Properties

Label 624.4.q.m.289.3
Level $624$
Weight $4$
Character 624.289
Analytic conductor $36.817$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,4,Mod(289,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.289"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,15,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 120 x^{8} - 979 x^{7} + 14252 x^{6} - 68003 x^{5} + 352315 x^{4} - 602502 x^{3} + \cdots + 12873744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(-6.06267 - 10.5009i\) of defining polynomial
Character \(\chi\) \(=\) 624.289
Dual form 624.4.q.m.529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{3} -3.53523 q^{5} +(0.928779 - 1.60869i) q^{7} +(-4.50000 + 7.79423i) q^{9} +(21.0289 + 36.4231i) q^{11} +(20.1361 + 42.3266i) q^{13} +(-5.30284 - 9.18479i) q^{15} +(5.33140 - 9.23425i) q^{17} +(35.8148 - 62.0331i) q^{19} +5.57267 q^{21} +(-47.1837 - 81.7246i) q^{23} -112.502 q^{25} -27.0000 q^{27} +(50.0368 + 86.6662i) q^{29} -118.087 q^{31} +(-63.0867 + 109.269i) q^{33} +(-3.28345 + 5.68709i) q^{35} +(69.2279 + 119.906i) q^{37} +(-79.7634 + 115.805i) q^{39} +(252.422 + 437.208i) q^{41} +(36.2359 - 62.7624i) q^{43} +(15.9085 - 27.5544i) q^{45} -228.606 q^{47} +(169.775 + 294.058i) q^{49} +31.9884 q^{51} -267.285 q^{53} +(-74.3419 - 128.764i) q^{55} +214.889 q^{57} +(-183.243 + 317.386i) q^{59} +(-415.082 + 718.943i) q^{61} +(8.35901 + 14.4782i) q^{63} +(-71.1857 - 149.634i) q^{65} +(-120.245 - 208.271i) q^{67} +(141.551 - 245.174i) q^{69} +(-7.29803 + 12.6406i) q^{71} -955.859 q^{73} +(-168.753 - 292.289i) q^{75} +78.1248 q^{77} -711.069 q^{79} +(-40.5000 - 70.1481i) q^{81} +111.954 q^{83} +(-18.8477 + 32.6452i) q^{85} +(-150.110 + 259.999i) q^{87} +(452.016 + 782.914i) q^{89} +(86.7924 + 6.91921i) q^{91} +(-177.131 - 306.799i) q^{93} +(-126.614 + 219.301i) q^{95} +(-210.964 + 365.400i) q^{97} -378.520 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 15 q^{3} - 22 q^{5} + 4 q^{7} - 45 q^{9} - 46 q^{11} - 31 q^{13} - 33 q^{15} - 11 q^{17} - 158 q^{19} + 24 q^{21} + 26 q^{23} + 340 q^{25} - 270 q^{27} - 125 q^{29} + 396 q^{31} + 138 q^{33} + 230 q^{35}+ \cdots + 828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −3.53523 −0.316200 −0.158100 0.987423i \(-0.550537\pi\)
−0.158100 + 0.987423i \(0.550537\pi\)
\(6\) 0 0
\(7\) 0.928779 1.60869i 0.0501493 0.0868612i −0.839861 0.542801i \(-0.817364\pi\)
0.890010 + 0.455940i \(0.150697\pi\)
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 21.0289 + 36.4231i 0.576405 + 0.998362i 0.995887 + 0.0905988i \(0.0288781\pi\)
−0.419483 + 0.907763i \(0.637789\pi\)
\(12\) 0 0
\(13\) 20.1361 + 42.3266i 0.429596 + 0.903021i
\(14\) 0 0
\(15\) −5.30284 9.18479i −0.0912792 0.158100i
\(16\) 0 0
\(17\) 5.33140 9.23425i 0.0760620 0.131743i −0.825486 0.564423i \(-0.809099\pi\)
0.901548 + 0.432680i \(0.142432\pi\)
\(18\) 0 0
\(19\) 35.8148 62.0331i 0.432446 0.749019i −0.564637 0.825339i \(-0.690984\pi\)
0.997083 + 0.0763203i \(0.0243172\pi\)
\(20\) 0 0
\(21\) 5.57267 0.0579075
\(22\) 0 0
\(23\) −47.1837 81.7246i −0.427760 0.740903i 0.568913 0.822397i \(-0.307364\pi\)
−0.996674 + 0.0814948i \(0.974031\pi\)
\(24\) 0 0
\(25\) −112.502 −0.900017
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 50.0368 + 86.6662i 0.320400 + 0.554949i 0.980571 0.196167i \(-0.0628494\pi\)
−0.660171 + 0.751116i \(0.729516\pi\)
\(30\) 0 0
\(31\) −118.087 −0.684163 −0.342082 0.939670i \(-0.611132\pi\)
−0.342082 + 0.939670i \(0.611132\pi\)
\(32\) 0 0
\(33\) −63.0867 + 109.269i −0.332787 + 0.576405i
\(34\) 0 0
\(35\) −3.28345 + 5.68709i −0.0158572 + 0.0274656i
\(36\) 0 0
\(37\) 69.2279 + 119.906i 0.307594 + 0.532769i 0.977836 0.209374i \(-0.0671427\pi\)
−0.670241 + 0.742143i \(0.733809\pi\)
\(38\) 0 0
\(39\) −79.7634 + 115.805i −0.327497 + 0.475478i
\(40\) 0 0
\(41\) 252.422 + 437.208i 0.961504 + 1.66537i 0.718727 + 0.695293i \(0.244725\pi\)
0.242778 + 0.970082i \(0.421941\pi\)
\(42\) 0 0
\(43\) 36.2359 62.7624i 0.128510 0.222585i −0.794590 0.607147i \(-0.792314\pi\)
0.923099 + 0.384561i \(0.125647\pi\)
\(44\) 0 0
\(45\) 15.9085 27.5544i 0.0527001 0.0912792i
\(46\) 0 0
\(47\) −228.606 −0.709482 −0.354741 0.934965i \(-0.615431\pi\)
−0.354741 + 0.934965i \(0.615431\pi\)
\(48\) 0 0
\(49\) 169.775 + 294.058i 0.494970 + 0.857313i
\(50\) 0 0
\(51\) 31.9884 0.0878288
\(52\) 0 0
\(53\) −267.285 −0.692724 −0.346362 0.938101i \(-0.612583\pi\)
−0.346362 + 0.938101i \(0.612583\pi\)
\(54\) 0 0
\(55\) −74.3419 128.764i −0.182259 0.315683i
\(56\) 0 0
\(57\) 214.889 0.499346
\(58\) 0 0
\(59\) −183.243 + 317.386i −0.404342 + 0.700341i −0.994245 0.107133i \(-0.965833\pi\)
0.589903 + 0.807474i \(0.299166\pi\)
\(60\) 0 0
\(61\) −415.082 + 718.943i −0.871243 + 1.50904i −0.0105312 + 0.999945i \(0.503352\pi\)
−0.860712 + 0.509093i \(0.829981\pi\)
\(62\) 0 0
\(63\) 8.35901 + 14.4782i 0.0167164 + 0.0289537i
\(64\) 0 0
\(65\) −71.1857 149.634i −0.135839 0.285536i
\(66\) 0 0
\(67\) −120.245 208.271i −0.219258 0.379766i 0.735323 0.677716i \(-0.237030\pi\)
−0.954581 + 0.297951i \(0.903697\pi\)
\(68\) 0 0
\(69\) 141.551 245.174i 0.246968 0.427760i
\(70\) 0 0
\(71\) −7.29803 + 12.6406i −0.0121988 + 0.0211290i −0.872060 0.489398i \(-0.837216\pi\)
