Properties

Label 624.4.n.d.623.13
Level $624$
Weight $4$
Character 624.623
Analytic conductor $36.817$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,4,Mod(623,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.623"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 623.13
Character \(\chi\) \(=\) 624.623
Dual form 624.4.n.d.623.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.53056 - 3.81250i) q^{3} -9.28291 q^{5} -16.8768 q^{7} +(-2.07031 + 26.9205i) q^{9} +43.0842i q^{11} +(-42.8921 + 18.9015i) q^{13} +(32.7738 + 35.3911i) q^{15} +4.06776i q^{17} +76.7301 q^{19} +(59.5845 + 64.3428i) q^{21} +124.564 q^{23} -38.8276 q^{25} +(109.944 - 87.1514i) q^{27} -19.4422i q^{29} -219.497 q^{31} +(164.259 - 152.111i) q^{33} +156.666 q^{35} +69.3757i q^{37} +(223.495 + 96.7932i) q^{39} -252.460 q^{41} -246.736i q^{43} +(19.2185 - 249.901i) q^{45} +455.407i q^{47} -58.1740 q^{49} +(15.5083 - 14.3615i) q^{51} -302.539i q^{53} -399.947i q^{55} +(-270.900 - 292.534i) q^{57} -422.412i q^{59} -703.925 q^{61} +(34.9403 - 454.332i) q^{63} +(398.163 - 175.461i) q^{65} +839.371 q^{67} +(-439.781 - 474.901i) q^{69} +698.752i q^{71} -601.513i q^{73} +(137.083 + 148.030i) q^{75} -727.124i q^{77} -182.752i q^{79} +(-720.428 - 111.468i) q^{81} +66.1415i q^{83} -37.7606i q^{85} +(-74.1234 + 68.6419i) q^{87} +888.131 q^{89} +(723.881 - 318.997i) q^{91} +(774.948 + 836.833i) q^{93} -712.279 q^{95} +874.867i q^{97} +(-1159.85 - 89.1979i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 64 q^{9} + 8 q^{13} + 1208 q^{25} + 4680 q^{49} + 1616 q^{61} + 480 q^{69} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.53056 3.81250i −0.679456 0.733716i
\(4\) 0 0
\(5\) −9.28291 −0.830289 −0.415144 0.909756i \(-0.636269\pi\)
−0.415144 + 0.909756i \(0.636269\pi\)
\(6\) 0 0
\(7\) −16.8768 −0.911261 −0.455630 0.890169i \(-0.650586\pi\)
−0.455630 + 0.890169i \(0.650586\pi\)
\(8\) 0 0
\(9\) −2.07031 + 26.9205i −0.0766783 + 0.997056i
\(10\) 0 0
\(11\) 43.0842i 1.18094i 0.807058 + 0.590472i \(0.201058\pi\)
−0.807058 + 0.590472i \(0.798942\pi\)
\(12\) 0 0
\(13\) −42.8921 + 18.9015i −0.915087 + 0.403257i
\(14\) 0 0
\(15\) 32.7738 + 35.3911i 0.564145 + 0.609196i
\(16\) 0 0
\(17\) 4.06776i 0.0580339i 0.999579 + 0.0290170i \(0.00923768\pi\)
−0.999579 + 0.0290170i \(0.990762\pi\)
\(18\) 0 0
\(19\) 76.7301 0.926479 0.463239 0.886233i \(-0.346687\pi\)
0.463239 + 0.886233i \(0.346687\pi\)
\(20\) 0 0
\(21\) 59.5845 + 64.3428i 0.619162 + 0.668607i
\(22\) 0 0
