839 + 0.964567i \(0.584989\pi\)
\(468\) 0 0
\(469\) 4.51394e6 0.947597
\(470\) 0 0
\(471\) −2.82977e6 −0.587759
\(472\) 0 0
\(473\) 3.70213e6i 0.760850i
\(474\) 0 0
\(475\) 1.00176e7i 2.03718i
\(476\) 0 0
\(477\) 2.81757e6 0.566994
\(478\) 0 0
\(479\) 5.31079e6i 1.05760i 0.848747 + 0.528798i \(0.177357\pi\)
−0.848747 + 0.528798i \(0.822643\pi\)
\(480\) 0 0
\(481\) 1.51419e6 + 6.26330e6i 0.298412 + 1.23436i
\(482\) 0 0
\(483\) 385134.i 0.0751180i
\(484\) 0 0
\(485\) 431297. 0.0832572
\(486\) 0 0
\(487\) 7.73506e6i 1.47789i 0.673767 + 0.738944i \(0.264675\pi\)
−0.673767 + 0.738944i \(0.735325\pi\)
\(488\) 0 0
\(489\) 1.26659e6i 0.239532i
\(490\) 0 0
\(491\) 322490. 0.0603689 0.0301844 0.999544i \(-0.490391\pi\)
0.0301844 + 0.999544i \(0.490391\pi\)
\(492\) 0 0
\(493\) −8.80932e6 −1.63239
\(494\) 0 0
\(495\) −4.29675e6 −0.788184
\(496\) 0 0
\(497\) 2.35355e6 0.427399
\(498\) 0 0
\(499\) 414653.i 0.0745476i −0.999305 0.0372738i \(-0.988133\pi\)
0.999305 0.0372738i \(-0.0118674\pi\)
\(500\) 0 0
\(501\) 980493.i 0.174522i
\(502\) 0 0
\(503\) 1.11227e7 1.96016 0.980080 0.198604i \(-0.0636408\pi\)
0.980080 + 0.198604i \(0.0636408\pi\)
\(504\) 0 0
\(505\) 1.09093e7i 1.90357i
\(506\) 0 0
\(507\) 2.97260e6 1.52650e6i 0.513590 0.263741i
\(508\) 0 0
\(509\) 754143.i 0.129021i −0.997917 0.0645103i \(-0.979451\pi\)
0.997917 0.0645103i \(-0.0205485\pi\)
\(510\) 0 0
\(511\) 3.72974e6 0.631869
\(512\) 0 0
\(513\) 1.65275e6i 0.277277i
\(514\) 0 0
\(515\) 1.09741e7i 1.82327i
\(516\) 0 0
\(517\) −5.33841e6 −0.878386
\(518\) 0 0
\(519\) 3.61069e6 0.588399
\(520\) 0 0
\(521\) 6.34188e6 1.02358 0.511792 0.859109i \(-0.328982\pi\)
0.511792 + 0.859109i \(0.328982\pi\)
\(522\) 0 0
\(523\) −7.64810e6 −1.22264 −0.611321 0.791382i \(-0.709362\pi\)
−0.611321 + 0.791382i \(0.709362\pi\)
\(524\) 0 0
\(525\) 3.92811e6i 0.621993i
\(526\) 0 0
\(527\) 8.46192e6i 1.32722i
\(528\) 0 0
\(529\) −6.24866e6 −0.970840
\(530\) 0 0
\(531\) 967921.i 0.148972i
\(532\) 0 0
\(533\) −529669. 2.19093e6i −0.0807582 0.334049i
\(534\) 0 0
\(535\) 2.87206e6i 0.433820i
\(536\) 0 0
\(537\) 1.88581e6 0.282204
\(538\) 0 0
\(539\) 4.30584e6i 0.638390i
\(540\) 0 0
\(541\) 5.40473e6i 0.793927i 0.917834 + 0.396964i \(0.129936\pi\)
−0.917834 + 0.396964i \(0.870064\pi\)
\(542\) 0 0
\(543\) 2.12650e6 0.309503
\(544\) 0 0
\(545\) 1.28254e7 1.84960
\(546\) 0 0
\(547\) −6.06535e6 −0.866737 −0.433368 0.901217i \(-0.642675\pi\)
−0.433368 + 0.901217i \(0.642675\pi\)
\(548\) 0 0
\(549\) −3.67742e6 −0.520729
\(550\) 0 0