0.859862 + 0.510527i \(0.170550\pi\)
\(72\) 0 0
\(73\) −955.859 −1.53253 −0.766266 0.642523i \(-0.777888\pi\)
−0.766266 + 0.642523i \(0.777888\pi\)
\(74\) 0 0
\(75\) −168.753 292.289i −0.259813 0.450009i
\(76\) 0 0
\(77\) 78.1248 0.115625
\(78\) 0 0
\(79\) −711.069 −1.01268 −0.506338 0.862335i \(-0.669001\pi\)
−0.506338 + 0.862335i \(0.669001\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 111.954 0.148055 0.0740273 0.997256i \(-0.476415\pi\)
0.0740273 + 0.997256i \(0.476415\pi\)
\(84\) 0 0
\(85\) −18.8477 + 32.6452i −0.0240508 + 0.0416573i
\(86\) 0 0
\(87\) −150.110 + 259.999i −0.184983 + 0.320400i
\(88\) 0 0
\(89\) 452.016 + 782.914i 0.538355 + 0.932457i 0.998993 + 0.0448695i \(0.0142872\pi\)
−0.460638 + 0.887588i \(0.652379\pi\)
\(90\) 0 0
\(91\) 86.7924 + 6.91921i 0.0999815 + 0.00797066i
\(92\) 0 0
\(93\) −177.131 306.799i −0.197501 0.342082i
\(94\) 0 0
\(95\) −126.614 + 219.301i −0.136740 + 0.236840i
\(96\) 0 0
\(97\) −210.964 + 365.400i −0.220826 + 0.382482i −0.955059 0.296416i \(-0.904209\pi\)
0.734233 + 0.678898i \(0.237542\pi\)
\(98\) 0 0
\(99\) −378.520 −0.384270
\(100\) 0 0
\(101\) −543.914 942.087i −0.535856 0.928130i −0.999121 0.0419104i \(-0.986656\pi\)
0.463265 0.886220i \(-0.346678\pi\)
\(102\) 0 0
\(103\) 854.216 0.817169 0.408584 0.912721i \(-0.366023\pi\)
0.408584 + 0.912721i \(0.366023\pi\)
\(104\) 0 0
\(105\) −19.7007 −0.0183104
\(106\) 0 0
\(107\) 640.871 + 1110.02i 0.579022 + 1.00290i 0.995592 + 0.0937914i \(0.0298987\pi\)
−0.416570 + 0.909104i \(0.636768\pi\)
\(108\) 0 0
\(109\) −1532.31 −1.34650 −0.673250 0.739415i \(-0.735102\pi\)
−0.673250 + 0.739415i \(0.735102\pi\)
\(110\) 0 0
\(111\) −207.684 + 359.719i −0.177590 + 0.307594i
\(112\) 0 0
\(113\) 119.330 206.686i 0.0993419 0.172065i −0.812071 0.583559i \(-0.801660\pi\)
0.911412 + 0.411494i \(0.134993\pi\)
\(114\) 0 0
\(115\) 166.805 + 288.915i 0.135258 + 0.234274i
\(116\) 0 0
\(117\) −420.515 33.5241i −0.332279 0.0264897i
\(118\) 0 0
\(119\) −9.90337 17.1531i −0.00762892 0.0132137i
\(120\) 0 0
\(121\) −218.929 + 379.196i −0.164484 + 0.284895i
\(122\) 0 0
\(123\) −757.266 + 1311.62i −0.555125 + 0.961504i
\(124\) 0 0
\(125\) 839.624 0.600786
\(126\) 0 0
\(127\) 167.209 + 289.614i 0.116830 + 0.202355i 0.918510 0.395398i \(-0.129393\pi\)
−0.801680 + 0.597754i \(0.796060\pi\)
\(128\) 0 0
\(129\) 217.415 0.148390
\(130\) 0 0
\(131\) −329.101 −0.219494 −0.109747 0.993960i \(-0.535004\pi\)
−0.109747 + 0.993960i \(0.535004\pi\)
\(132\) 0 0
\(133\) −66.5281 115.230i −0.0433738 0.0751256i
\(134\) 0 0
\(135\) 95.4512 0.0608528
\(136\) 0 0
\(137\) −107.789 + 186.697i −0.0672194 + 0.116428i −0.897676 0.440655i \(-0.854746\pi\)
0.830457 + 0.557083i \(0.188079\pi\)
\(138\) 0 0
\(139\) −279.826 + 484.673i −0.170752 + 0.295752i −0.938683 0.344781i \(-0.887953\pi\)
0.767931 + 0.640533i \(0.221286\pi\)
\(140\) 0 0
\(141\) −342.909 593.937i −0.204810 0.354741i
\(142\) 0 0
\(143\) −1118.22 + 1623.50i −0.653921 + 0.949398i
\(144\) 0 0
\(145\) −176.891 306.385i −0.101311 0.175475i
\(146\) 0 0
\(147\) −509.324 + 882.175i −0.285771 + 0.494970i
\(148\) 0 0
\(149\) 1338.13 2317.72i 0.735733 1.27433i −0.218668 0.975799i \(-0.570171\pi\)
0.954401 0.298528i \(-0.0964955\pi\)
\(150\) 0 0
\(151\) 161.987 0.0873003 0.0436502 0.999047i \(-0.486101\pi\)
0.0436502 + 0.999047i \(0.486101\pi\)
\(152\) 0 0
\(153\) 47.9826 + 83.1082i 0.0253540 + 0.0439144i
\(154\) 0 0
\(155\) 417.465 0.216333
\(156\) 0 0
\(157\) 97.3557 0.0494894 0.0247447 0.999694i \(-0.492123\pi\)
0.0247447 + 0.999694i \(0.492123\pi\)
\(158\) 0 0
\(159\) −400.927 694.426i −0.199972 0.346362i
\(160\) 0 0
\(161\) −175.293 −0.0858076
\(162\) 0 0
\(163\) 1697.58 2940.29i 0.815733 1.41289i −0.0930670 0.995660i \(-0.529667\pi\)
0.908800 0.417232i \(-0.137000\pi\)
\(164\) 0 0
\(165\) 223.026 386.292i 0.105228 0.182259i
\(166\) 0 0
\(167\) 470.913 + 815.644i 0.218205 + 0.377943i 0.954259 0.298980i \(-0.0966464\pi\)
−0.736054 + 0.676923i \(0.763313\pi\)
\(168\) 0 0
\(169\) −1386.07 + 1704.58i −0.630894 + 0.775869i
\(170\) 0 0
\(171\) 322.333 + 558.298i 0.144149 + 0.249673i
\(172\) 0 0
\(173\) 280.748 486.269i 0.123381 0.213702i −0.797718 0.603031i \(-0.793960\pi\)
0.921099 + 0.389329i \(0.127293\pi\)
\(174\) 0 0
\(175\) −104.490 + 180.981i −0.0451353 + 0.0781766i
\(176\) 0 0
\(177\) −1099.46 −0.466894
\(178\) 0 0
\(179\) 2038.23 + 3530.32i 0.851088 + 1.47413i 0.880228 + 0.474552i \(0.157390\pi\)
−0.0291399 + 0.999575i \(0.509277\pi\)
\(180\) 0 0
\(181\) −1140.76 −0.468463 −0.234231 0.972181i \(-0.575257\pi\)
−0.234231 + 0.972181i \(0.575257\pi\)
\(182\) 0 0
\(183\) −2490.49 −1.00602
\(184\) 0 0
\(185\) −244.736 423.896i −0.0972615 0.168462i
\(186\) 0 0
\(187\) 448.453 0.175370
\(188\) 0 0
\(189\) −25.0770 + 43.4347i −0.00965125 + 0.0167164i
\(190\) 0 0
\(191\) −50.3932 + 87.2835i −0.0190907 + 0.0330660i −0.875413 0.483376i \(-0.839410\pi\)
0.856322 + 0.516442i \(0.172744\pi\)
\(192\) 0 0
\(193\) 870.796 + 1508.26i 0.324774 + 0.562524i 0.981467 0.191634i \(-0.0613786\pi\)
−0.656693 + 0.754158i \(0.728045\pi\)
\(194\) 0 0
\(195\) 281.982 409.397i 0.103555 0.150346i
\(196\) 0 0
