Properties

Label 624.4.n.d.623.19
Level $624$
Weight $4$
Character 624.623
Analytic conductor $36.817$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,4,Mod(623,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.623"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 623.19
Character \(\chi\) \(=\) 624.623
Dual form 624.4.n.d.623.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.39946 + 4.60897i) q^{3} -1.65893 q^{5} +4.60037 q^{7} +(-15.4851 - 22.1181i) q^{9} +54.6366i q^{11} +(25.2167 - 39.5110i) q^{13} +(3.98055 - 7.64597i) q^{15} +43.8926i q^{17} -80.0323 q^{19} +(-11.0384 + 21.2030i) q^{21} +22.8507 q^{23} -122.248 q^{25} +(139.098 - 18.2989i) q^{27} +223.650i q^{29} -24.7864 q^{31} +(-251.818 - 131.099i) q^{33} -7.63171 q^{35} -318.937i q^{37} +(121.599 + 211.028i) q^{39} -253.460 q^{41} +21.9864i q^{43} +(25.6888 + 36.6924i) q^{45} -78.3054i q^{47} -321.837 q^{49} +(-202.300 - 105.319i) q^{51} -302.530i q^{53} -90.6385i q^{55} +(192.035 - 368.866i) q^{57} +480.544i q^{59} -332.203 q^{61} +(-71.2375 - 101.752i) q^{63} +(-41.8327 + 65.5461i) q^{65} +844.699 q^{67} +(-54.8293 + 105.318i) q^{69} -651.949i q^{71} -455.933i q^{73} +(293.330 - 563.437i) q^{75} +251.349i q^{77} -246.129i q^{79} +(-249.421 + 685.004i) q^{81} -1417.67i q^{83} -72.8149i q^{85} +(-1030.79 - 536.639i) q^{87} -891.167 q^{89} +(116.006 - 181.765i) q^{91} +(59.4742 - 114.240i) q^{93} +132.768 q^{95} -1596.67i q^{97} +(1208.46 - 846.056i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 64 q^{9} + 8 q^{13} + 1208 q^{25} + 4680 q^{49} + 1616 q^{61} + 480 q^{69} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.39946 + 4.60897i −0.461777 + 0.886996i
\(4\) 0 0
\(5\) −1.65893 −0.148379 −0.0741897 0.997244i \(-0.523637\pi\)
−0.0741897 + 0.997244i \(0.523637\pi\)
\(6\) 0 0
\(7\) 4.60037 0.248397 0.124198 0.992257i \(-0.460364\pi\)
0.124198 + 0.992257i \(0.460364\pi\)
\(8\) 0 0
\(9\) −15.4851 22.1181i −0.573524 0.819189i
\(10\) 0 0
\(11\) 54.6366i 1.49760i 0.662798 + 0.748799i \(0.269369\pi\)
−0.662798 + 0.748799i \(0.730631\pi\)
\(12\) 0 0
\(13\) 25.2167 39.5110i 0.537988 0.842953i
\(14\) 0 0
\(15\) 3.98055 7.64597i 0.0685182 0.131612i
\(16\) 0 0
\(17\) 43.8926i 0.626208i 0.949719 + 0.313104i \(0.101369\pi\)
−0.949719 + 0.313104i \(0.898631\pi\)
\(18\) 0 0
\(19\) −80.0323 −0.966351 −0.483176 0.875523i \(-0.660517\pi\)
−0.483176 + 0.875523i \(0.660517\pi\)
\(20\) 0 0
\(21\) −11.0384 + 21.2030i −0.114704 + 0.220327i
\(22\) 0 0
\(23\) 22.8507 0.207161 0.103580 0.994621i \(-0.466970\pi\)
0.103580 + 0.994621i \(0.466970\pi\)
\(24\) 0 0
\(25\) −122.248 −0.977984
\(26\) 0 0
\(27\) 139.098 18.2989i 0.991457 0.130431i
\(28\) 0 0
\(29\) 223.650i 1.43209i 0.698053 + 0.716047i \(0.254050\pi\)
−0.698053 + 0.716047i \(0.745950\pi\)
\(30\) 0 0
\(31\) −24.7864 −0.143606 −0.0718029 0.997419i \(-0.522875\pi\)
−0.0718029 + 0.997419i \(0.522875\pi\)
\(32\) 0 0
\(33\) −251.818 131.099i −1.32836 0.691556i
\(34\) 0 0
\(35\) −7.63171 −0.0368570
\(36\) 0 0
\(37\) 318.937i 1.41711i −0.705658 0.708553i \(-0.749348\pi\)
0.705658 0.708553i \(-0.250652\pi\)
\(38\) 0 0
\(39\) 121.599 + 211.028i 0.499265 + 0.866449i
\(40\) 0 0
\(41\) −253.460 −0.965459 −0.482730 0.875769i \(-0.660355\pi\)
−0.482730 + 0.875769i \(0.660355\pi\)
\(42\) 0 0
\(43\) 21.9864i 0.0779742i 0.999240 + 0.0389871i \(0.0124131\pi\)
−0.999240 + 0.0389871i \(0.987587\pi\)
\(44\) 0 0
\(45\) 25.6888 + 36.6924i 0.0850992 + 0.121551i
\(46\) 0 0
\(47\) 78.3054i 0.243022i −0.992590 0.121511i \(-0.961226\pi\)
0.992590 0.121511i \(-0.0387739\pi\)
\(48\) 0 0
\(49\) −321.837 −0.938299
\(50\) 0 0
\(51\) −202.300 105.319i −0.555444 0.289168i
\(52\) 0 0
\(53\) 302.530i 0.784069i −0.919951 0.392034i \(-0.871771\pi\)
0.919951 0.392034i \(-0.128229\pi\)
\(54\) 0 0
\(55\) 90.6385i 0.222213i
\(56\) 0 0
\(57\) 192.035 368.866i 0.446239 0.857150i
\(58\) 0 0
\(59\) 480.544i 1.06037i 0.847883 + 0.530183i \(0.177877\pi\)
−0.847883 + 0.530183i \(0.822123\pi\)
\(60\) 0 0
\(61\) −332.203 −0.697282 −0.348641 0.937256i \(-0.613357\pi\)
−0.348641 + 0.937256i \(0.613357\pi\)
\(62\) 0 0
\(63\) −71.2375 101.752i −0.142462 0.203484i
\(64\) 0 0
\(65\) −41.8327 + 65.5461i −0.0798263 + 0.125077i
\(66\) 0 0
\(67\) 844.699 1.54025 0.770123 0.637896i \(-0.220195\pi\)
0.770123 + 0.637896i \(0.220195\pi\)
\(68\) 0 0
\(69\) −54.8293 + 105.318i −0.0956620 + 0.183751i
\(70\) 0 0
\(71\) 651.949i 1.08975i −0.838518 0.544874i \(-0.816577\pi\)
0.838518 0.544874i \(-0.183423\pi\)
\(72\) 0 0
\(73\) 455.933i 0.731000i −0.930811 0.365500i \(-0.880898\pi\)
0.930811 0.365500i \(-0.119102\pi\)
\(74\) 0 0
\(75\) 293.330 563.437i 0.451610 0.867467i
\(76\) 0 0
\(77\) 251.349i 0.371998i
\(78\) 0 0
\(79\) 246.129i 0.350528i −0.984521 0.175264i \(-0.943922\pi\)