\(551\) 1.73881e7i 2.43990i
\(552\) 0 0
\(553\) 3.48753e6i 0.484960i
\(554\) 0 0
\(555\) 8.26629e6 1.13914
\(556\) 0 0
\(557\) 6.81169e6i 0.930287i 0.885235 + 0.465143i \(0.153997\pi\)
−0.885235 + 0.465143i \(0.846003\pi\)
\(558\) 0 0
\(559\) 3.59012e6 867932.i 0.485937 0.117478i
\(560\) 0 0
\(561\) 6.31363e6i 0.846978i
\(562\) 0 0
\(563\) −4.93741e6 −0.656491 −0.328245 0.944593i \(-0.606457\pi\)
−0.328245 + 0.944593i \(0.606457\pi\)
\(564\) 0 0
\(565\) 1.02584e7i 1.35194i
\(566\) 0 0
\(567\) 648078.i 0.0846583i
\(568\) 0 0
\(569\) 9.18371e6 1.18915 0.594576 0.804039i \(-0.297320\pi\)
0.594576 + 0.804039i \(0.297320\pi\)
\(570\) 0 0
\(571\) 1.11741e7 1.43424 0.717120 0.696949i \(-0.245460\pi\)
0.717120 + 0.696949i \(0.245460\pi\)
\(572\) 0 0
\(573\) −4.58748e6 −0.583697
\(574\) 0 0
\(575\) 1.91424e6 0.241449
\(576\) 0 0
\(577\) 8.62732e6i 1.07879i −0.842053 0.539394i \(-0.818653\pi\)
0.842053 0.539394i \(-0.181347\pi\)
\(578\) 0 0
\(579\) 523322.i 0.0648742i
\(580\) 0 0
\(581\) −3.10994e6 −0.382219
\(582\) 0 0
\(583\) 2.12450e7i 2.58872i
\(584\) 0 0
\(585\) −1.00734e6 4.16676e6i −0.121698 0.503394i
\(586\) 0 0
\(587\) 5.86783e6i 0.702882i −0.936210 0.351441i \(-0.885692\pi\)
0.936210 0.351441i \(-0.114308\pi\)
\(588\) 0 0
\(589\) −1.67023e7 −1.98376
\(590\) 0 0
\(591\) 826470.i 0.0973326i
\(592\) 0 0
\(593\) 1.28187e7i 1.49694i −0.663166 0.748472i \(-0.730788\pi\)
0.663166 0.748472i \(-0.269212\pi\)
\(594\) 0 0
\(595\) 9.85410e6 1.14110
\(596\) 0 0
\(597\) −5.06062e6 −0.581123
\(598\) 0 0
\(599\) 8.82262e6 1.00469 0.502343 0.864668i \(-0.332471\pi\)
0.502343 + 0.864668i \(0.332471\pi\)
\(600\) 0 0
\(601\) 8.16061e6 0.921587 0.460793 0.887507i \(-0.347565\pi\)
0.460793 + 0.887507i \(0.347565\pi\)
\(602\) 0 0
\(603\) 3.70155e6i 0.414563i
\(604\) 0 0
\(605\) 1.84104e7i 2.04491i
\(606\) 0 0
\(607\) −8.03055e6 −0.884654 −0.442327 0.896854i \(-0.645847\pi\)
−0.442327 + 0.896854i \(0.645847\pi\)
\(608\) 0 0
\(609\) 6.81823e6i 0.744953i
\(610\) 0 0
\(611\) −1.25154e6 5.17690e6i −0.135626 0.561005i
\(612\) 0 0
\(613\) 3.99383e6i 0.429278i −0.976693 0.214639i \(-0.931143\pi\)
0.976693 0.214639i \(-0.0688575\pi\)
\(614\) 0 0
\(615\) −2.89158e6 −0.308282
\(616\) 0 0
\(617\) 1.20933e7i 1.27888i −0.768840 0.639442i \(-0.779166\pi\)
0.768840 0.639442i \(-0.220834\pi\)
\(618\) 0 0
\(619\) 1.31953e7i 1.38418i 0.721813 + 0.692088i \(0.243309\pi\)
−0.721813 + 0.692088i \(0.756691\pi\)
\(620\) 0 0
\(621\) −315820. −0.0328633
\(622\) 0 0
\(623\) 5.83295e6 0.602100