\(197\) 1695.55 + 2936.78i 0.613212 + 1.06211i 0.990695 + 0.136098i \(0.0434563\pi\)
−0.377483 + 0.926016i \(0.623210\pi\)
\(198\) 0 0
\(199\) −506.865 + 877.915i −0.180556 + 0.312732i −0.942070 0.335416i \(-0.891123\pi\)
0.761514 + 0.648149i \(0.224456\pi\)
\(200\) 0 0
\(201\) 360.735 624.812i 0.126589 0.219258i
\(202\) 0 0
\(203\) 185.892 0.0642714
\(204\) 0 0
\(205\) −892.369 1545.63i −0.304028 0.526592i
\(206\) 0 0
\(207\) 849.307 0.285174
\(208\) 0 0
\(209\) 3012.58 0.997056
\(210\) 0 0
\(211\) 819.232 + 1418.95i 0.267290 + 0.462961i 0.968161 0.250328i \(-0.0805384\pi\)
−0.700871 + 0.713288i \(0.747205\pi\)
\(212\) 0 0
\(213\) −43.7882 −0.0140860
\(214\) 0 0
\(215\) −128.102 + 221.879i −0.0406348 + 0.0703816i
\(216\) 0 0
\(217\) −109.677 + 189.966i −0.0343103 + 0.0594273i
\(218\) 0 0
\(219\) −1433.79 2483.40i −0.442404 0.766266i
\(220\) 0 0
\(221\) 498.207 + 39.7178i 0.151643 + 0.0120892i
\(222\) 0 0
\(223\) −2623.97 4544.85i −0.787956 1.36478i −0.927217 0.374524i \(-0.877806\pi\)
0.139262 0.990256i \(-0.455527\pi\)
\(224\) 0 0
\(225\) 506.260 876.868i 0.150003 0.259813i
\(226\) 0 0
\(227\) 1871.66 3241.81i 0.547254 0.947871i −0.451208 0.892419i \(-0.649007\pi\)
0.998461 0.0554520i \(-0.0176600\pi\)
\(228\) 0 0
\(229\) −2355.28 −0.679656 −0.339828 0.940488i \(-0.610369\pi\)
−0.339828 + 0.940488i \(0.610369\pi\)
\(230\) 0 0
\(231\) 117.187 + 202.974i 0.0333781 + 0.0578126i
\(232\) 0 0
\(233\) 1631.80 0.458809 0.229405 0.973331i \(-0.426322\pi\)
0.229405 + 0.973331i \(0.426322\pi\)
\(234\) 0 0
\(235\) 808.176 0.224339
\(236\) 0 0
\(237\) −1066.60 1847.41i −0.292335 0.506338i
\(238\) 0 0
\(239\) 5544.73 1.50067 0.750333 0.661061i \(-0.229893\pi\)
0.750333 + 0.661061i \(0.229893\pi\)
\(240\) 0 0
\(241\) −447.461 + 775.025i −0.119599 + 0.207152i −0.919609 0.392835i \(-0.871494\pi\)
0.800010 + 0.599987i \(0.204828\pi\)
\(242\) 0 0
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −600.192 1039.56i −0.156510 0.271083i
\(246\) 0 0
\(247\) 3346.82 + 266.813i 0.862157 + 0.0687324i
\(248\) 0 0
\(249\) 167.931 + 290.865i 0.0427397 + 0.0740273i
\(250\) 0 0
\(251\) 1773.30 3071.45i 0.445935 0.772383i −0.552181 0.833724i \(-0.686204\pi\)
0.998117 + 0.0613411i \(0.0195377\pi\)
\(252\) 0 0
\(253\) 1984.44 3437.16i 0.493126 0.854119i
\(254\) 0 0
\(255\) −113.086 −0.0277715
\(256\) 0 0
\(257\) 3052.86 + 5287.71i 0.740981 + 1.28342i 0.952049 + 0.305946i \(0.0989726\pi\)
−0.211068 + 0.977471i \(0.567694\pi\)
\(258\) 0 0
\(259\) 257.190 0.0617026
\(260\) 0 0
\(261\) −900.662 −0.213600
\(262\) 0 0
\(263\) −1859.09 3220.04i −0.435881 0.754967i 0.561487 0.827486i \(-0.310230\pi\)
−0.997367 + 0.0725187i \(0.976896\pi\)
\(264\) 0 0
\(265\) 944.912 0.219040
\(266\) 0 0
\(267\) −1356.05 + 2348.74i −0.310819 + 0.538355i
\(268\) 0 0
\(269\) 2102.84 3642.22i 0.476626 0.825540i −0.523015 0.852323i \(-0.675193\pi\)
0.999641 + 0.0267830i \(0.00852631\pi\)
\(270\) 0 0
\(271\) −3480.50 6028.41i −0.780168 1.35129i −0.931844 0.362860i \(-0.881800\pi\)
0.151676 0.988430i \(-0.451533\pi\)
\(272\) 0 0
\(273\) 112.212 + 235.872i 0.0248768 + 0.0522917i
\(274\) 0 0
\(275\) −2365.80 4097.68i −0.518774 0.898543i
\(276\) 0 0
\(277\) 90.6830 157.068i 0.0196701 0.0340696i −0.856023 0.516938i \(-0.827072\pi\)
0.875693 + 0.482868i \(0.160405\pi\)
\(278\) 0 0
\(279\) 531.392 920.398i 0.114027 0.197501i
\(280\) 0 0
\(281\) 3831.89 0.813493 0.406747 0.913541i \(-0.366663\pi\)
0.406747 + 0.913541i \(0.366663\pi\)
\(282\) 0 0
\(283\) −1987.19 3441.91i −0.417406 0.722969i 0.578271 0.815844i \(-0.303727\pi\)
−0.995678 + 0.0928755i \(0.970394\pi\)
\(284\) 0 0
\(285\) −759.681 −0.157893
\(286\) 0 0
\(287\) 937.777 0.192875
\(288\) 0 0
\(289\) 2399.65 + 4156.32i 0.488429 + 0.845984i
\(290\) 0 0
\(291\) −1265.78 −0.254988
\(292\) 0 0
\(293\) 479.577 830.652i 0.0956219 0.165622i −0.814246 0.580520i \(-0.802849\pi\)
0.909868 + 0.414898i \(0.136183\pi\)
\(294\) 0 0
\(295\) 647.805 1122.03i 0.127853 0.221448i
\(296\) 0 0
\(297\) −567.780 983.424i −0.110929 0.192135i
\(298\) 0 0
\(299\) 2509.02 3642.74i 0.485286 0.704566i
\(300\) 0 0
\(301\) −67.3102 116.585i −0.0128894 0.0223250i
\(302\) 0 0
\(303\) 1631.74 2826.26i 0.309377 0.535856i
\(304\) 0 0
\(305\) 1467.41 2541.63i 0.275487 0.477158i
\(306\) 0 0
\(307\) −9414.17 −1.75015 −0.875074 0.483990i \(-0.839187\pi\)
−0.875074 + 0.483990i \(0.839187\pi\)
\(308\) 0 0
\(309\) 1281.32 + 2219.32i 0.235896 + 0.408584i
\(310\) 0 0
\(311\) 10059.1 1.83408 0.917041 0.398794i \(-0.130571\pi\)
0.917041 + 0.398794i \(0.130571\pi\)
\(312\) 0 0
\(313\) 8964.67 1.61889 0.809446 0.587194i \(-0.199768\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(314\) 0 0
\(315\) −29.5510 51.1838i −0.00528575 0.00915518i
\(316\) 0 0
\(317\) 2956.07 0.523752 0.261876 0.965102i \(-0.415659\pi\)
0.261876 + 0.965102i \(0.415659\pi\)
\(318\) 0 0
\(319\) −2104.44 + 3644.99i −0.369360 + 0.639750i
\(320\) 0 0
\(321\) −1922.61 + 3330.06i −0.334298 + 0.579022i
\(322\) 0 0
\(323\) −381.886 661.446i −0.0657854 0.113944i
\(324\) 0 0
\(325\) −2265.36 4761.83i −0.386644 0.812735i
\(326\) 0 0
\(327\) −2298.46 3981.05i −0.388701 0.673250i
\(328\) 0 0
\(329\) −212.325 + 367.757i −0.0355801 + 0.0616265i