0.984521 0.175264i \(-0.0560779\pi\)
\(80\) 0 0
\(81\) −249.421 + 685.004i −0.342141 + 0.939649i
\(82\) 0 0
\(83\) 1417.67i 1.87481i −0.348239 0.937406i \(-0.613220\pi\)
0.348239 0.937406i \(-0.386780\pi\)
\(84\) 0 0
\(85\) 72.8149i 0.0929163i
\(86\) 0 0
\(87\) −1030.79 536.639i −1.27026 0.661308i
\(88\) 0 0
\(89\) −891.167 −1.06139 −0.530694 0.847563i \(-0.678069\pi\)
−0.530694 + 0.847563i \(0.678069\pi\)
\(90\) 0 0
\(91\) 116.006 181.765i 0.133634 0.209387i
\(92\) 0 0
\(93\) 59.4742 114.240i 0.0663138 0.127378i
\(94\) 0 0
\(95\) 132.768 0.143387
\(96\) 0 0
\(97\) 1596.67i 1.67131i −0.549252 0.835657i \(-0.685087\pi\)
0.549252 0.835657i \(-0.314913\pi\)
\(98\) 0 0
\(99\) 1208.46 846.056i 1.22681 0.858908i
\(100\) 0 0
\(101\) 1177.81i 1.16036i −0.814488 0.580180i \(-0.802982\pi\)
0.814488 0.580180i \(-0.197018\pi\)
\(102\) 0 0
\(103\) 300.997i 0.287943i −0.989582 0.143971i \(-0.954013\pi\)
0.989582 0.143971i \(-0.0459873\pi\)
\(104\) 0 0
\(105\) 18.3120 35.1743i 0.0170197 0.0326920i
\(106\) 0 0
\(107\) −1054.22 −0.952475 −0.476238 0.879317i \(-0.658000\pi\)
−0.476238 + 0.879317i \(0.658000\pi\)
\(108\) 0 0
\(109\) 1013.62i 0.890704i −0.895356 0.445352i \(-0.853078\pi\)
0.895356 0.445352i \(-0.146922\pi\)
\(110\) 0 0
\(111\) 1469.97 + 765.277i 1.25697 + 0.654387i
\(112\) 0 0
\(113\) 1948.14i 1.62182i 0.585174 + 0.810908i \(0.301026\pi\)
−0.585174 + 0.810908i \(0.698974\pi\)
\(114\) 0 0
\(115\) −37.9077 −0.0307384
\(116\) 0 0
\(117\) −1264.39 + 54.0894i −0.999086 + 0.0427399i
\(118\) 0 0
\(119\) 201.923i 0.155548i
\(120\) 0 0
\(121\) −1654.16 −1.24280
\(122\) 0 0
\(123\) 608.169 1168.19i 0.445827 0.856359i
\(124\) 0 0
\(125\) 410.168 0.293492
\(126\) 0 0
\(127\) 1299.81i 0.908183i 0.890955 + 0.454091i \(0.150036\pi\)
−0.890955 + 0.454091i \(0.849964\pi\)
\(128\) 0 0
\(129\) −101.334 52.7555i −0.0691628 0.0360067i
\(130\) 0 0
\(131\) −1995.14 −1.33066 −0.665330 0.746549i \(-0.731709\pi\)
−0.665330 + 0.746549i \(0.731709\pi\)
\(132\) 0 0
\(133\) −368.179 −0.240039
\(134\) 0 0
\(135\) −230.754 + 30.3567i −0.147112 + 0.0193532i
\(136\) 0 0
\(137\) −1263.42 −0.787890 −0.393945 0.919134i \(-0.628890\pi\)
−0.393945 + 0.919134i \(0.628890\pi\)
\(138\) 0 0
\(139\) 441.052i 0.269133i −0.990905 0.134567i \(-0.957036\pi\)
0.990905 0.134567i \(-0.0429643\pi\)
\(140\) 0 0
\(141\) 360.907 + 187.891i 0.215559 + 0.112222i
\(142\) 0 0
\(143\) 2158.75 + 1377.75i 1.26240 + 0.805689i
\(144\) 0 0
\(145\) 371.020i 0.212493i
\(146\) 0 0
\(147\) 772.235 1483.33i 0.433285 0.832267i
\(148\) 0 0
\(149\) 1851.20 1.01783 0.508914 0.860818i \(-0.330047\pi\)
0.508914 + 0.860818i \(0.330047\pi\)
\(150\) 0 0
\(151\) −2670.01 −1.43896 −0.719478 0.694515i \(-0.755619\pi\)
−0.719478 + 0.694515i \(0.755619\pi\)
\(152\) 0 0
\(153\) 970.822 679.684i 0.512982 0.359145i
\(154\) 0 0
\(155\) 41.1191 0.0213081
\(156\) 0 0
\(157\) 296.337 0.150638 0.0753192 0.997159i \(-0.476002\pi\)
0.0753192 + 0.997159i \(0.476002\pi\)
\(158\) 0 0
\(159\) 1394.35 + 725.909i 0.695466 + 0.362065i
\(160\) 0 0
\(161\) 105.122 0.0514580
\(162\) 0 0
\(163\) 41.4335 0.0199100 0.00995498 0.999950i \(-0.496831\pi\)
0.00995498 + 0.999950i \(0.496831\pi\)
\(164\) 0 0
\(165\) 417.750 + 217.484i 0.197102 + 0.102613i
\(166\) 0 0
\(167\) 130.547i 0.0604912i −0.999542 0.0302456i \(-0.990371\pi\)
0.999542 0.0302456i \(-0.00962895\pi\)
\(168\) 0 0
\(169\) −925.241 1992.67i −0.421138 0.906996i
\(170\) 0 0
\(171\) 1239.31 + 1770.16i 0.554226 + 0.791624i
\(172\) 0 0
\(173\) 2113.53i 0.928834i 0.885617 + 0.464417i \(0.153736\pi\)
−0.885617 + 0.464417i \(0.846264\pi\)
\(174\) 0 0
\(175\) −562.386 −0.242928
\(176\) 0 0
\(177\) −2214.81 1153.05i −0.940540 0.489652i
\(178\) 0 0
\(179\) 2146.63 0.896349 0.448175 0.893946i \(-0.352074\pi\)
0.448175 + 0.893946i \(0.352074\pi\)
\(180\) 0 0
\(181\) −90.3221 −0.0370917 −0.0185458 0.999828i \(-0.505904\pi\)
−0.0185458 + 0.999828i \(0.505904\pi\)
\(182\) 0 0
\(183\) 797.109 1531.11i 0.321989 0.618487i
\(184\) 0 0
\(185\) 529.095i 0.210269i
\(186\) 0 0
\(187\) −2398.15 −0.937807
\(188\) 0 0
\(189\) 639.901 84.1819i 0.246275 0.0323986i
\(190\) 0 0
\(191\) −2064.15 −0.781972 −0.390986 0.920397i \(-0.627866\pi\)
−0.390986 + 0.920397i \(0.627866\pi\)
\(192\) 0 0
\(193\) 862.814i 0.321796i −0.986971 0.160898i \(-0.948561\pi\)
0.986971 0.160898i \(-0.0514391\pi\)
\(194\) 0 0
\(195\) −201.724 350.081i −0.0740807 0.128563i
\(196\) 0 0
\(197\) −3824.14 −1.38304 −0.691520 0.722357i \(-0.743059\pi\)
−0.691520 + 0.722357i \(0.743059\pi\)
\(198\) 0 0
\(199\) 5263.10i 1.87483i 0.348213 + 0.937416i \(0.386789\pi\)
−0.348213 + 0.937416i \(0.613211\pi\)
\(200\) 0 0
\(201\) −2026.83 + 3893.19i −0.711250 + 1.36619i
\(202\) 0 0
\(203\) 1028.87i 0.355727i
\(204\) 0 0
\(205\) 420.473 0.143254
