Properties

Label 624.4
Level 624
Weight 4
Dimension 13346
Nonzero newspaces 28
Sturm bound 86016
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(86016\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(624))\).

Total New Old
Modular forms 32928 13546 19382
Cusp forms 31584 13346 18238
Eisenstein series 1344 200 1144

Trace form

\( 13346 q - 8 q^{3} - 4 q^{5} - 80 q^{6} - 84 q^{7} - 168 q^{8} - 120 q^{9} - 304 q^{10} + 120 q^{11} + 184 q^{12} - 46 q^{13} + 696 q^{14} - 318 q^{15} + 560 q^{16} + 52 q^{17} - 56 q^{18} - 100 q^{19} - 160 q^{20}+ \cdots + 6638 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(624))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
624.4.a \(\chi_{624}(1, \cdot)\) 624.4.a.a 1 1
624.4.a.b 1
624.4.a.c 1
624.4.a.d 1
624.4.a.e 1
624.4.a.f 1
624.4.a.g 1
624.4.a.h 1
624.4.a.i 1
624.4.a.j 2
624.4.a.k 2
624.4.a.l 2
624.4.a.m 2
624.4.a.n 2
624.4.a.o 2
624.4.a.p 2
624.4.a.q 2
624.4.a.r 2
624.4.a.s 3
624.4.a.t 3
624.4.a.u 3
624.4.c \(\chi_{624}(337, \cdot)\) 624.4.c.a 2 1
624.4.c.b 2
624.4.c.c 4
624.4.c.d 4
624.4.c.e 4
624.4.c.f 4
624.4.c.g 10
624.4.c.h 12
624.4.d \(\chi_{624}(287, \cdot)\) 624.4.d.a 12 1
624.4.d.b 12
624.4.d.c 24
624.4.d.d 24
624.4.g \(\chi_{624}(313, \cdot)\) None 0 1
624.4.h \(\chi_{624}(311, \cdot)\) None 0 1
624.4.j \(\chi_{624}(599, \cdot)\) None 0 1
624.4.m \(\chi_{624}(25, \cdot)\) None 0 1
624.4.n \(\chi_{624}(623, \cdot)\) 624.4.n.a 2 1
624.4.n.b 2
624.4.n.c 24
624.4.n.d 56
624.4.q \(\chi_{624}(289, \cdot)\) 624.4.q.a 2 2
624.4.q.b 2
624.4.q.c 2
624.4.q.d 4
624.4.q.e 4
624.4.q.f 4
624.4.q.g 6
624.4.q.h 6
624.4.q.i 8
624.4.q.j 8
624.4.q.k 8
624.4.q.l 8
624.4.q.m 10
624.4.q.n 12
624.4.r \(\chi_{624}(499, \cdot)\) n/a 336 2
624.4.u \(\chi_{624}(5, \cdot)\) n/a 664 2
624.4.v \(\chi_{624}(155, \cdot)\) n/a 664 2
624.4.x \(\chi_{624}(157, \cdot)\) n/a 288 2
624.4.bb \(\chi_{624}(151, \cdot)\) None 0 2
624.4.bc \(\chi_{624}(31, \cdot)\) 624.4.bc.a 14 2
624.4.bc.b 14
624.4.bc.c 28
624.4.bc.d 28
624.4.bf \(\chi_{624}(161, \cdot)\) n/a 164 2
624.4.bg \(\chi_{624}(281, \cdot)\) None 0 2
624.4.bh \(\chi_{624}(131, \cdot)\) n/a 576 2
624.4.bj \(\chi_{624}(181, \cdot)\) n/a 336 2
624.4.bm \(\chi_{624}(317, \cdot)\) n/a 664 2
624.4.bn \(\chi_{624}(187, \cdot)\) n/a 336 2
624.4.bq \(\chi_{624}(23, \cdot)\) None 0 2
624.4.br \(\chi_{624}(217, \cdot)\) None 0 2
624.4.bu \(\chi_{624}(191, \cdot)\) n/a 168 2
624.4.bv \(\chi_{624}(49, \cdot)\) 624.4.bv.a 2 2
624.4.bv.b 2
624.4.bv.c 4
624.4.bv.d 4
624.4.bv.e 4
624.4.bv.f 6
624.4.bv.g 8
624.4.bv.h 10
624.4.bv.i 20
624.4.bv.j 24
624.4.bz \(\chi_{624}(95, \cdot)\) n/a 168 2
624.4.ca \(\chi_{624}(121, \cdot)\) None 0 2
624.4.cd \(\chi_{624}(263, \cdot)\) None 0 2
624.4.ce \(\chi_{624}(149, \cdot)\) n/a 1328 4
624.4.ch \(\chi_{624}(19, \cdot)\) n/a 672 4
624.4.cj \(\chi_{624}(205, \cdot)\) n/a 672 4
624.4.cl \(\chi_{624}(35, \cdot)\) n/a 1328 4
624.4.cm \(\chi_{624}(41, \cdot)\) None 0 4
624.4.cn \(\chi_{624}(305, \cdot)\) n/a 328 4
624.4.cq \(\chi_{624}(175, \cdot)\) n/a 168 4
624.4.cr \(\chi_{624}(7, \cdot)\) None 0 4
624.4.cv \(\chi_{624}(61, \cdot)\) n/a 672 4
624.4.cx \(\chi_{624}(179, \cdot)\) n/a 1328 4
624.4.cz \(\chi_{624}(115, \cdot)\) n/a 672 4
624.4.da \(\chi_{624}(245, \cdot)\) n/a 1328 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(624))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(624)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(624))\)\(^{\oplus 1}\)