\(330\) 0 0
\(331\) 253.451 438.990i 0.0420874 0.0728975i −0.844214 0.536006i \(-0.819933\pi\)
0.886302 + 0.463108i \(0.153266\pi\)
\(332\) 0 0
\(333\) −1246.10 −0.205063
\(334\) 0 0
\(335\) 425.094 + 736.284i 0.0693295 + 0.120082i
\(336\) 0 0
\(337\) −8692.65 −1.40510 −0.702550 0.711634i \(-0.747955\pi\)
−0.702550 + 0.711634i \(0.747955\pi\)
\(338\) 0 0
\(339\) 715.981 0.114710
\(340\) 0 0
\(341\) −2483.24 4301.10i −0.394355 0.683043i
\(342\) 0 0
\(343\) 1267.88 0.199588
\(344\) 0 0
\(345\) −500.416 + 866.745i −0.0780912 + 0.135258i
\(346\) 0 0
\(347\) 668.244 1157.43i 0.103381 0.179061i −0.809695 0.586852i \(-0.800367\pi\)
0.913076 + 0.407790i \(0.133701\pi\)
\(348\) 0 0
\(349\) −3289.31 5697.26i −0.504507 0.873832i −0.999986 0.00521198i \(-0.998341\pi\)
0.495480 0.868620i \(-0.334992\pi\)
\(350\) 0 0
\(351\) −543.675 1142.82i −0.0826758 0.173786i
\(352\) 0 0
\(353\) 5036.06 + 8722.71i 0.759326 + 1.31519i 0.943194 + 0.332241i \(0.107805\pi\)
−0.183868 + 0.982951i \(0.558862\pi\)
\(354\) 0 0
\(355\) 25.8002 44.6873i 0.00385727 0.00668100i
\(356\) 0 0
\(357\) 29.7101 51.4594i 0.00440456 0.00762892i
\(358\) 0 0
\(359\) 4323.09 0.635555 0.317777 0.948165i \(-0.397064\pi\)
0.317777 + 0.948165i \(0.397064\pi\)
\(360\) 0 0
\(361\) 864.099 + 1496.66i 0.125980 + 0.218204i
\(362\) 0 0
\(363\) −1313.57 −0.189930
\(364\) 0 0
\(365\) 3379.18 0.484587
\(366\) 0 0
\(367\) 3331.55 + 5770.42i 0.473857 + 0.820745i 0.999552 0.0299284i \(-0.00952793\pi\)
−0.525695 + 0.850673i \(0.676195\pi\)
\(368\) 0 0
\(369\) −4543.59 −0.641003
\(370\) 0 0
\(371\) −248.248 + 429.979i −0.0347396 + 0.0601708i
\(372\) 0 0
\(373\) 4460.55 7725.89i 0.619191 1.07247i −0.370442 0.928855i \(-0.620794\pi\)
0.989634 0.143615i \(-0.0458728\pi\)
\(374\) 0 0
\(375\) 1259.44 + 2181.41i 0.173432 + 0.300393i
\(376\) 0 0
\(377\) −2660.74 + 3863.00i −0.363488 + 0.527732i
\(378\) 0 0
\(379\) 1303.56 + 2257.82i 0.176673 + 0.306007i 0.940739 0.339131i \(-0.110133\pi\)
−0.764066 + 0.645138i \(0.776800\pi\)
\(380\) 0 0
\(381\) −501.627 + 868.843i −0.0674518 + 0.116830i
\(382\) 0 0
\(383\) −3404.29 + 5896.40i −0.454180 + 0.786663i −0.998641 0.0521237i \(-0.983401\pi\)
0.544461 + 0.838786i \(0.316734\pi\)
\(384\) 0 0
\(385\) −276.189 −0.0365608
\(386\) 0 0
\(387\) 326.123 + 564.861i 0.0428366 + 0.0741951i
\(388\) 0 0
\(389\) −5307.62 −0.691792 −0.345896 0.938273i \(-0.612425\pi\)
−0.345896 + 0.938273i \(0.612425\pi\)
\(390\) 0 0
\(391\) −1006.22 −0.130145
\(392\) 0 0
\(393\) −493.651 855.029i −0.0633624 0.109747i
\(394\) 0 0
\(395\) 2513.79 0.320209
\(396\) 0 0
\(397\) 4729.31 8191.40i 0.597877 1.03555i −0.395257 0.918571i \(-0.629344\pi\)
0.993134 0.116983i \(-0.0373223\pi\)
\(398\) 0 0
\(399\) 199.584 345.690i 0.0250419 0.0433738i
\(400\) 0 0
\(401\) −189.750 328.656i −0.0236300 0.0409284i 0.853969 0.520325i \(-0.174189\pi\)
−0.877599 + 0.479396i \(0.840856\pi\)
\(402\) 0 0
\(403\) −2377.81 4998.22i −0.293914 0.617814i
\(404\) 0 0
\(405\) 143.177 + 247.989i 0.0175667 + 0.0304264i
\(406\) 0 0
\(407\) −2911.57 + 5042.99i −0.354598 + 0.614181i
\(408\) 0 0
\(409\) 6048.61 10476.5i 0.731259 1.26658i −0.225087 0.974339i \(-0.572267\pi\)
0.956346 0.292238i \(-0.0944000\pi\)
\(410\) 0 0
\(411\) −646.736 −0.0776183
\(412\) 0 0
\(413\) 340.384 + 589.563i 0.0405550 + 0.0702433i
\(414\) 0 0
\(415\) −395.783 −0.0468149
\(416\) 0 0
\(417\) −1678.96 −0.197168
\(418\) 0 0
\(419\) 5703.41 + 9878.60i 0.664988 + 1.15179i 0.979289 + 0.202469i \(0.0648965\pi\)
−0.314301 + 0.949323i \(0.601770\pi\)
\(420\) 0 0
\(421\) −3068.96 −0.355278 −0.177639 0.984096i \(-0.556846\pi\)
−0.177639 + 0.984096i \(0.556846\pi\)
\(422\) 0 0
\(423\) 1028.73 1781.81i 0.118247 0.204810i
\(424\) 0 0
\(425\) −599.794 + 1038.87i −0.0684571 + 0.118571i
\(426\) 0 0
\(427\) 771.039 + 1335.48i 0.0873845 + 0.151354i
\(428\) 0 0
\(429\) −5895.31 469.983i −0.663470 0.0528927i
\(430\) 0 0
\(431\) −1109.01 1920.86i −0.123942 0.214674i 0.797377 0.603482i \(-0.206220\pi\)
−0.921319 + 0.388808i \(0.872887\pi\)
\(432\) 0 0
\(433\) −4330.44 + 7500.54i −0.480618 + 0.832455i −0.999753 0.0222375i \(-0.992921\pi\)
0.519135 + 0.854692i \(0.326254\pi\)
\(434\) 0 0
\(435\) 530.674 919.155i 0.0584917 0.101311i
\(436\) 0 0
\(437\) −6759.50 −0.739933
\(438\) 0 0
\(439\) 7757.19 + 13435.8i 0.843349 + 1.46072i 0.887047 + 0.461679i \(0.152753\pi\)
−0.0436981 + 0.999045i \(0.513914\pi\)
\(440\) 0 0
\(441\) −3055.95 −0.329980
\(442\) 0 0
\(443\) 9100.19 0.975989 0.487994 0.872847i \(-0.337729\pi\)
0.487994 + 0.872847i \(0.337729\pi\)
\(444\) 0 0
\(445\) −1597.98 2767.78i −0.170228 0.294843i
\(446\) 0 0
\(447\) 8028.81 0.849551
\(448\) 0 0
\(449\) −3758.43 + 6509.78i −0.395036 + 0.684222i −0.993106 0.117222i \(-0.962601\pi\)
0.598070 + 0.801444i \(0.295934\pi\)
\(450\) 0 0
\(451\) −10616.3 + 18388.0i −1.10843 + 1.91986i
\(452\) 0 0
\(453\) 242.981 + 420.856i 0.0252014 + 0.0436502i
\(454\) 0 0
\(455\) −306.831 24.4610i −0.0316142 0.00252033i
\(456\) 0 0
\(457\) 3859.77 + 6685.31i 0.395082 + 0.684301i 0.993112 0.117172i \(-0.0373830\pi\)
−0.598030 + 0.801474i \(0.704050\pi\)
\(458\) 0 0
\(459\) −143.948 + 249.325i −0.0146381 + 0.0253540i
\(460\) 0 0