\(206\) 0 0
\(207\) −353.846 505.413i −0.118812 0.169704i
\(208\) 0 0
\(209\) 4372.70i 1.44721i
\(210\) 0 0
\(211\) 1902.37i 0.620685i 0.950625 + 0.310342i \(0.100444\pi\)
−0.950625 + 0.310342i \(0.899556\pi\)
\(212\) 0 0
\(213\) 3004.81 + 1564.33i 0.966603 + 0.503221i
\(214\) 0 0
\(215\) 36.4739i 0.0115698i
\(216\) 0 0
\(217\) −114.027 −0.0356712
\(218\) 0 0
\(219\) 2101.38 + 1094.00i 0.648394 + 0.337559i
\(220\) 0 0
\(221\) 1734.24 + 1106.83i 0.527863 + 0.336892i
\(222\) 0 0
\(223\) −5158.67 −1.54910 −0.774551 0.632511i \(-0.782024\pi\)
−0.774551 + 0.632511i \(0.782024\pi\)
\(224\) 0 0
\(225\) 1893.03 + 2703.89i 0.560897 + 0.801153i
\(226\) 0 0
\(227\) 1869.22i 0.546541i 0.961937 + 0.273270i \(0.0881053\pi\)
−0.961937 + 0.273270i \(0.911895\pi\)
\(228\) 0 0
\(229\) 2540.62i 0.733139i 0.930391 + 0.366570i \(0.119468\pi\)
−0.930391 + 0.366570i \(0.880532\pi\)
\(230\) 0 0
\(231\) −1158.46 603.103i −0.329961 0.171780i
\(232\) 0 0
\(233\) 3006.01i 0.845196i −0.906317 0.422598i \(-0.861118\pi\)
0.906317 0.422598i \(-0.138882\pi\)
\(234\) 0 0
\(235\) 129.903i 0.0360594i
\(236\) 0 0
\(237\) 1134.40 + 590.578i 0.310917 + 0.161866i
\(238\) 0 0
\(239\) 2829.85i 0.765889i 0.923771 + 0.382945i \(0.125090\pi\)
−0.923771 + 0.382945i \(0.874910\pi\)
\(240\) 0 0
\(241\) 2951.84i 0.788982i 0.918900 + 0.394491i \(0.129079\pi\)
−0.918900 + 0.394491i \(0.870921\pi\)
\(242\) 0 0
\(243\) −2558.68 2793.21i −0.675472 0.737386i
\(244\) 0 0
\(245\) 533.905 0.139224
\(246\) 0 0
\(247\) −2018.15 + 3162.16i −0.519885 + 0.814588i
\(248\) 0 0
\(249\) 6533.99 + 3401.65i 1.66295 + 0.865745i
\(250\) 0 0
\(251\) 1456.36 0.366234 0.183117 0.983091i \(-0.441381\pi\)
0.183117 + 0.983091i \(0.441381\pi\)
\(252\) 0 0
\(253\) 1248.48i 0.310243i
\(254\) 0 0
\(255\) 335.602 + 174.717i 0.0824164 + 0.0429066i
\(256\) 0 0
\(257\) 2029.62i 0.492623i 0.969191 + 0.246311i \(0.0792186\pi\)
−0.969191 + 0.246311i \(0.920781\pi\)
\(258\) 0 0
\(259\) 1467.23i 0.352004i
\(260\) 0 0
\(261\) 4946.71 3463.25i 1.17315 0.821340i
\(262\) 0 0
\(263\) 6532.66 1.53164 0.765819 0.643056i \(-0.222334\pi\)
0.765819 + 0.643056i \(0.222334\pi\)
\(264\) 0 0
\(265\) 501.876i 0.116340i
\(266\) 0 0
\(267\) 2138.32 4107.36i 0.490125 0.941447i
\(268\) 0 0
\(269\) 5078.45i 1.15107i −0.817776 0.575536i \(-0.804793\pi\)
0.817776 0.575536i \(-0.195207\pi\)
\(270\) 0 0
\(271\) −5338.90 −1.19673 −0.598367 0.801222i \(-0.704184\pi\)
−0.598367 + 0.801222i \(0.704184\pi\)
\(272\) 0 0
\(273\) 559.399 + 970.808i 0.124016 + 0.215223i
\(274\) 0 0
\(275\) 6679.22i 1.46463i
\(276\) 0 0
\(277\) 752.446 0.163213 0.0816066 0.996665i \(-0.473995\pi\)
0.0816066 + 0.996665i \(0.473995\pi\)
\(278\) 0 0
\(279\) 383.822 + 548.229i 0.0823613 + 0.117640i
\(280\) 0 0
\(281\) 7177.82 1.52382 0.761909 0.647684i \(-0.224262\pi\)
0.761909 + 0.647684i \(0.224262\pi\)
\(282\) 0 0
\(283\) 2174.61i 0.456775i 0.973570 + 0.228387i \(0.0733453\pi\)
−0.973570 + 0.228387i \(0.926655\pi\)
\(284\) 0 0
\(285\) −318.573 + 611.924i −0.0662127 + 0.127183i
\(286\) 0 0
\(287\) −1166.01 −0.239817
\(288\) 0 0
\(289\) 2986.44 0.607864
\(290\) 0 0
\(291\) 7359.00 + 3831.15i 1.48245 + 0.771774i
\(292\) 0 0
\(293\) 8725.85 1.73983 0.869914 0.493204i \(-0.164174\pi\)
0.869914 + 0.493204i \(0.164174\pi\)
\(294\) 0 0
\(295\) 797.191i 0.157336i
\(296\) 0 0
\(297\) 999.792 + 7599.83i 0.195333 + 1.48480i
\(298\) 0 0
\(299\) 576.217 902.853i 0.111450 0.174627i
\(300\) 0 0
\(301\) 101.146i 0.0193685i
\(302\) 0 0
\(303\) 5428.48 + 2826.11i 1.02923 + 0.535827i
\(304\) 0 0
\(305\) 551.102 0.103462
\(306\) 0 0
\(307\) 164.031 0.0304943 0.0152471 0.999884i \(-0.495147\pi\)
0.0152471 + 0.999884i \(0.495147\pi\)
\(308\) 0 0
\(309\) 1387.29 + 722.232i 0.255404 + 0.132965i
\(310\) 0 0
\(311\) −8812.84 −1.60685 −0.803425 0.595406i \(-0.796991\pi\)
−0.803425 + 0.595406i \(0.796991\pi\)
\(312\) 0 0
\(313\) 7228.47 1.30536 0.652679 0.757634i \(-0.273645\pi\)
0.652679 + 0.757634i \(0.273645\pi\)
\(314\) 0 0
\(315\) 118.178 + 168.799i 0.0211384 + 0.0301928i
\(316\) 0 0
\(317\) −9131.24 −1.61786 −0.808930 0.587906i \(-0.799953\pi\)
−0.808930 + 0.587906i \(0.799953\pi\)
\(318\) 0 0
\(319\) −12219.5 −2.14470
\(320\) 0 0
\(321\) 2529.55 4858.84i 0.439831 0.844842i
\(322\) 0 0
\(323\) 3512.83i 0.605137i
\(324\) 0 0
\(325\) −3082.68 + 4830.14i −0.526143 + 0.824394i
\(326\) 0 0
\(327\) 4671.72 + 2432.13i 0.790051 + 0.411307i
\(328\) 0 0
\(329\) 360.234i 0.0603658i
\(330\) 0 0
\(331\) 3166.25 0.525779 0.262889 0.964826i \(-0.415325\pi\)
0.262889 + 0.964826i \(0.415325\pi\)
\(332\) 0 0
\(333\) −7054.28 + 4938.78i −1.16088 + 0.812744i
\(334\) 0 0
\(335\) −1401.30 −0.228541
\(336\) 0 0
\(337\) −4294.44 −0.694163 −0.347081 0.937835i \(-0.612827\pi\)
−0.347081 + 0.937835i \(0.612827\pi\)