\(624\) 0 0
\(625\) −4.04979e6 −0.414699
\(626\) 0 0
\(627\) −1.24620e7 −1.26596
\(628\) 0 0
\(629\) 1.21464e7i 1.22412i
\(630\) 0 0
\(631\) 1.16207e7i 1.16188i −0.813947 0.580939i \(-0.802686\pi\)
0.813947 0.580939i \(-0.197314\pi\)
\(632\) 0 0
\(633\) −5.85595e6 −0.580883
\(634\) 0 0
\(635\) 2.80247e7i 2.75808i
\(636\) 0 0
\(637\) 4.17557e6 1.00947e6i 0.407724 0.0985696i
\(638\) 0 0
\(639\) 1.92998e6i 0.186982i
\(640\) 0 0
\(641\) −1.15298e7 −1.10835 −0.554173 0.832402i \(-0.686965\pi\)
−0.554173 + 0.832402i \(0.686965\pi\)
\(642\) 0 0
\(643\) 2.90732e6i 0.277310i 0.990341 + 0.138655i \(0.0442778\pi\)
−0.990341 + 0.138655i \(0.955722\pi\)
\(644\) 0 0
\(645\) 4.73824e6i 0.448454i
\(646\) 0 0
\(647\) 4.58122e6 0.430249 0.215125 0.976587i \(-0.430984\pi\)
0.215125 + 0.976587i \(0.430984\pi\)
\(648\) 0 0
\(649\) 7.29829e6 0.680157
\(650\) 0 0
\(651\) −6.54935e6 −0.605684
\(652\) 0 0
\(653\) 1.95066e7 1.79019 0.895096 0.445874i \(-0.147107\pi\)
0.895096 + 0.445874i \(0.147107\pi\)
\(654\) 0 0
\(655\) 3.10827e7i 2.83084i
\(656\) 0 0
\(657\) 3.05849e6i 0.276435i
\(658\) 0 0
\(659\) −8.41225e6 −0.754568 −0.377284 0.926098i \(-0.623142\pi\)
−0.377284 + 0.926098i \(0.623142\pi\)
\(660\) 0 0
\(661\) 1.64620e7i 1.46548i 0.680510 + 0.732739i \(0.261758\pi\)
−0.680510 + 0.732739i \(0.738242\pi\)
\(662\) 0 0
\(663\) −6.12262e6 + 1.48018e6i −0.540945 + 0.130776i
\(664\) 0 0
\(665\) 1.94503e7i 1.70558i
\(666\) 0 0
\(667\) −3.32265e6 −0.289181
\(668\) 0 0
\(669\) 2.72515e6i 0.235410i
\(670\) 0 0
\(671\) 2.77284e7i 2.37748i
\(672\) 0 0
\(673\) 9.88194e6 0.841016 0.420508 0.907289i \(-0.361852\pi\)
0.420508 + 0.907289i \(0.361852\pi\)
\(674\) 0 0
\(675\) −3.22115e6 −0.272114
\(676\) 0 0
\(677\) −731933. −0.0613761 −0.0306881 0.999529i \(-0.509770\pi\)
−0.0306881 + 0.999529i \(0.509770\pi\)
\(678\) 0 0
\(679\) 490506. 0.0408291
\(680\) 0 0
\(681\) 6.50872e6i 0.537809i
\(682\) 0 0
\(683\) 6.46151e6i 0.530008i 0.964247 + 0.265004i \(0.0853733\pi\)
−0.964247 + 0.265004i \(0.914627\pi\)
\(684\) 0 0
\(685\) −3.01439e7 −2.45455
\(686\) 0 0
\(687\) 1.25440e7i 1.01402i
\(688\) 0 0
\(689\) 2.06022e7 4.98069e6i 1.65335 0.399707i
\(690\) 0 0
\(691\) 1.16211e7i 0.925877i −0.886390 0.462939i \(-0.846795\pi\)
0.886390 0.462939i \(-0.153205\pi\)
\(692\) 0 0
\(693\) −4.88662e6 −0.386523
\(694\) 0 0
\(695\) 8.94852e6i 0.702731i
\(696\) 0 0
\(697\) 4.24888e6i 0.331278i
\(698\) 0 0
\(699\) −2.87446e6 −0.222517
\(700\) 0 0
\(701\) −1.39904e6 −0.107531 −0.0537655 0.998554i \(-0.517122\pi\)