\(461\) 5633.65 9757.78i 0.569166 0.985824i −0.427483 0.904023i \(-0.640600\pi\)
0.996649 0.0818007i \(-0.0260671\pi\)
\(462\) 0 0
\(463\) −11503.9 −1.15471 −0.577355 0.816493i \(-0.695915\pi\)
−0.577355 + 0.816493i \(0.695915\pi\)
\(464\) 0 0
\(465\) 626.197 + 1084.61i 0.0624499 + 0.108166i
\(466\) 0 0
\(467\) 10583.1 1.04867 0.524333 0.851513i \(-0.324315\pi\)
0.524333 + 0.851513i \(0.324315\pi\)
\(468\) 0 0
\(469\) −446.725 −0.0439826
\(470\) 0 0
\(471\) 146.034 + 252.938i 0.0142864 + 0.0247447i
\(472\) 0 0
\(473\) 3048.00 0.296294
\(474\) 0 0
\(475\) −4029.24 + 6978.85i −0.389209 + 0.674130i
\(476\) 0 0
\(477\) 1202.78 2083.28i 0.115454 0.199972i
\(478\) 0 0
\(479\) −6145.51 10644.3i −0.586212 1.01535i −0.994723 0.102595i \(-0.967285\pi\)
0.408511 0.912753i \(-0.366048\pi\)
\(480\) 0 0
\(481\) −3681.24 + 5344.62i −0.348960 + 0.506640i
\(482\) 0 0
\(483\) −262.939 455.425i −0.0247705 0.0429038i
\(484\) 0 0
\(485\) 745.805 1291.77i 0.0698253 0.120941i
\(486\) 0 0
\(487\) 417.296 722.778i 0.0388285 0.0672530i −0.845958 0.533249i \(-0.820971\pi\)
0.884787 + 0.465996i \(0.154304\pi\)
\(488\) 0 0
\(489\) 10185.5 0.941928
\(490\) 0 0
\(491\) −4135.70 7163.25i −0.380126 0.658397i 0.610954 0.791666i \(-0.290786\pi\)
−0.991080 + 0.133269i \(0.957453\pi\)
\(492\) 0 0
\(493\) 1067.06 0.0974809
\(494\) 0 0
\(495\) 1338.16 0.121506
\(496\) 0 0
\(497\) 13.5565 + 23.4806i 0.00122353 + 0.00211921i
\(498\) 0 0
\(499\) −3466.25 −0.310964 −0.155482 0.987839i \(-0.549693\pi\)
−0.155482 + 0.987839i \(0.549693\pi\)
\(500\) 0 0
\(501\) −1412.74 + 2446.93i −0.125981 + 0.218205i
\(502\) 0 0
\(503\) −8964.24 + 15526.5i −0.794623 + 1.37633i 0.128455 + 0.991715i \(0.458998\pi\)
−0.923078 + 0.384613i \(0.874335\pi\)
\(504\) 0 0
\(505\) 1922.86 + 3330.49i 0.169438 + 0.293475i
\(506\) 0 0
\(507\) −6507.75 1044.25i −0.570058 0.0914730i
\(508\) 0 0
\(509\) −4688.80 8121.24i −0.408305 0.707206i 0.586395 0.810026i \(-0.300547\pi\)
−0.994700 + 0.102820i \(0.967214\pi\)
\(510\) 0 0
\(511\) −887.782 + 1537.68i −0.0768555 + 0.133118i
\(512\) 0 0
\(513\) −967.000 + 1674.89i −0.0832243 + 0.144149i
\(514\) 0 0
\(515\) −3019.85 −0.258389
\(516\) 0 0
\(517\) −4807.34 8326.55i −0.408949 0.708320i
\(518\) 0 0
\(519\) 1684.49 0.142468
\(520\) 0 0
\(521\) −4889.72 −0.411176 −0.205588 0.978639i \(-0.565911\pi\)
−0.205588 + 0.978639i \(0.565911\pi\)
\(522\) 0 0
\(523\) 8142.08 + 14102.5i 0.680743 + 1.17908i 0.974755 + 0.223279i \(0.0716761\pi\)
−0.294012 + 0.955802i \(0.594991\pi\)
\(524\) 0 0
\(525\) −626.938 −0.0521177
\(526\) 0 0
\(527\) −629.569 + 1090.45i −0.0520388 + 0.0901339i
\(528\) 0 0
\(529\) 1630.89 2824.79i 0.134042 0.232168i
\(530\) 0 0
\(531\) −1649.19 2856.47i −0.134781 0.233447i
\(532\) 0 0
\(533\) −13422.7 + 19487.8i −1.09081 + 1.58370i
\(534\) 0 0
\(535\) −2265.62 3924.18i −0.183087 0.317116i
\(536\) 0 0
\(537\) −6114.70 + 10591.0i −0.491376 + 0.851088i
\(538\) 0 0
\(539\) −7140.35 + 12367.4i −0.570606 + 0.988319i
\(540\) 0 0
\(541\) −1972.77 −0.156776 −0.0783881 0.996923i \(-0.524977\pi\)
−0.0783881 + 0.996923i \(0.524977\pi\)
\(542\) 0 0
\(543\) −1711.13 2963.77i −0.135233 0.234231i
\(544\) 0 0
\(545\) 5417.06 0.425764
\(546\) 0 0
\(547\) −20991.9 −1.64086 −0.820430 0.571747i \(-0.806266\pi\)
−0.820430 + 0.571747i \(0.806266\pi\)
\(548\) 0 0
\(549\) −3735.74 6470.49i −0.290414 0.503012i
\(550\) 0 0
\(551\) 7168.23 0.554223
\(552\) 0 0
\(553\) −660.426 + 1143.89i −0.0507851 + 0.0879623i
\(554\) 0 0
\(555\) 734.209 1271.69i 0.0561539 0.0972615i
\(556\) 0 0
\(557\) −2502.08 4333.73i −0.190335 0.329670i 0.755026 0.655695i \(-0.227624\pi\)
−0.945361 + 0.326025i \(0.894291\pi\)
\(558\) 0 0
\(559\) 3386.16 + 269.950i 0.256207 + 0.0204251i
\(560\) 0 0
\(561\) 672.680 + 1165.12i 0.0506249 + 0.0876849i
\(562\) 0 0
\(563\) 7631.61 13218.3i 0.571286 0.989496i −0.425148 0.905124i \(-0.639778\pi\)
0.996434 0.0843727i \(-0.0268886\pi\)
\(564\) 0 0
\(565\) −421.859 + 730.682i −0.0314120 + 0.0544071i
\(566\) 0 0
\(567\) −150.462 −0.0111443
\(568\) 0 0
\(569\) 5171.63 + 8957.53i 0.381030 + 0.659963i 0.991210 0.132300i \(-0.0422362\pi\)
−0.610180 + 0.792263i \(0.708903\pi\)
\(570\) 0 0
\(571\) 14885.6 1.09097 0.545483 0.838122i \(-0.316346\pi\)
0.545483 + 0.838122i \(0.316346\pi\)
\(572\) 0 0
\(573\) −302.359 −0.0220440
\(574\) 0 0
\(575\) 5308.27 + 9194.20i 0.384992 + 0.666825i
\(576\) 0 0
\(577\) 8542.00 0.616305 0.308153 0.951337i \(-0.400289\pi\)
0.308153 + 0.951337i \(0.400289\pi\)
\(578\) 0 0
\(579\) −2612.39 + 4524.79i −0.187508 + 0.324774i
\(580\) 0 0
\(581\) 103.980 180.099i 0.00742484 0.0128602i
\(582\) 0 0
\(583\) −5620.70 9735.34i −0.399289 0.691589i
\(584\) 0 0
\(585\) 1486.62 + 118.515i 0.105067 + 0.00837607i
\(586\) 0 0
\(587\) −6315.34 10938.5i −0.444058 0.769131i 0.553928 0.832565i \(-0.313128\pi\)
−0.997986 + 0.0634335i \(0.979795\pi\)
\(588\) 0 0
\(589\) −4229.27 + 7325.30i −0.295864 + 0.512451i
\(590\) 0 0
\(591\) −5086.64 + 8810.33i −0.354038 + 0.613212i
\(592\) 0 0
\(593\) −11659.6 −0.807423 −0.403712 0.914886i \(-0.632280\pi\)
−0.403712 + 0.914886i \(0.632280\pi\)
\(594\) 0 0
\(595\) 35.0107 + 60.6403i 0.00241227 + 0.00417817i
\(596\) 0 0
\(597\) −3041.19 −0.208488