\(338\) 0 0
\(339\) −8978.89 4674.48i −1.43854 0.748918i
\(340\) 0 0
\(341\) 1354.25i 0.215064i
\(342\) 0 0
\(343\) −3058.50 −0.481467
\(344\) 0 0
\(345\) 90.9582 174.715i 0.0141943 0.0272648i
\(346\) 0 0
\(347\) −4226.06 −0.653794 −0.326897 0.945060i \(-0.606003\pi\)
−0.326897 + 0.945060i \(0.606003\pi\)
\(348\) 0 0
\(349\) 1683.16i 0.258159i −0.991634 0.129080i \(-0.958798\pi\)
0.991634 0.129080i \(-0.0412023\pi\)
\(350\) 0 0
\(351\) 2784.57 5957.33i 0.423445 0.905922i
\(352\) 0 0
\(353\) 2459.28 0.370805 0.185402 0.982663i \(-0.440641\pi\)
0.185402 + 0.982663i \(0.440641\pi\)
\(354\) 0 0
\(355\) 1081.54i 0.161696i
\(356\) 0 0
\(357\) −930.654 484.506i −0.137970 0.0718285i
\(358\) 0 0
\(359\) 5407.08i 0.794916i 0.917620 + 0.397458i \(0.130108\pi\)
−0.917620 + 0.397458i \(0.869892\pi\)
\(360\) 0 0
\(361\) −453.826 −0.0661650
\(362\) 0 0
\(363\) 3969.11 7623.98i 0.573895 1.10236i
\(364\) 0 0
\(365\) 756.363i 0.108465i
\(366\) 0 0
\(367\) 12629.5i 1.79634i 0.439653 + 0.898168i \(0.355101\pi\)
−0.439653 + 0.898168i \(0.644899\pi\)
\(368\) 0 0
\(369\) 3924.87 + 5606.06i 0.553714 + 0.790894i
\(370\) 0 0
\(371\) 1391.75i 0.194760i
\(372\) 0 0
\(373\) 2468.27 0.342633 0.171316 0.985216i \(-0.445198\pi\)
0.171316 + 0.985216i \(0.445198\pi\)
\(374\) 0 0
\(375\) −984.183 + 1890.45i −0.135528 + 0.260326i
\(376\) 0 0
\(377\) 8836.63 + 5639.70i 1.20719 + 0.770448i
\(378\) 0 0
\(379\) −2729.43 −0.369924 −0.184962 0.982746i \(-0.559216\pi\)
−0.184962 + 0.982746i \(0.559216\pi\)
\(380\) 0 0
\(381\) −5990.77 3118.84i −0.805555 0.419378i
\(382\) 0 0
\(383\) 11643.5i 1.55341i 0.629865 + 0.776704i \(0.283110\pi\)
−0.629865 + 0.776704i \(0.716890\pi\)
\(384\) 0 0
\(385\) 416.971i 0.0551969i
\(386\) 0 0
\(387\) 486.297 340.462i 0.0638756 0.0447201i
\(388\) 0 0
\(389\) 4944.04i 0.644404i 0.946671 + 0.322202i \(0.104423\pi\)
−0.946671 + 0.322202i \(0.895577\pi\)
\(390\) 0 0
\(391\) 1002.98i 0.129725i
\(392\) 0 0
\(393\) 4787.28 9195.55i 0.614469 1.18029i
\(394\) 0 0
\(395\) 408.312i 0.0520111i
\(396\) 0 0
\(397\) 8136.65i 1.02863i −0.857601 0.514316i \(-0.828046\pi\)
0.857601 0.514316i \(-0.171954\pi\)
\(398\) 0 0
\(399\) 883.431 1696.92i 0.110844 0.212913i
\(400\) 0 0
\(401\) −7334.78 −0.913420 −0.456710 0.889616i \(-0.650972\pi\)
−0.456710 + 0.889616i \(0.650972\pi\)
\(402\) 0 0
\(403\) −625.031 + 979.338i −0.0772581 + 0.121053i
\(404\) 0 0
\(405\) 413.772 1136.38i 0.0507667 0.139425i
\(406\) 0 0
\(407\) 17425.6 2.12225
\(408\) 0 0
\(409\) 3604.80i 0.435809i −0.975970 0.217904i \(-0.930078\pi\)
0.975970 0.217904i \(-0.0699221\pi\)
\(410\) 0 0
\(411\) 3031.52 5823.04i 0.363829 0.698855i
\(412\) 0 0
\(413\) 2210.68i 0.263391i
\(414\) 0 0
\(415\) 2351.82i 0.278184i
\(416\) 0 0
\(417\) 2032.79 + 1058.29i 0.238720 + 0.124280i
\(418\) 0 0
\(419\) 14407.6 1.67986 0.839928 0.542698i \(-0.182597\pi\)
0.839928 + 0.542698i \(0.182597\pi\)
\(420\) 0 0
\(421\) 886.554i 0.102632i −0.998682 0.0513159i \(-0.983658\pi\)
0.998682 0.0513159i \(-0.0163415\pi\)
\(422\) 0 0
\(423\) −1731.97 + 1212.57i −0.199081 + 0.139379i
\(424\) 0 0
\(425\) 5365.78i 0.612421i
\(426\) 0 0
\(427\) −1528.26 −0.173203
\(428\) 0 0
\(429\) −11529.9 + 6643.74i −1.29759 + 0.747698i
\(430\) 0 0
\(431\) 4428.41i 0.494916i −0.968899 0.247458i \(-0.920405\pi\)
0.968899 0.247458i \(-0.0795953\pi\)
\(432\) 0 0
\(433\) −9403.31 −1.04364 −0.521818 0.853057i \(-0.674746\pi\)
−0.521818 + 0.853057i \(0.674746\pi\)
\(434\) 0 0
\(435\) 1710.02 + 890.249i 0.188481 + 0.0981245i
\(436\) 0 0
\(437\) −1828.79 −0.200190
\(438\) 0 0
\(439\) 3981.63i 0.432876i 0.976296 + 0.216438i \(0.0694440\pi\)
−0.976296 + 0.216438i \(0.930556\pi\)
\(440\) 0 0
\(441\) 4983.69 + 7118.41i 0.538137 + 0.768644i
\(442\) 0 0
\(443\) −17073.6 −1.83113 −0.915564 0.402173i \(-0.868255\pi\)
−0.915564 + 0.402173i \(0.868255\pi\)
\(444\) 0 0
\(445\) 1478.39 0.157488
\(446\) 0 0
\(447\) −4441.89 + 8532.12i −0.470009 + 0.902809i
\(448\) 0 0
\(449\) −11870.4 −1.24766 −0.623830 0.781560i \(-0.714424\pi\)
−0.623830 + 0.781560i \(0.714424\pi\)
\(450\) 0 0
\(451\) 13848.2i 1.44587i
\(452\) 0 0
\(453\) 6406.60 12306.0i 0.664477 1.27635i
\(454\) 0 0
\(455\) −192.446 + 301.537i −0.0198286 + 0.0310687i
\(456\) 0 0
\(457\) 4774.61i 0.488724i −0.969684 0.244362i \(-0.921421\pi\)
0.969684 0.244362i \(-0.0785785\pi\)
\(458\) 0 0
\(459\) 803.188 + 6105.36i 0.0816767 + 0.620858i
\(460\) 0 0
\(461\) 1697.50 0.171498 0.0857489 0.996317i \(-0.472672\pi\)
0.0857489 + 0.996317i \(0.472672\pi\)
\(462\) 0 0
\(463\) 1618.85 0.162493 0.0812464 0.996694i \(-0.474110\pi\)
0.0812464 + 0.996694i \(0.474110\pi\)
\(464\) 0 0
\(465\) −98.6637 + 189.516i −0.00983961 + 0.0189002i
\(466\) 0 0
\(467\) −3709.58 −0.367578 −0.183789 0.982966i \(-0.558836\pi\)
−0.183789 + 0.982966i \(0.558836\pi\)