−0.0537655 + 0.998554i \(0.517122\pi\)
\(702\) 0 0
\(703\) 2.39750e7 1.82966
\(704\) 0 0
\(705\) −6.83246e6 −0.517731
\(706\) 0 0
\(707\) 1.24069e7i 0.933504i
\(708\) 0 0
\(709\) 1.84802e7i 1.38067i −0.723489 0.690336i \(-0.757463\pi\)
0.723489 0.690336i \(-0.242537\pi\)
\(710\) 0 0
\(711\) 2.85987e6 0.212164
\(712\) 0 0
\(713\) 3.19162e6i 0.235118i
\(714\) 0 0
\(715\) −3.14181e7 + 7.59549e6i −2.29834 + 0.555636i
\(716\) 0 0
\(717\) 1.37038e7i 0.995505i
\(718\) 0 0
\(719\) −7.61846e6 −0.549598 −0.274799 0.961502i \(-0.588611\pi\)
−0.274799 + 0.961502i \(0.588611\pi\)
\(720\) 0 0
\(721\) 1.24807e7i 0.894128i
\(722\) 0 0
\(723\) 5.47055e6i 0.389211i
\(724\) 0 0
\(725\) −3.38888e7 −2.39448
\(726\) 0 0
\(727\) −2.55002e7 −1.78940 −0.894699 0.446670i \(-0.852610\pi\)
−0.894699 + 0.446670i \(0.852610\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −6.96235e6 −0.481906
\(732\) 0 0
\(733\) 1.27470e7i 0.876293i 0.898903 + 0.438147i \(0.144365\pi\)
−0.898903 + 0.438147i \(0.855635\pi\)
\(734\) 0 0
\(735\) 5.51090e6i 0.376274i
\(736\) 0 0
\(737\) 2.79103e7 1.89276
\(738\) 0 0
\(739\) 1.54752e7i 1.04238i −0.853441 0.521190i \(-0.825488\pi\)
0.853441 0.521190i \(-0.174512\pi\)
\(740\) 0 0
\(741\) −2.92161e6 1.20850e7i −0.195468 0.808537i
\(742\) 0 0
\(743\) 3.52596e6i 0.234318i −0.993113 0.117159i \(-0.962621\pi\)
0.993113 0.117159i \(-0.0373787\pi\)
\(744\) 0 0
\(745\) 7.87723e6 0.519976
\(746\) 0 0
\(747\) 2.55023e6i 0.167216i
\(748\) 0 0
\(749\) 3.26635e6i 0.212744i
\(750\) 0 0
\(751\) −8.20700e6 −0.530988 −0.265494 0.964113i \(-0.585535\pi\)
−0.265494 + 0.964113i \(0.585535\pi\)
\(752\) 0 0
\(753\) 9.45443e6 0.607642
\(754\) 0 0
\(755\) 9.05785e6 0.578306
\(756\) 0 0
\(757\) −1.27038e7 −0.805736 −0.402868 0.915258i \(-0.631987\pi\)
−0.402868 + 0.915258i \(0.631987\pi\)
\(758\) 0 0
\(759\) 2.38134e6i 0.150043i
\(760\) 0 0
\(761\) 1.41876e7i 0.888073i 0.896009 + 0.444037i \(0.146454\pi\)
−0.896009 + 0.444037i \(0.853546\pi\)
\(762\) 0 0
\(763\) 1.45861e7 0.907041
\(764\) 0 0
\(765\) 8.08061e6i 0.499219i
\(766\) 0 0
\(767\) 1.71102e6 + 7.07748e6i 0.105019 + 0.434401i
\(768\) 0 0
\(769\) 1.10700e7i 0.675045i −0.941318 0.337522i \(-0.890411\pi\)
0.941318 0.337522i \(-0.109589\pi\)
\(770\) 0 0
\(771\) 2.12616e6 0.128813
\(772\) 0 0
\(773\) 5.17639e6i 0.311586i 0.987790 + 0.155793i \(0.0497933\pi\)
−0.987790 + 0.155793i \(0.950207\pi\)
\(774\) 0 0
\(775\) 3.25523e7i 1.94683i
\(776\) 0 0
\(777\) 9.40110e6 0.558633
\(778\) 0 0
\(779\) −8.38655e6 −0.495153