\(598\) 0 0
\(599\) −18282.4 −1.24708 −0.623539 0.781792i \(-0.714306\pi\)
−0.623539 + 0.781792i \(0.714306\pi\)
\(600\) 0 0
\(601\) −4771.23 8264.01i −0.323831 0.560892i 0.657444 0.753503i \(-0.271638\pi\)
−0.981275 + 0.192611i \(0.938304\pi\)
\(602\) 0 0
\(603\) 2164.41 0.146172
\(604\) 0 0
\(605\) 773.963 1340.54i 0.0520101 0.0900841i
\(606\) 0 0
\(607\) −806.399 + 1396.72i −0.0539221 + 0.0933959i −0.891727 0.452575i \(-0.850506\pi\)
0.837804 + 0.545971i \(0.183839\pi\)
\(608\) 0 0
\(609\) 278.839 + 482.962i 0.0185535 + 0.0321357i
\(610\) 0 0
\(611\) −4603.24 9676.12i −0.304791 0.640677i
\(612\) 0 0
\(613\) 9245.77 + 16014.1i 0.609190 + 1.05515i 0.991374 + 0.131061i \(0.0418385\pi\)
−0.382185 + 0.924086i \(0.624828\pi\)
\(614\) 0 0
\(615\) 2677.11 4636.89i 0.175531 0.304028i
\(616\) 0 0
\(617\) −652.242 + 1129.72i −0.0425580 + 0.0737126i −0.886520 0.462691i \(-0.846884\pi\)
0.843962 + 0.536403i \(0.180217\pi\)
\(618\) 0 0
\(619\) −10100.7 −0.655865 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(620\) 0 0
\(621\) 1273.96 + 2206.56i 0.0823225 + 0.142587i
\(622\) 0 0
\(623\) 1679.29 0.107993
\(624\) 0 0
\(625\) 11094.5 0.710048
\(626\) 0 0
\(627\) 4518.87 + 7826.92i 0.287825 + 0.498528i
\(628\) 0 0
\(629\) 1476.32 0.0935849
\(630\) 0 0
\(631\) 8027.22 13903.6i 0.506432 0.877166i −0.493540 0.869723i \(-0.664297\pi\)
0.999972 0.00744325i \(-0.00236928\pi\)
\(632\) 0 0
\(633\) −2457.70 + 4256.86i −0.154320 + 0.267290i
\(634\) 0 0
\(635\) −591.122 1023.85i −0.0369417 0.0639848i
\(636\) 0 0
\(637\) −9027.88 + 13107.2i −0.561535 + 0.815267i
\(638\) 0 0
\(639\) −65.6823 113.765i −0.00406628 0.00704300i
\(640\) 0 0
\(641\) −13041.3 + 22588.2i −0.803588 + 1.39186i 0.113652 + 0.993521i \(0.463745\pi\)
−0.917240 + 0.398335i \(0.869588\pi\)
\(642\) 0 0
\(643\) 9647.37 16709.7i 0.591688 1.02483i −0.402318 0.915500i \(-0.631795\pi\)
0.994005 0.109333i \(-0.0348714\pi\)
\(644\) 0 0
\(645\) −768.613 −0.0469211
\(646\) 0 0
\(647\) −3128.43 5418.60i −0.190095 0.329254i 0.755187 0.655510i \(-0.227546\pi\)
−0.945281 + 0.326256i \(0.894213\pi\)
\(648\) 0 0
\(649\) −15413.6 −0.932259
\(650\) 0 0
\(651\) −658.061 −0.0396182
\(652\) 0 0
\(653\) 3713.39 + 6431.79i 0.222536 + 0.385444i 0.955578 0.294740i \(-0.0952330\pi\)
−0.733041 + 0.680184i \(0.761900\pi\)
\(654\) 0 0
\(655\) 1163.45 0.0694040
\(656\) 0 0
\(657\) 4301.37 7450.19i 0.255422 0.442404i
\(658\) 0 0
\(659\) 30.9243 53.5625i 0.00182798 0.00316616i −0.865110 0.501582i \(-0.832751\pi\)
0.866938 + 0.498416i \(0.166085\pi\)
\(660\) 0 0
\(661\) 3365.00 + 5828.36i 0.198008 + 0.342961i 0.947883 0.318620i \(-0.103219\pi\)
−0.749874 + 0.661580i \(0.769886\pi\)
\(662\) 0 0
\(663\) 644.121 + 1353.96i 0.0377309 + 0.0793112i
\(664\) 0 0
\(665\) 235.192 + 407.364i 0.0137148 + 0.0237548i
\(666\) 0 0
\(667\) 4721.84 8178.47i 0.274109 0.474770i
\(668\) 0 0
\(669\) 7871.91 13634.6i 0.454926 0.787956i
\(670\) 0 0
\(671\) −34914.9 −2.00875
\(672\) 0 0
\(673\) −1614.32 2796.09i −0.0924629 0.160150i 0.816084 0.577933i \(-0.196141\pi\)
−0.908547 + 0.417783i \(0.862807\pi\)
\(674\) 0 0
\(675\) 3037.56 0.173208
\(676\) 0 0
\(677\) 831.739 0.0472176 0.0236088 0.999721i \(-0.492484\pi\)
0.0236088 + 0.999721i \(0.492484\pi\)
\(678\) 0 0
\(679\) 391.878 + 678.752i 0.0221486 + 0.0383624i
\(680\) 0 0
\(681\) 11230.0 0.631914
\(682\) 0 0
\(683\) −1918.37 + 3322.71i −0.107473 + 0.186149i −0.914746 0.404029i \(-0.867609\pi\)
0.807273 + 0.590179i \(0.200943\pi\)
\(684\) 0 0
\(685\) 381.060 660.015i 0.0212548 0.0368144i
\(686\) 0 0
\(687\) −3532.92 6119.20i −0.196200 0.339828i
\(688\) 0 0
\(689\) −5382.07 11313.2i −0.297592 0.625544i
\(690\) 0 0
\(691\) 2113.21 + 3660.20i 0.116339 + 0.201506i 0.918314 0.395852i \(-0.129551\pi\)
−0.801975 + 0.597358i \(0.796217\pi\)
\(692\) 0 0
\(693\) −351.561 + 608.922i −0.0192709 + 0.0333781i
\(694\) 0 0
\(695\) 989.250 1713.43i 0.0539919 0.0935168i
\(696\) 0 0
\(697\) 5383.04 0.292536
\(698\) 0 0
\(699\) 2447.70 + 4239.53i 0.132447 + 0.229405i
\(700\) 0 0
\(701\) −15196.5 −0.818777 −0.409389 0.912360i \(-0.634258\pi\)
−0.409389 + 0.912360i \(0.634258\pi\)
\(702\) 0 0
\(703\) 9917.53 0.532072
\(704\) 0 0
\(705\) 1212.26 + 2099.70i 0.0647610 + 0.112169i
\(706\) 0 0
\(707\) −2020.70 −0.107491
\(708\) 0 0
\(709\) −9767.94 + 16918.6i −0.517408 + 0.896178i 0.482387 + 0.875958i \(0.339770\pi\)
−0.999796 + 0.0202195i \(0.993563\pi\)
\(710\) 0 0
\(711\) 3199.81 5542.23i 0.168779 0.292335i
\(712\) 0 0
\(713\) 5571.79 + 9650.62i 0.292658 + 0.506898i
\(714\) 0 0
\(715\) 3953.18 5739.44i 0.206770 0.300200i
\(716\) 0 0
\(717\) 8317.10 + 14405.6i 0.433205 + 0.750333i
\(718\) 0 0
\(719\) −13777.7 + 23863.7i −0.714633 + 1.23778i 0.248468 + 0.968640i \(0.420073\pi\)
−0.963101 + 0.269141i \(0.913260\pi\)
\(720\) 0 0
\(721\) 793.377 1374.17i 0.0409805 0.0709803i
\(722\) 0 0
\(723\) −2684.76 −0.138102
\(724\) 0 0
\(725\) −5629.24 9750.14i −0.288365 0.499463i
\(726\) 0 0
\(727\) 30722.6 1.56732 0.783658 0.621193i \(-0.213352\pi\)
0.783658 + 0.621193i \(0.213352\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −386.376 669.222i −0.0195494 0.0338606i
\(732\) 0 0
\(733\) 35290.8 1.77830 0.889152 0.457612i \(-0.151295\pi\)