\(468\) 0 0
\(469\) 3885.93 0.382592
\(470\) 0 0
\(471\) −711.049 + 1365.81i −0.0695614 + 0.133616i
\(472\) 0 0
\(473\) −1201.26 −0.116774
\(474\) 0 0
\(475\) 9783.79 0.945076
\(476\) 0 0
\(477\) −6691.38 + 4684.71i −0.642300 + 0.449682i
\(478\) 0 0
\(479\) 4710.56i 0.449334i 0.974436 + 0.224667i \(0.0721294\pi\)
−0.974436 + 0.224667i \(0.927871\pi\)
\(480\) 0 0
\(481\) −12601.5 8042.52i −1.19455 0.762385i
\(482\) 0 0
\(483\) −252.235 + 484.502i −0.0237621 + 0.0456431i
\(484\) 0 0
\(485\) 2648.77i 0.247989i
\(486\) 0 0
\(487\) −15573.1 −1.44904 −0.724521 0.689253i \(-0.757939\pi\)
−0.724521 + 0.689253i \(0.757939\pi\)
\(488\) 0 0
\(489\) −99.4182 + 190.966i −0.00919396 + 0.0176601i
\(490\) 0 0
\(491\) 2749.87 0.252749 0.126375 0.991983i \(-0.459666\pi\)
0.126375 + 0.991983i \(0.459666\pi\)
\(492\) 0 0
\(493\) −9816.57 −0.896788
\(494\) 0 0
\(495\) −2004.75 + 1403.55i −0.182034 + 0.127444i
\(496\) 0 0
\(497\) 2999.21i 0.270690i
\(498\) 0 0
\(499\) 14090.3 1.26406 0.632031 0.774943i \(-0.282221\pi\)
0.632031 + 0.774943i \(0.282221\pi\)
\(500\) 0 0
\(501\) 601.687 + 313.243i 0.0536555 + 0.0279335i
\(502\) 0 0
\(503\) −7264.60 −0.643961 −0.321981 0.946746i \(-0.604349\pi\)
−0.321981 + 0.946746i \(0.604349\pi\)
\(504\) 0 0
\(505\) 1953.90i 0.172174i
\(506\) 0 0
\(507\) 11404.2 + 516.938i 0.998974 + 0.0452821i
\(508\) 0 0
\(509\) −16396.8 −1.42785 −0.713927 0.700221i \(-0.753085\pi\)
−0.713927 + 0.700221i \(0.753085\pi\)
\(510\) 0 0
\(511\) 2097.46i 0.181578i
\(512\) 0 0
\(513\) −11132.3 + 1464.51i −0.958096 + 0.126042i
\(514\) 0 0
\(515\) 499.334i 0.0427248i
\(516\) 0 0
\(517\) 4278.34 0.363948
\(518\) 0 0
\(519\) −9741.17 5071.33i −0.823872 0.428914i
\(520\) 0 0
\(521\) 9914.89i 0.833741i −0.908966 0.416870i \(-0.863127\pi\)
0.908966 0.416870i \(-0.136873\pi\)
\(522\) 0 0
\(523\) 9431.14i 0.788518i 0.918999 + 0.394259i \(0.128999\pi\)
−0.918999 + 0.394259i \(0.871001\pi\)
\(524\) 0 0
\(525\) 1349.43 2592.02i 0.112179 0.215476i
\(526\) 0 0
\(527\) 1087.94i 0.0899270i
\(528\) 0 0
\(529\) −11644.8 −0.957085
\(530\) 0 0
\(531\) 10628.7 7441.30i 0.868639 0.608145i
\(532\) 0 0
\(533\) −6391.42 + 10014.5i −0.519405 + 0.813837i
\(534\) 0 0
\(535\) 1748.87 0.141328
\(536\) 0 0
\(537\) −5150.76 + 9893.73i −0.413913 + 0.795058i
\(538\) 0 0
\(539\) 17584.1i 1.40519i
\(540\) 0 0
\(541\) 16945.0i 1.34662i −0.739360 0.673310i \(-0.764872\pi\)
0.739360 0.673310i \(-0.235128\pi\)
\(542\) 0 0
\(543\) 216.725 416.292i 0.0171281 0.0329002i
\(544\) 0 0
\(545\) 1681.52i 0.132162i
\(546\) 0 0
\(547\) 12763.9i 0.997707i −0.866686 0.498854i \(-0.833754\pi\)
0.866686 0.498854i \(-0.166246\pi\)
\(548\) 0 0
\(549\) 5144.21 + 7347.70i 0.399908 + 0.571206i
\(550\) 0 0
\(551\) 17899.2i 1.38391i
\(552\) 0 0
\(553\) 1132.29i 0.0870700i
\(554\) 0 0
\(555\) −2438.58 1269.54i −0.186508 0.0970975i
\(556\) 0 0
\(557\) 3718.90 0.282899 0.141450 0.989945i \(-0.454824\pi\)
0.141450 + 0.989945i \(0.454824\pi\)
\(558\) 0 0
\(559\) 868.704 + 554.423i 0.0657286 + 0.0419492i
\(560\) 0 0
\(561\) 5754.27 11053.0i 0.433058 0.831831i
\(562\) 0 0
\(563\) −6518.14 −0.487934 −0.243967 0.969784i \(-0.578449\pi\)
−0.243967 + 0.969784i \(0.578449\pi\)
\(564\) 0 0
\(565\) 3231.83i 0.240644i
\(566\) 0 0
\(567\) −1147.43 + 3151.27i −0.0849867 + 0.233406i
\(568\) 0 0
\(569\) 5245.52i 0.386474i 0.981152 + 0.193237i \(0.0618986\pi\)
−0.981152 + 0.193237i \(0.938101\pi\)
\(570\) 0 0
\(571\) 19960.8i 1.46293i −0.681877 0.731467i \(-0.738836\pi\)
0.681877 0.731467i \(-0.261164\pi\)
\(572\) 0 0
\(573\) 4952.85 9513.60i 0.361097 0.693606i
\(574\) 0 0
\(575\) −2793.45 −0.202600
\(576\) 0 0
\(577\) 20237.0i 1.46010i −0.683392 0.730051i \(-0.739496\pi\)
0.683392 0.730051i \(-0.260504\pi\)
\(578\) 0 0
\(579\) 3976.68 + 2070.29i 0.285432 + 0.148598i
\(580\) 0 0
\(581\) 6521.81i 0.465697i
\(582\) 0 0
\(583\) 16529.2 1.17422
\(584\) 0 0
\(585\) 2097.54 89.7307i 0.148244 0.00634172i
\(586\) 0 0
\(587\) 10732.0i 0.754609i 0.926089 + 0.377305i \(0.123149\pi\)
−0.926089 + 0.377305i \(0.876851\pi\)
\(588\) 0 0
\(589\) 1983.72 0.138774
\(590\) 0 0
\(591\) 9175.90 17625.4i 0.638656 1.22675i
\(592\) 0 0
\(593\) 3971.72 0.275040 0.137520 0.990499i \(-0.456087\pi\)
0.137520 + 0.990499i \(0.456087\pi\)
\(594\) 0 0
\(595\) 334.976i 0.0230801i
\(596\) 0 0
\(597\) −24257.5 12628.6i −1.66297 0.865754i
\(598\) 0 0
\(599\) 14579.7 0.994511 0.497256 0.867604i \(-0.334341\pi\)
0.497256 + 0.867604i \(0.334341\pi\)
\(600\) 0 0
\(601\) 17702.5 1.20150 0.600749 0.799438i \(-0.294869\pi\)
0.600749 + 0.799438i \(0.294869\pi\)
\(602\) 0 0
\(603\) −13080.3 18683.1i −0.883367 1.26175i
\(604\) 0 0
\(605\) 2744.15 0.184406
\(606\) 0 0
\(607\) 16473.2i 1.10153i −0.834662 0.550763i \(-0.814337\pi\)
0.834662 0.550763i \(-0.185663\pi\)