\(780\) 0 0
\(781\) 1.45524e7 0.853701
\(782\) 0 0
\(783\) 5.59113e6 0.325908
\(784\) 0 0
\(785\) 2.73085e7i 1.58170i
\(786\) 0 0
\(787\) 1.43044e7i 0.823252i −0.911353 0.411626i \(-0.864961\pi\)
0.911353 0.411626i \(-0.135039\pi\)
\(788\) 0 0
\(789\) −8.36068e6 −0.478133
\(790\) 0 0
\(791\) 1.16667e7i 0.662990i
\(792\) 0 0
\(793\) −2.68894e7 + 6.50067e6i −1.51844 + 0.367092i
\(794\) 0 0
\(795\) 2.71907e7i 1.52582i
\(796\) 0 0
\(797\) −1.27192e7 −0.709275 −0.354638 0.935004i \(-0.615396\pi\)
−0.354638 + 0.935004i \(0.615396\pi\)
\(798\) 0 0
\(799\) 1.00396e7i 0.556351i
\(800\) 0 0
\(801\) 4.78317e6i 0.263412i
\(802\) 0 0
\(803\) 2.30615e7 1.26212
\(804\) 0 0
\(805\) 3.71671e6 0.202148
\(806\) 0 0
\(807\) 7.44885e6 0.402629
\(808\) 0 0
\(809\) 5.39790e6 0.289970 0.144985 0.989434i \(-0.453687\pi\)
0.144985 + 0.989434i \(0.453687\pi\)
\(810\) 0 0
\(811\) 1.46019e7i 0.779576i −0.920905 0.389788i \(-0.872548\pi\)
0.920905 0.389788i \(-0.127452\pi\)
\(812\) 0 0
\(813\) 5.94703e6i 0.315554i
\(814\) 0 0
\(815\) −1.22231e7 −0.644597
\(816\) 0 0
\(817\) 1.37425e7i 0.720293i
\(818\) 0 0
\(819\) −1.14563e6 4.73878e6i −0.0596806 0.246863i
\(820\) 0 0
\(821\) 2.73956e7i 1.41848i 0.704967 + 0.709240i \(0.250962\pi\)
−0.704967 + 0.709240i \(0.749038\pi\)
\(822\) 0 0
\(823\) −2.28175e7 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(824\) 0 0
\(825\) 2.42880e7i 1.24239i
\(826\) 0 0
\(827\) 1.17556e7i 0.597698i −0.954300 0.298849i \(-0.903397\pi\)
0.954300 0.298849i \(-0.0966028\pi\)
\(828\) 0 0
\(829\) −2.04885e7 −1.03544 −0.517718 0.855551i \(-0.673219\pi\)
−0.517718 + 0.855551i \(0.673219\pi\)
\(830\) 0 0
\(831\) −1.24447e7 −0.625149
\(832\) 0 0
\(833\) −8.09770e6 −0.404342
\(834\) 0 0
\(835\) −9.46218e6 −0.469651
\(836\) 0 0
\(837\) 5.37064e6i 0.264979i
\(838\) 0 0
\(839\) 2.38084e7i 1.16769i −0.811867 0.583843i \(-0.801549\pi\)
0.811867 0.583843i \(-0.198451\pi\)
\(840\) 0 0
\(841\) 3.83114e7 1.86783
\(842\) 0 0
\(843\) 1.30404e7i 0.632006i
\(844\) 0 0
\(845\) −1.47314e7 2.86868e7i −0.709744 1.38210i
\(846\) 0 0
\(847\) 2.09378e7i 1.00282i
\(848\) 0 0
\(849\) −1.09840e7 −0.522988
\(850\) 0 0
\(851\) 4.58133e6i 0.216854i
\(852\) 0 0
\(853\) 9.87851e6i 0.464857i 0.972614 + 0.232428i \(0.0746671\pi\)
−0.972614 + 0.232428i \(0.925333\pi\)
\(854\) 0 0
\(855\) −1.59497e7 −0.746170
\(856\) 0 0
\(857\) −1.97784e6 −0.0919898 −0.0459949 0.998942i \(-0.514646\pi\)
−0.0459949 + 0.998942i \(0.514646\pi\)
\(858\) 0 0
\(859\) 5.87858e6 0.271825 0.135913 0.990721i \(-0.456603\pi\)