0.889152 + 0.457612i \(0.151295\pi\)
\(734\) 0 0
\(735\) 1800.58 3118.69i 0.0903610 0.156510i
\(736\) 0 0
\(737\) 5057.24 8759.40i 0.252763 0.437798i
\(738\) 0 0
\(739\) −5151.72 8923.04i −0.256440 0.444167i 0.708846 0.705364i \(-0.249216\pi\)
−0.965286 + 0.261197i \(0.915883\pi\)
\(740\) 0 0
\(741\) 4327.03 + 9095.50i 0.214517 + 0.450920i
\(742\) 0 0
\(743\) −3251.06 5631.00i −0.160525 0.278037i 0.774532 0.632534i \(-0.217985\pi\)
−0.935057 + 0.354498i \(0.884652\pi\)
\(744\) 0 0
\(745\) −4730.61 + 8193.66i −0.232639 + 0.402943i
\(746\) 0 0
\(747\) −503.792 + 872.594i −0.0246758 + 0.0427397i
\(748\) 0 0
\(749\) 2380.91 0.116150
\(750\) 0 0
\(751\) −13460.8 23314.7i −0.654048 1.13284i −0.982131 0.188196i \(-0.939736\pi\)
0.328083 0.944649i \(-0.393597\pi\)
\(752\) 0 0
\(753\) 10639.8 0.514922
\(754\) 0 0
\(755\) −572.662 −0.0276044
\(756\) 0 0
\(757\) 1475.76 + 2556.09i 0.0708551 + 0.122725i 0.899276 0.437381i \(-0.144094\pi\)
−0.828421 + 0.560106i \(0.810761\pi\)
\(758\) 0 0
\(759\) 11906.7 0.569413
\(760\) 0 0
\(761\) 6261.20 10844.7i 0.298250 0.516585i −0.677486 0.735536i \(-0.736930\pi\)
0.975736 + 0.218952i \(0.0702637\pi\)
\(762\) 0 0
\(763\) −1423.17 + 2465.01i −0.0675261 + 0.116959i
\(764\) 0 0
\(765\) −169.629 293.807i −0.00801694 0.0138858i
\(766\) 0 0
\(767\) −17123.7 1365.12i −0.806127 0.0642655i
\(768\) 0 0
\(769\) 9098.11 + 15758.4i 0.426640 + 0.738962i 0.996572 0.0827295i \(-0.0263638\pi\)
−0.569932 + 0.821692i \(0.693030\pi\)
\(770\) 0 0
\(771\) −9158.58 + 15863.1i −0.427806 + 0.740981i
\(772\) 0 0
\(773\) 19464.0 33712.6i 0.905655 1.56864i 0.0856199 0.996328i \(-0.472713\pi\)
0.820035 0.572313i \(-0.193954\pi\)
\(774\) 0 0
\(775\) 13285.1 0.615759
\(776\) 0 0
\(777\) 385.784 + 668.198i 0.0178120 + 0.0308513i
\(778\) 0 0
\(779\) 36161.8 1.66320
\(780\) 0 0
\(781\) −613.878 −0.0281258
\(782\) 0 0
\(783\) −1350.99 2339.99i −0.0616610 0.106800i
\(784\) 0 0
\(785\) −344.175 −0.0156486
\(786\) 0 0
\(787\) −12199.3 + 21129.9i −0.552554 + 0.957051i 0.445536 + 0.895264i \(0.353013\pi\)
−0.998089 + 0.0617870i \(0.980320\pi\)
\(788\) 0 0
\(789\) 5577.28 9660.13i 0.251656 0.435881i
\(790\) 0 0
\(791\) −221.663 383.931i −0.00996386 0.0172579i
\(792\) 0 0
\(793\) −38788.5 3092.28i −1.73698 0.138474i
\(794\) 0 0
\(795\) 1417.37 + 2454.95i 0.0632313 + 0.109520i
\(796\) 0 0
\(797\) −7276.60 + 12603.4i −0.323401 + 0.560147i −0.981187 0.193058i \(-0.938160\pi\)
0.657787 + 0.753204i \(0.271493\pi\)
\(798\) 0 0
\(799\) −1218.79 + 2111.01i −0.0539646 + 0.0934694i
\(800\) 0 0
\(801\) −8136.28 −0.358903
\(802\) 0 0
\(803\) −20100.7 34815.4i −0.883359 1.53002i
\(804\) 0 0
\(805\) 619.701 0.0271324
\(806\) 0 0
\(807\) 12617.0 0.550360
\(808\) 0 0
\(809\) −21894.4 37922.2i −0.951504 1.64805i −0.742173 0.670208i \(-0.766205\pi\)
−0.209331 0.977845i \(-0.567129\pi\)
\(810\) 0 0
\(811\) 10303.9 0.446139 0.223069 0.974803i \(-0.428392\pi\)
0.223069 + 0.974803i \(0.428392\pi\)
\(812\) 0 0
\(813\) 10441.5 18085.2i 0.450430 0.780168i
\(814\) 0 0
\(815\) −6001.32 + 10394.6i −0.257935 + 0.446757i
\(816\) 0 0
\(817\) −2595.56 4495.65i −0.111147 0.192513i
\(818\) 0 0
\(819\) −444.496 + 645.343i −0.0189645 + 0.0275337i
\(820\) 0 0
\(821\) 20143.6 + 34889.7i 0.856291 + 1.48314i 0.875442 + 0.483323i \(0.160570\pi\)
−0.0191506 + 0.999817i \(0.506096\pi\)
\(822\) 0 0
\(823\) 12813.6 22193.8i 0.542715 0.940011i −0.456032 0.889964i \(-0.650730\pi\)
0.998747 0.0500469i \(-0.0159371\pi\)
\(824\) 0 0
\(825\) 7097.39 12293.0i 0.299514 0.518774i
\(826\) 0 0
\(827\) 19038.4 0.800520 0.400260 0.916402i \(-0.368920\pi\)
0.400260 + 0.916402i \(0.368920\pi\)
\(828\) 0 0
\(829\) −5998.36 10389.5i −0.251305 0.435272i 0.712581 0.701590i \(-0.247526\pi\)
−0.963885 + 0.266318i \(0.914193\pi\)
\(830\) 0 0
\(831\) 544.098 0.0227131
\(832\) 0 0
\(833\) 3620.55 0.150594
\(834\) 0 0
\(835\) −1664.78 2883.49i −0.0689966 0.119506i
\(836\) 0 0
\(837\) 3188.35 0.131667
\(838\) 0 0
\(839\) −13001.9 + 22519.9i −0.535011 + 0.926667i 0.464152 + 0.885756i \(0.346359\pi\)
−0.999163 + 0.0409109i \(0.986974\pi\)
\(840\) 0 0
\(841\) 7187.14 12448.5i 0.294688 0.510415i
\(842\) 0 0
\(843\) 5747.84 + 9955.55i 0.234835 + 0.406747i
\(844\) 0 0
\(845\) 4900.09 6026.09i 0.199489 0.245330i
\(846\) 0 0
\(847\) 406.673 + 704.378i 0.0164976 + 0.0285746i
\(848\) 0 0
\(849\) 5961.56 10325.7i 0.240990 0.417406i
\(850\) 0 0
\(851\) 6532.86 11315.2i 0.263153 0.455795i
\(852\) 0 0
\(853\) 12837.4 0.515291 0.257646 0.966239i \(-0.417053\pi\)
0.257646 + 0.966239i \(0.417053\pi\)
\(854\) 0 0
\(855\) −1139.52 1973.71i −0.0455799 0.0789467i
\(856\) 0 0
\(857\) 16611.0 0.662100 0.331050 0.943613i \(-0.392597\pi\)
0.331050 + 0.943613i \(0.392597\pi\)
\(858\) 0 0
\(859\) 28847.1 1.14581 0.572904 0.819623i \(-0.305817\pi\)
0.572904 + 0.819623i \(0.305817\pi\)
\(860\) 0 0
\(861\) 1406.66 + 2436.42i 0.0556783 + 0.0964376i
\(862\) 0 0
\(863\) −8997.99 −0.354919 −0.177460 0.984128i \(-0.556788\pi\)
−0.177460 + 0.984128i \(0.556788\pi\)
\(864\) 0 0
\(865\) −992.508 + 1719.07i −0.0390130 + 0.0675725i
\(866\) 0 0
\(867\) −7198.96 + 12469.0i −0.281995 + 0.488429i
\(868\) 0 0
\(869\) −14953.0 25899.3i −0.583712 1.01102i