\(608\) 0 0
\(609\) −4742.04 2468.74i −0.315529 0.164267i
\(610\) 0 0
\(611\) −3093.92 1974.60i −0.204856 0.130743i
\(612\) 0 0
\(613\) 13263.0i 0.873880i 0.899491 + 0.436940i \(0.143938\pi\)
−0.899491 + 0.436940i \(0.856062\pi\)
\(614\) 0 0
\(615\) −1008.91 + 1937.95i −0.0661516 + 0.127066i
\(616\) 0 0
\(617\) 4653.47 0.303633 0.151816 0.988409i \(-0.451488\pi\)
0.151816 + 0.988409i \(0.451488\pi\)
\(618\) 0 0
\(619\) 2551.25 0.165660 0.0828298 0.996564i \(-0.473604\pi\)
0.0828298 + 0.996564i \(0.473604\pi\)
\(620\) 0 0
\(621\) 3178.47 418.143i 0.205391 0.0270201i
\(622\) 0 0
\(623\) −4099.70 −0.263645
\(624\) 0 0
\(625\) 14600.6 0.934435
\(626\) 0 0
\(627\) 20153.6 + 10492.1i 1.28367 + 0.668286i
\(628\) 0 0
\(629\) 13999.0 0.887402
\(630\) 0 0
\(631\) 18981.5 1.19753 0.598764 0.800926i \(-0.295659\pi\)
0.598764 + 0.800926i \(0.295659\pi\)
\(632\) 0 0
\(633\) −8767.95 4564.67i −0.550545 0.286618i
\(634\) 0 0
\(635\) 2156.29i 0.134756i
\(636\) 0 0
\(637\) −8115.64 + 12716.1i −0.504793 + 0.790942i
\(638\) 0 0
\(639\) −14419.9 + 10095.5i −0.892710 + 0.624997i
\(640\) 0 0
\(641\) 23963.8i 1.47662i 0.674460 + 0.738311i \(0.264376\pi\)
−0.674460 + 0.738311i \(0.735624\pi\)
\(642\) 0 0
\(643\) 13446.0 0.824661 0.412330 0.911034i \(-0.364715\pi\)
0.412330 + 0.911034i \(0.364715\pi\)
\(644\) 0 0
\(645\) 168.107 + 87.5179i 0.0102623 + 0.00534266i
\(646\) 0 0
\(647\) −9699.46 −0.589374 −0.294687 0.955594i \(-0.595215\pi\)
−0.294687 + 0.955594i \(0.595215\pi\)
\(648\) 0 0
\(649\) −26255.3 −1.58800
\(650\) 0 0
\(651\) 273.604 525.546i 0.0164721 0.0316402i
\(652\) 0 0
\(653\) 4389.49i 0.263054i −0.991313 0.131527i \(-0.958012\pi\)
0.991313 0.131527i \(-0.0419880\pi\)
\(654\) 0 0
\(655\) 3309.81 0.197443
\(656\) 0 0
\(657\) −10084.4 + 7060.19i −0.598827 + 0.419246i
\(658\) 0 0
\(659\) −21977.3 −1.29911 −0.649555 0.760314i \(-0.725045\pi\)
−0.649555 + 0.760314i \(0.725045\pi\)
\(660\) 0 0
\(661\) 11415.5i 0.671726i 0.941911 + 0.335863i \(0.109028\pi\)
−0.941911 + 0.335863i \(0.890972\pi\)
\(662\) 0 0
\(663\) −9262.57 + 5337.28i −0.542577 + 0.312644i
\(664\) 0 0
\(665\) 610.784 0.0356168
\(666\) 0 0
\(667\) 5110.54i 0.296673i
\(668\) 0 0
\(669\) 12378.0 23776.1i 0.715340 1.37405i
\(670\) 0 0
\(671\) 18150.5i 1.04425i
\(672\) 0 0
\(673\) −1930.71 −0.110584 −0.0552922 0.998470i \(-0.517609\pi\)
−0.0552922 + 0.998470i \(0.517609\pi\)
\(674\) 0 0
\(675\) −17004.4 + 2237.01i −0.969629 + 0.127559i
\(676\) 0 0
\(677\) 19368.1i 1.09952i −0.835322 0.549760i \(-0.814719\pi\)
0.835322 0.549760i \(-0.185281\pi\)
\(678\) 0 0
\(679\) 7345.28i 0.415149i
\(680\) 0 0
\(681\) −8615.19 4485.13i −0.484779 0.252380i
\(682\) 0 0
\(683\) 22753.2i 1.27471i 0.770569 + 0.637356i \(0.219972\pi\)
−0.770569 + 0.637356i \(0.780028\pi\)
\(684\) 0 0
\(685\) 2095.92 0.116907
\(686\) 0 0
\(687\) −11709.6 6096.13i −0.650292 0.338547i
\(688\) 0 0
\(689\) −11953.3 7628.78i −0.660933 0.421819i
\(690\) 0 0
\(691\) 23400.1 1.28825 0.644126 0.764920i \(-0.277221\pi\)
0.644126 + 0.764920i \(0.277221\pi\)
\(692\) 0 0
\(693\) 5559.36 3892.18i 0.304737 0.213350i
\(694\) 0 0
\(695\) 731.676i 0.0399339i
\(696\) 0 0
\(697\) 11125.0i 0.604578i
\(698\) 0 0
\(699\) 13854.6 + 7212.82i 0.749685 + 0.390292i
\(700\) 0 0
\(701\) 28147.9i 1.51659i 0.651909 + 0.758297i \(0.273968\pi\)
−0.651909 + 0.758297i \(0.726032\pi\)
\(702\) 0 0
\(703\) 25525.3i 1.36942i
\(704\) 0 0
\(705\) −598.720 311.698i −0.0319845 0.0166514i
\(706\) 0 0
\(707\) 5418.36i 0.288230i
\(708\) 0 0
\(709\) 18233.4i 0.965822i 0.875669 + 0.482911i \(0.160421\pi\)
−0.875669 + 0.482911i \(0.839579\pi\)
\(710\) 0 0
\(711\) −5443.91 + 3811.35i −0.287149 + 0.201036i
\(712\) 0 0
\(713\) −566.387 −0.0297494
\(714\) 0 0
\(715\) −3581.22 2285.60i −0.187315 0.119548i
\(716\) 0 0
\(717\) −13042.7 6790.11i −0.679341 0.353670i
\(718\) 0 0
\(719\) 7021.51 0.364198 0.182099 0.983280i \(-0.441711\pi\)
0.182099 + 0.983280i \(0.441711\pi\)
\(720\) 0 0
\(721\) 1384.70i 0.0715241i
\(722\) 0 0
\(723\) −13604.9 7082.84i −0.699824 0.364334i
\(724\) 0 0
\(725\) 27340.7i 1.40056i
\(726\) 0 0
\(727\) 21025.0i 1.07259i −0.844031 0.536295i \(-0.819824\pi\)
0.844031 0.536295i \(-0.180176\pi\)
\(728\) 0 0
\(729\) 19013.3 5090.67i 0.965976 0.258633i
\(730\) 0 0
\(731\) −965.040 −0.0488280
\(732\) 0 0
\(733\) 25864.5i 1.30331i 0.758516 + 0.651655i \(0.225925\pi\)
−0.758516 + 0.651655i \(0.774075\pi\)
\(734\) 0 0
\(735\) −1281.09 + 2460.75i −0.0642906 + 0.123491i
\(736\) 0 0
\(737\) 46151.5i 2.30667i
\(738\) 0 0
\(739\) −279.361 −0.0139059 −0.00695296 0.999976i \(-0.502213\pi\)
−0.00695296 + 0.999976i \(0.502213\pi\)
\(740\) 0 0
\(741\) −9731.81 16889.1i −0.482466 0.837294i
\(742\) 0 0
\(743\) 7307.21i 0.360801i 0.983593 + 0.180401i \(0.0577394\pi\)