0.135913 + 0.990721i \(0.456603\pi\)
\(860\) 0 0
\(861\) −3.28855e6 −0.151181
\(862\) 0 0
\(863\) 1.96178e7i 0.896651i 0.893870 + 0.448325i \(0.147979\pi\)
−0.893870 + 0.448325i \(0.852021\pi\)
\(864\) 0 0
\(865\) 3.48447e7i 1.58342i
\(866\) 0 0
\(867\) −905089. −0.0408925
\(868\) 0 0
\(869\) 2.15639e7i 0.968675i
\(870\) 0 0
\(871\) 6.54333e6 + 2.70659e7i 0.292249 + 1.20886i
\(872\) 0 0
\(873\) 402228.i 0.0178623i
\(874\) 0 0
\(875\) 1.10979e7 0.490030
\(876\) 0 0
\(877\) 1.90004e7i 0.834189i −0.908863 0.417095i \(-0.863048\pi\)
0.908863 0.417095i \(-0.136952\pi\)
\(878\) 0 0
\(879\) 1.97518e7i 0.862254i
\(880\) 0 0
\(881\) 6.81302e6 0.295733 0.147866 0.989007i \(-0.452759\pi\)
0.147866 + 0.989007i \(0.452759\pi\)
\(882\) 0 0
\(883\) −2.84750e7 −1.22903 −0.614513 0.788906i \(-0.710648\pi\)
−0.614513 + 0.788906i \(0.710648\pi\)
\(884\) 0 0
\(885\) 9.34085e6 0.400893
\(886\) 0 0
\(887\) −3.43992e7 −1.46804 −0.734022 0.679126i \(-0.762359\pi\)
−0.734022 + 0.679126i \(0.762359\pi\)
\(888\) 0 0
\(889\) 3.18721e7i 1.35256i
\(890\) 0 0
\(891\) 4.00716e6i 0.169099i
\(892\) 0 0
\(893\) −1.98164e7 −0.831564
\(894\) 0 0
\(895\) 1.81989e7i 0.759430i
\(896\) 0 0
\(897\) −2.30929e6 + 558284.i −0.0958292 + 0.0231672i
\(898\) 0 0
\(899\) 5.65029e7i 2.33169i
\(900\) 0 0
\(901\) −3.99540e7 −1.63964
\(902\) 0 0
\(903\) 5.38872e6i 0.219921i
\(904\) 0 0
\(905\) 2.05216e7i 0.832894i
\(906\) 0 0
\(907\) −2.13493e7 −0.861719 −0.430859 0.902419i \(-0.641789\pi\)
−0.430859 + 0.902419i \(0.641789\pi\)
\(908\) 0 0
\(909\) −1.01740e7 −0.408397
\(910\) 0 0
\(911\) 7.55882e6 0.301758 0.150879 0.988552i \(-0.451790\pi\)
0.150879 + 0.988552i \(0.451790\pi\)
\(912\) 0 0
\(913\) −1.92292e7 −0.763457
\(914\) 0 0
\(915\) 3.54886e7i 1.40132i
\(916\) 0 0
\(917\) 3.53499e7i 1.38824i
\(918\) 0 0
\(919\) 4.56027e7 1.78115 0.890577 0.454832i \(-0.150301\pi\)
0.890577 + 0.454832i \(0.150301\pi\)
\(920\) 0 0
\(921\) 752572.i 0.0292347i
\(922\) 0 0
\(923\) 3.41167e6 + 1.41121e7i 0.131814 + 0.545239i
\(924\) 0 0
\(925\) 4.67264e7i 1.79559i
\(926\) 0 0
\(927\) 1.02345e7 0.391171
\(928\) 0 0
\(929\) 4.74157e7i 1.80253i −0.433267 0.901266i \(-0.642639\pi\)
0.433267 0.901266i \(-0.357361\pi\)
\(930\) 0 0
\(931\) 1.59834e7i 0.604360i
\(932\) 0 0
\(933\) −4.42590e6 −0.166455
\(934\) 0 0
\(935\) 6.09292e7 2.27928
\(936\) 0 0
\(937\) 4.02496e7 1.49766 0.748829 0.662764i \(-0.230617\pi\)
0.748829 + 0.662764i \(0.230617\pi\)
\(938\) 0 0
\(939\) 8.07272e6 0.298783
\(940\) 0 0