\(870\) 0 0
\(871\) 6394.11 9283.32i 0.248744 0.361141i
\(872\) 0 0
\(873\) −1898.67 3288.60i −0.0736087 0.127494i
\(874\) 0 0
\(875\) 779.825 1350.70i 0.0301290 0.0521850i
\(876\) 0 0
\(877\) −13091.7 + 22675.4i −0.504075 + 0.873084i 0.495913 + 0.868372i \(0.334833\pi\)
−0.999989 + 0.00471237i \(0.998500\pi\)
\(878\) 0 0
\(879\) 2877.46 0.110415
\(880\) 0 0
\(881\) −21805.7 37768.5i −0.833884 1.44433i −0.894936 0.446194i \(-0.852779\pi\)
0.0610524 0.998135i \(-0.480554\pi\)
\(882\) 0 0
\(883\) 19797.8 0.754531 0.377265 0.926105i \(-0.376864\pi\)
0.377265 + 0.926105i \(0.376864\pi\)
\(884\) 0 0
\(885\) 3886.83 0.147632
\(886\) 0 0
\(887\) 23170.3 + 40132.2i 0.877096 + 1.51917i 0.854513 + 0.519430i \(0.173856\pi\)
0.0225828 + 0.999745i \(0.492811\pi\)
\(888\) 0 0
\(889\) 621.201 0.0234358
\(890\) 0 0
\(891\) 1703.34 2950.27i 0.0640450 0.110929i
\(892\) 0 0
\(893\) −8187.49 + 14181.2i −0.306813 + 0.531416i
\(894\) 0 0
\(895\) −7205.62 12480.5i −0.269114 0.466120i
\(896\) 0 0
\(897\) 13227.7 + 1054.53i 0.492373 + 0.0392526i
\(898\) 0 0
\(899\) −5908.70 10234.2i −0.219206 0.379676i
\(900\) 0 0
\(901\) −1425.00 + 2468.17i −0.0526899 + 0.0912616i
\(902\) 0 0
\(903\) 201.931 349.754i 0.00744168 0.0128894i
\(904\) 0 0
\(905\) 4032.83 0.148128
\(906\) 0 0
\(907\) 22467.8 + 38915.4i 0.822526 + 1.42466i 0.903795 + 0.427965i \(0.140769\pi\)
−0.0812690 + 0.996692i \(0.525897\pi\)
\(908\) 0 0
\(909\) 9790.45 0.357237
\(910\) 0 0
\(911\) −3792.66 −0.137933 −0.0689663 0.997619i \(-0.521970\pi\)
−0.0689663 + 0.997619i \(0.521970\pi\)
\(912\) 0 0
\(913\) 2354.27 + 4077.71i 0.0853394 + 0.147812i
\(914\) 0 0
\(915\) 8804.46 0.318105
\(916\) 0 0
\(917\) −305.662 + 529.422i −0.0110075 + 0.0190655i
\(918\) 0 0
\(919\) −13505.8 + 23392.8i −0.484784 + 0.839670i −0.999847 0.0174822i \(-0.994435\pi\)
0.515064 + 0.857152i \(0.327768\pi\)
\(920\) 0 0
\(921\) −14121.3 24458.7i −0.505224 0.875074i
\(922\) 0 0
\(923\) −681.985 54.3688i −0.0243205 0.00193886i
\(924\) 0 0
\(925\) −7788.29 13489.7i −0.276840 0.479501i
\(926\) 0 0
\(927\) −3843.97 + 6657.95i −0.136195 + 0.235896i
\(928\) 0 0
\(929\) 19630.8 34001.5i 0.693288 1.20081i −0.277467 0.960735i \(-0.589495\pi\)
0.970755 0.240074i \(-0.0771718\pi\)
\(930\) 0 0
\(931\) 24321.8 0.856192
\(932\) 0 0
\(933\) 15088.7 + 26134.3i 0.529454 + 0.917041i
\(934\) 0 0
\(935\) −1585.39 −0.0554520
\(936\) 0 0
\(937\) 49675.0 1.73192 0.865961 0.500111i \(-0.166708\pi\)
0.865961 + 0.500111i \(0.166708\pi\)
\(938\) 0 0
\(939\) 13447.0 + 23290.9i 0.467334 + 0.809446i
\(940\) 0 0
\(941\) −34045.1 −1.17942 −0.589712 0.807613i \(-0.700759\pi\)
−0.589712 + 0.807613i \(0.700759\pi\)
\(942\) 0 0
\(943\) 23820.4 41258.2i 0.822587 1.42476i
\(944\) 0 0
\(945\) 88.6530 153.552i 0.00305173 0.00528575i
\(946\) 0 0
\(947\) −14324.6 24810.9i −0.491538 0.851369i 0.508414 0.861113i \(-0.330232\pi\)
−0.999953 + 0.00974338i \(0.996899\pi\)
\(948\) 0 0
\(949\) −19247.3 40458.2i −0.658370 1.38391i
\(950\) 0 0
\(951\) 4434.10 + 7680.09i 0.151194 + 0.261876i
\(952\) 0 0
\(953\) −11924.7 + 20654.2i −0.405329 + 0.702050i −0.994360 0.106060i \(-0.966176\pi\)
0.589031 + 0.808111i \(0.299510\pi\)
\(954\) 0 0
\(955\) 178.151 308.567i 0.00603648 0.0104555i
\(956\) 0 0
\(957\) −12626.6 −0.426500
\(958\) 0 0
\(959\) 200.225 + 346.800i 0.00674202 + 0.0116775i
\(960\) 0 0
\(961\) −15846.4 −0.531920
\(962\) 0 0
\(963\) −11535.7 −0.386014
\(964\) 0 0
\(965\) −3078.46 5332.06i −0.102694 0.177870i
\(966\) 0 0
\(967\) 10638.5 0.353787 0.176894 0.984230i \(-0.443395\pi\)
0.176894 + 0.984230i \(0.443395\pi\)
\(968\) 0 0
\(969\) 1145.66 1984.34i 0.0379812 0.0657854i
\(970\) 0 0
\(971\) 10904.0 18886.3i 0.360377 0.624192i −0.627646 0.778499i \(-0.715981\pi\)
0.988023 + 0.154308i \(0.0493147\pi\)
\(972\) 0 0
\(973\) 519.794 + 900.309i 0.0171262 + 0.0296635i
\(974\) 0 0
\(975\) 8973.56 13028.3i 0.294753 0.427938i
\(976\) 0 0
\(977\) −13464.9 23321.9i −0.440922 0.763700i 0.556836 0.830623i \(-0.312015\pi\)
−0.997758 + 0.0669226i \(0.978682\pi\)
\(978\) 0 0
\(979\) −19010.8 + 32927.6i −0.620620 + 1.07495i
\(980\) 0 0
\(981\) 6895.38 11943.2i 0.224417 0.388701i
\(982\) 0 0
\(983\) −36458.9 −1.18297 −0.591484 0.806317i \(-0.701458\pi\)
−0.591484 + 0.806317i \(0.701458\pi\)
\(984\) 0 0
\(985\) −5994.15 10382.2i −0.193898 0.335841i
\(986\) 0 0
\(987\) −1273.95 −0.0410843
\(988\) 0 0
\(989\) −6838.97 −0.219885
\(990\) 0 0
\(991\) −9011.19 15607.8i −0.288850 0.500302i 0.684686 0.728838i \(-0.259939\pi\)
−0.973535 + 0.228536i \(0.926606\pi\)
\(992\) 0 0
\(993\) 1520.71 0.0485984
\(994\) 0 0
\(995\) 1791.88 3103.63i 0.0570919 0.0988862i
\(996\) 0 0
\(997\) 776.102 1344.25i 0.0246534 0.0427009i −0.853436 0.521198i \(-0.825485\pi\)
0.878089 + 0.478498i \(0.158818\pi\)
\(998\) 0 0
\(999\) −1869.15 3237.47i −0.0591966 0.102531i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.q.m.289.3 10
4.3 odd 2 312.4.q.d.289.3 yes 10
13.9 even 3 inner 624.4.q.m.529.3 10
52.35 odd 6 312.4.q.d.217.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.q.d.217.3 10 52.35 odd 6
312.4.q.d.289.3 yes 10 4.3 odd 2
624.4.q.m.289.3 10 1.1 even 1 trivial
624.4.q.m.529.3 10 13.9 even 3 inner