−0.983593 + 0.180401i \(0.942261\pi\)
\(744\) 0 0
\(745\) −3071.02 −0.151025
\(746\) 0 0
\(747\) −31356.1 + 21952.8i −1.53582 + 1.07525i
\(748\) 0 0
\(749\) −4849.79 −0.236592
\(750\) 0 0
\(751\) 1579.19i 0.0767318i 0.999264 + 0.0383659i \(0.0122152\pi\)
−0.999264 + 0.0383659i \(0.987785\pi\)
\(752\) 0 0
\(753\) −3494.49 + 6712.32i −0.169118 + 0.324848i
\(754\) 0 0
\(755\) 4429.37 0.213512
\(756\) 0 0
\(757\) 28840.0 1.38469 0.692344 0.721567i \(-0.256578\pi\)
0.692344 + 0.721567i \(0.256578\pi\)
\(758\) 0 0
\(759\) −5754.22 2995.69i −0.275184 0.143263i
\(760\) 0 0
\(761\) −12157.2 −0.579103 −0.289551 0.957162i \(-0.593506\pi\)
−0.289551 + 0.957162i \(0.593506\pi\)
\(762\) 0 0
\(763\) 4663.01i 0.221248i
\(764\) 0 0
\(765\) −1610.53 + 1127.55i −0.0761160 + 0.0532897i
\(766\) 0 0
\(767\) 18986.8 + 12117.7i 0.893838 + 0.570464i
\(768\) 0 0
\(769\) 12578.7i 0.589858i −0.955519 0.294929i \(-0.904704\pi\)
0.955519 0.294929i \(-0.0952960\pi\)
\(770\) 0 0
\(771\) −9354.44 4869.99i −0.436955 0.227482i
\(772\) 0 0
\(773\) −5024.92 −0.233808 −0.116904 0.993143i \(-0.537297\pi\)
−0.116904 + 0.993143i \(0.537297\pi\)
\(774\) 0 0
\(775\) 3030.09 0.140444
\(776\) 0 0
\(777\) 6762.41 + 3520.56i 0.312227 + 0.162548i
\(778\) 0 0
\(779\) 20285.0 0.932973
\(780\) 0 0
\(781\) 35620.3 1.63200
\(782\) 0 0
\(783\) 4092.55 + 31109.1i 0.186789 + 1.41986i
\(784\) 0 0
\(785\) −491.603 −0.0223517
\(786\) 0 0
\(787\) −11668.3 −0.528501 −0.264250 0.964454i \(-0.585125\pi\)
−0.264250 + 0.964454i \(0.585125\pi\)
\(788\) 0 0
\(789\) −15674.9 + 30108.8i −0.707276 + 1.35856i
\(790\) 0 0
\(791\) 8962.15i 0.402854i
\(792\) 0 0
\(793\) −8377.05 + 13125.7i −0.375129 + 0.587776i
\(794\) 0 0
\(795\) −2313.13 1204.23i −0.103193 0.0537230i
\(796\) 0 0
\(797\) 16725.9i 0.743365i −0.928360 0.371683i \(-0.878781\pi\)
0.928360 0.371683i \(-0.121219\pi\)
\(798\) 0 0
\(799\) 3437.03 0.152182
\(800\) 0 0
\(801\) 13799.9 + 19710.9i 0.608731 + 0.869477i
\(802\) 0 0
\(803\) 24910.7 1.09474
\(804\) 0 0
\(805\) −174.390 −0.00763531
\(806\) 0 0
\(807\) 23406.4 + 12185.6i 1.02100 + 0.531539i
\(808\) 0 0
\(809\) 32990.1i 1.43371i −0.697222 0.716855i \(-0.745581\pi\)
0.697222 0.716855i \(-0.254419\pi\)
\(810\) 0 0
\(811\) −28635.4 −1.23986 −0.619929 0.784658i \(-0.712839\pi\)
−0.619929 + 0.784658i \(0.712839\pi\)
\(812\) 0 0
\(813\) 12810.5 24606.8i 0.552625 1.06150i
\(814\) 0 0
\(815\) −68.7354 −0.00295423
\(816\) 0 0
\(817\) 1759.62i 0.0753505i
\(818\) 0 0
\(819\) −5816.68 + 248.832i −0.248170 + 0.0106165i
\(820\) 0 0
\(821\) 41284.8 1.75499 0.877497 0.479582i \(-0.159212\pi\)
0.877497 + 0.479582i \(0.159212\pi\)
\(822\) 0 0
\(823\) 4389.00i 0.185894i −0.995671 0.0929471i \(-0.970371\pi\)
0.995671 0.0929471i \(-0.0296288\pi\)
\(824\) 0 0
\(825\) 30784.3 + 16026.5i 1.29912 + 0.676330i
\(826\) 0 0
\(827\) 17206.1i 0.723476i 0.932280 + 0.361738i \(0.117817\pi\)
−0.932280 + 0.361738i \(0.882183\pi\)
\(828\) 0 0
\(829\) 32350.9 1.35536 0.677679 0.735357i \(-0.262986\pi\)
0.677679 + 0.735357i \(0.262986\pi\)
\(830\) 0 0
\(831\) −1805.47 + 3468.00i −0.0753681 + 0.144770i
\(832\) 0 0
\(833\) 14126.3i 0.587570i
\(834\) 0 0
\(835\) 216.569i 0.00897566i
\(836\) 0 0
\(837\) −3447.74 + 453.565i −0.142379 + 0.0187306i
\(838\) 0 0
\(839\) 6096.97i 0.250883i −0.992101 0.125441i \(-0.959965\pi\)
0.992101 0.125441i \(-0.0400347\pi\)
\(840\) 0 0
\(841\) −25630.2 −1.05089
\(842\) 0 0
\(843\) −17222.9 + 33082.3i −0.703664 + 1.35162i
\(844\) 0 0
\(845\) 1534.91 + 3305.71i 0.0624883 + 0.134580i
\(846\) 0 0
\(847\) −7609.77 −0.308707
\(848\) 0 0
\(849\) −10022.7 5217.90i −0.405157 0.210928i
\(850\) 0 0
\(851\) 7287.92i 0.293568i
\(852\) 0 0
\(853\) 40668.0i 1.63241i 0.577764 + 0.816204i \(0.303926\pi\)
−0.577764 + 0.816204i \(0.696074\pi\)
\(854\) 0 0
\(855\) −2055.94 2936.58i −0.0822357 0.117461i
\(856\) 0 0
\(857\) 538.343i 0.0214579i −0.999942 0.0107290i \(-0.996585\pi\)
0.999942 0.0107290i \(-0.00341520\pi\)
\(858\) 0 0
\(859\) 34633.0i 1.37563i 0.725887 + 0.687814i \(0.241429\pi\)
−0.725887 + 0.687814i \(0.758571\pi\)
\(860\) 0 0
\(861\) 2797.80 5374.11i 0.110742 0.212717i
\(862\) 0 0
\(863\) 26459.3i 1.04367i 0.853047 + 0.521833i \(0.174752\pi\)
−0.853047 + 0.521833i \(0.825248\pi\)
\(864\) 0 0
\(865\) 3506.20i 0.137820i
\(866\) 0 0
\(867\) −7165.85 + 13764.4i −0.280698 + 0.539173i
\(868\) 0 0
\(869\) 13447.7 0.524950
\(870\) 0 0
\(871\) 21300.5 33374.9i 0.828633 1.29835i
\(872\) 0 0
\(873\) −35315.3 + 24724.7i −1.36912 + 0.958538i
\(874\) 0 0
\(875\) 1886.92 0.0729025
\(876\) 0 0
\(877\) 44087.8i 1.69754i 0.528765 + 0.848768i \(0.322655\pi\)
−0.528765 + 0.848768i \(0.677345\pi\)
\(878\) 0 0
\(879\) −20937.4 + 40217.1i −0.803412 + 1.54322i
\(880\) 0 0
\(881\) 25467.1i 0.973903i −0.873429 0.486951i \(-0.838109\pi\)