\(941\) 8.70389e6i 0.320434i 0.987082 + 0.160217i \(0.0512195\pi\)
−0.987082 + 0.160217i \(0.948781\pi\)
\(942\) 0 0
\(943\) 1.60257e6i 0.0586864i
\(944\) 0 0
\(945\) −6.25423e6 −0.227821
\(946\) 0 0
\(947\) 9.78178e6i 0.354440i 0.984171 + 0.177220i \(0.0567105\pi\)
−0.984171 + 0.177220i \(0.943290\pi\)
\(948\) 0 0
\(949\) 5.40657e6 + 2.23638e7i 0.194875 + 0.806084i
\(950\) 0 0
\(951\) 2.83904e7i 1.01794i
\(952\) 0 0
\(953\) −1.18962e7 −0.424303 −0.212151 0.977237i \(-0.568047\pi\)
−0.212151 + 0.977237i \(0.568047\pi\)
\(954\) 0 0
\(955\) 4.42711e7i 1.57077i
\(956\) 0 0
\(957\) 4.21581e7i 1.48799i
\(958\) 0 0
\(959\) −3.42821e7 −1.20371
\(960\) 0 0
\(961\) −2.56455e7 −0.895781
\(962\) 0 0
\(963\) −2.67849e6 −0.0930731
\(964\) 0 0
\(965\) −5.05028e6 −0.174581
\(966\) 0 0
\(967\) 7.21381e6i 0.248084i −0.992277 0.124042i \(-0.960414\pi\)
0.992277 0.124042i \(-0.0395857\pi\)
\(968\) 0 0
\(969\) 2.34365e7i 0.801830i
\(970\) 0 0
\(971\) −9.17081e6 −0.312147 −0.156074 0.987745i \(-0.549884\pi\)
−0.156074 + 0.987745i \(0.549884\pi\)
\(972\) 0 0
\(973\) 1.01770e7i 0.344618i
\(974\) 0 0
\(975\) −2.35532e7 + 5.69412e6i −0.793485 + 0.191829i
\(976\) 0 0
\(977\) 2.18053e7i 0.730845i 0.930842 + 0.365423i \(0.119076\pi\)
−0.930842 + 0.365423i \(0.880924\pi\)
\(978\) 0 0
\(979\) 3.60660e7 1.20265
\(980\) 0 0
\(981\) 1.19610e7i 0.396820i
\(982\) 0 0
\(983\) 1.96569e7i 0.648831i 0.945915 + 0.324415i \(0.105168\pi\)
−0.945915 + 0.324415i \(0.894832\pi\)
\(984\) 0 0
\(985\) 7.97579e6 0.261929
\(986\) 0 0
\(987\) −7.77044e6 −0.253894
\(988\) 0 0
\(989\) −2.62602e6 −0.0853703
\(990\) 0 0
\(991\) −2.15229e7 −0.696173 −0.348087 0.937462i \(-0.613168\pi\)
−0.348087 + 0.937462i \(0.613168\pi\)
\(992\) 0 0
\(993\) 5.37477e6i 0.172976i
\(994\) 0 0
\(995\) 4.88372e7i 1.56384i
\(996\) 0 0
\(997\) −1.16375e6 −0.0370783 −0.0185392 0.999828i \(-0.505902\pi\)
−0.0185392 + 0.999828i \(0.505902\pi\)
\(998\) 0 0
\(999\) 7.70915e6i 0.244395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.c.d.337.1 6
4.3 odd 2 78.6.b.a.25.4 yes 6
12.11 even 2 234.6.b.c.181.3 6
13.12 even 2 inner 624.6.c.d.337.6 6
52.31 even 4 1014.6.a.q.1.1 3
52.47 even 4 1014.6.a.o.1.3 3
52.51 odd 2 78.6.b.a.25.3 6
156.155 even 2 234.6.b.c.181.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.3 6 52.51 odd 2
78.6.b.a.25.4 yes 6 4.3 odd 2
234.6.b.c.181.3 6 12.11 even 2
234.6.b.c.181.4 6 156.155 even 2
624.6.c.d.337.1 6 1.1 even 1 trivial
624.6.c.d.337.6 6 13.12 even 2 inner
1014.6.a.o.1.3 3 52.47 even 4
1014.6.a.q.1.1 3 52.31 even 4