0.873429 0.486951i \(-0.161891\pi\)
\(882\) 0 0
\(883\) 9351.33i 0.356396i −0.983995 0.178198i \(-0.942973\pi\)
0.983995 0.178198i \(-0.0570267\pi\)
\(884\) 0 0
\(885\) 3674.23 + 1912.83i 0.139557 + 0.0726544i
\(886\) 0 0
\(887\) −11869.9 −0.449328 −0.224664 0.974436i \(-0.572128\pi\)
−0.224664 + 0.974436i \(0.572128\pi\)
\(888\) 0 0
\(889\) 5979.60i 0.225590i
\(890\) 0 0
\(891\) −37426.3 13627.5i −1.40722 0.512389i
\(892\) 0 0
\(893\) 6266.96i 0.234844i
\(894\) 0 0
\(895\) −3561.11 −0.133000
\(896\) 0 0
\(897\) 2778.61 + 4822.13i 0.103428 + 0.179494i
\(898\) 0 0
\(899\) 5543.48i 0.205657i
\(900\) 0 0
\(901\) 13278.8 0.490990
\(902\) 0 0
\(903\) −466.177 242.695i −0.0171798 0.00894395i
\(904\) 0 0
\(905\) 149.838 0.00550364
\(906\) 0 0
\(907\) 46364.2i 1.69735i 0.528913 + 0.848676i \(0.322600\pi\)
−0.528913 + 0.848676i \(0.677400\pi\)
\(908\) 0 0
\(909\) −26050.9 + 18238.5i −0.950554 + 0.665494i
\(910\) 0 0
\(911\) −3851.00 −0.140054 −0.0700271 0.997545i \(-0.522309\pi\)
−0.0700271 + 0.997545i \(0.522309\pi\)
\(912\) 0 0
\(913\) 77456.7 2.80771
\(914\) 0 0
\(915\) −1322.35 + 2540.01i −0.0477766 + 0.0917707i
\(916\) 0 0
\(917\) −9178.41 −0.330532
\(918\) 0 0
\(919\) 25293.7i 0.907903i −0.891026 0.453951i \(-0.850014\pi\)
0.891026 0.453951i \(-0.149986\pi\)
\(920\) 0 0
\(921\) −393.586 + 756.013i −0.0140815 + 0.0270483i
\(922\) 0 0
\(923\) −25759.2 16440.0i −0.918607 0.586271i
\(924\) 0 0
\(925\) 38989.4i 1.38591i
\(926\) 0 0
\(927\) −6657.48 + 4660.98i −0.235880 + 0.165142i
\(928\) 0 0
\(929\) −32476.6 −1.14696 −0.573479 0.819220i \(-0.694407\pi\)
−0.573479 + 0.819220i \(0.694407\pi\)
\(930\) 0 0
\(931\) 25757.3 0.906727
\(932\) 0 0
\(933\) 21146.1 40618.1i 0.742007 1.42527i
\(934\) 0 0
\(935\) 3978.36 0.139151
\(936\) 0 0
\(937\) 11069.0 0.385920 0.192960 0.981207i \(-0.438191\pi\)
0.192960 + 0.981207i \(0.438191\pi\)
\(938\) 0 0
\(939\) −17344.4 + 33315.8i −0.602785 + 1.15785i
\(940\) 0 0
\(941\) 16698.2 0.578476 0.289238 0.957257i \(-0.406598\pi\)
0.289238 + 0.957257i \(0.406598\pi\)
\(942\) 0 0
\(943\) −5791.73 −0.200005
\(944\) 0 0
\(945\) −1061.55 + 139.652i −0.0365421 + 0.00480728i
\(946\) 0 0
\(947\) 2558.01i 0.0877762i 0.999036 + 0.0438881i \(0.0139745\pi\)
−0.999036 + 0.0438881i \(0.986025\pi\)
\(948\) 0 0
\(949\) −18014.4 11497.1i −0.616198 0.393269i
\(950\) 0 0
\(951\) 21910.1 42085.6i 0.747090 1.43503i
\(952\) 0 0
\(953\) 3280.46i 0.111505i 0.998445 + 0.0557527i \(0.0177558\pi\)
−0.998445 + 0.0557527i \(0.982244\pi\)
\(954\) 0 0
\(955\) 3424.29 0.116029
\(956\) 0 0
\(957\) 29320.2 56319.1i 0.990373 1.90234i
\(958\) 0 0
\(959\) −5812.18 −0.195709
\(960\) 0 0
\(961\) −29176.6 −0.979377
\(962\) 0 0
\(963\) 16324.7 + 23317.2i 0.546267 + 0.780257i
\(964\) 0 0
\(965\) 1431.35i 0.0477480i
\(966\) 0 0
\(967\) 49833.7 1.65723 0.828617 0.559817i \(-0.189128\pi\)
0.828617 + 0.559817i \(0.189128\pi\)
\(968\) 0 0
\(969\) 16190.5 + 8428.91i 0.536754 + 0.279438i
\(970\) 0 0
\(971\) 39079.2 1.29157 0.645783 0.763521i \(-0.276531\pi\)
0.645783 + 0.763521i \(0.276531\pi\)
\(972\) 0 0
\(973\) 2029.00i 0.0668519i
\(974\) 0 0
\(975\) −14865.2 25797.7i −0.488273 0.847373i
\(976\) 0 0
\(977\) 30647.0 1.00357 0.501783 0.864994i \(-0.332678\pi\)
0.501783 + 0.864994i \(0.332678\pi\)
\(978\) 0 0
\(979\) 48690.4i 1.58953i
\(980\) 0 0
\(981\) −22419.3 + 15696.0i −0.729655 + 0.510840i
\(982\) 0 0
\(983\) 49203.3i 1.59648i −0.602339 0.798240i \(-0.705765\pi\)
0.602339 0.798240i \(-0.294235\pi\)
\(984\) 0 0
\(985\) 6344.00 0.205215
\(986\) 0 0
\(987\) 1660.31 + 864.368i 0.0535442 + 0.0278755i
\(988\) 0 0
\(989\) 502.403i 0.0161532i
\(990\) 0 0
\(991\) 7980.56i 0.255813i 0.991786 + 0.127907i \(0.0408258\pi\)
−0.991786 + 0.127907i \(0.959174\pi\)
\(992\) 0 0
\(993\) −7597.30 + 14593.1i −0.242792 + 0.466363i
\(994\) 0 0
\(995\) 8731.13i 0.278186i
\(996\) 0 0
\(997\) −5464.05 −0.173569 −0.0867844 0.996227i \(-0.527659\pi\)
−0.0867844 + 0.996227i \(0.527659\pi\)
\(998\) 0 0
\(999\) −5836.20 44363.4i −0.184834 1.40500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.n.d.623.19 yes 56
3.2 odd 2 inner 624.4.n.d.623.40 yes 56
4.3 odd 2 inner 624.4.n.d.623.37 yes 56
12.11 even 2 inner 624.4.n.d.623.18 yes 56
13.12 even 2 inner 624.4.n.d.623.20 yes 56
39.38 odd 2 inner 624.4.n.d.623.39 yes 56
52.51 odd 2 inner 624.4.n.d.623.38 yes 56
156.155 even 2 inner 624.4.n.d.623.17 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.n.d.623.17 56 156.155 even 2 inner
624.4.n.d.623.18 yes 56 12.11 even 2 inner
624.4.n.d.623.19 yes 56 1.1 even 1 trivial
624.4.n.d.623.20 yes 56 13.12 even 2 inner
624.4.n.d.623.37 yes 56 4.3 odd 2 inner
624.4.n.d.623.38 yes 56 52.51 odd 2 inner
624.4.n.d.623.39 yes 56 39.38 odd 2 inner
624.4.n.d.623.40 yes 56 3.2 odd 2 inner