\(23\) 124.564 1.12928 0.564640 0.825337i \(-0.309015\pi\)
0.564640 + 0.825337i \(0.309015\pi\)
\(24\) 0 0
\(25\) −38.8276 −0.310621
\(26\) 0 0
\(27\) 109.944 87.1514i 0.783655 0.621196i
\(28\) 0 0
\(29\) 19.4422i 0.124494i −0.998061 0.0622470i \(-0.980173\pi\)
0.998061 0.0622470i \(-0.0198267\pi\)
\(30\) 0 0
\(31\) −219.497 −1.27171 −0.635853 0.771810i \(-0.719351\pi\)
−0.635853 + 0.771810i \(0.719351\pi\)
\(32\) 0 0
\(33\) 164.259 152.111i 0.866478 0.802400i
\(34\) 0 0
\(35\) 156.666 0.756610
\(36\) 0 0
\(37\) 69.3757i 0.308251i 0.988051 + 0.154126i \(0.0492560\pi\)
−0.988051 + 0.154126i \(0.950744\pi\)
\(38\) 0 0
\(39\) 223.495 + 96.7932i 0.917638 + 0.397418i
\(40\) 0 0
\(41\) −252.460 −0.961651 −0.480826 0.876816i \(-0.659663\pi\)
−0.480826 + 0.876816i \(0.659663\pi\)
\(42\) 0 0
\(43\) 246.736i 0.875044i −0.899208 0.437522i \(-0.855856\pi\)
0.899208 0.437522i \(-0.144144\pi\)
\(44\) 0 0
\(45\) 19.2185 249.901i 0.0636651 0.827844i
\(46\) 0 0
\(47\) 455.407i 1.41336i 0.707533 + 0.706681i \(0.249808\pi\)
−0.707533 + 0.706681i \(0.750192\pi\)
\(48\) 0 0
\(49\) −58.1740 −0.169603
\(50\) 0 0
\(51\) 15.5083 14.3615i 0.0425804 0.0394315i
\(52\) 0 0
\(53\) 302.539i 0.784094i −0.919945 0.392047i \(-0.871767\pi\)
0.919945 0.392047i \(-0.128233\pi\)
\(54\) 0 0
\(55\) 399.947i 0.980524i
\(56\) 0 0
\(57\) −270.900 292.534i −0.629502 0.679772i
\(58\) 0 0
\(59\) 422.412i 0.932090i −0.884761 0.466045i \(-0.845678\pi\)
0.884761 0.466045i \(-0.154322\pi\)
\(60\) 0 0
\(61\) −703.925 −1.47751 −0.738757 0.673972i \(-0.764587\pi\)
−0.738757 + 0.673972i \(0.764587\pi\)
\(62\) 0 0
\(63\) 34.9403 454.332i 0.0698740 0.908578i
\(64\) 0 0
\(65\) 398.163 175.461i 0.759786 0.334820i
\(66\) 0 0
\(67\) 839.371 1.53053 0.765265 0.643715i \(-0.222608\pi\)
0.765265 + 0.643715i \(0.222608\pi\)
\(68\) 0 0
\(69\) −439.781 474.901i −0.767297 0.828571i
\(70\) 0 0
\(71\) 698.752i 1.16798i 0.811761 + 0.583990i \(0.198509\pi\)
−0.811761 + 0.583990i \(0.801491\pi\)
\(72\) 0 0
\(73\) 601.513i 0.964408i −0.876059 0.482204i \(-0.839836\pi\)
0.876059 0.482204i \(-0.160164\pi\)
\(74\) 0 0
\(75\) 137.083 + 148.030i 0.211053 + 0.227908i
\(76\) 0 0
\(77\) 727.124i 1.07615i
\(78\) 0 0
\(79\) 182.752i 0.260269i −0.991496 0.130135i \(-0.958459\pi\)
0.991496 0.130135i \(-0.0415409\pi\)
\(80\) 0 0
\(81\) −720.428 111.468i −0.988241 0.152905i
\(82\) 0 0
\(83\) 66.1415i 0.0874695i 0.999043 + 0.0437347i \(0.0139256\pi\)
−0.999043 + 0.0437347i \(0.986074\pi\)
\(84\) 0 0
\(85\) 37.7606i 0.0481849i
\(86\) 0 0
\(87\) −74.1234 + 68.6419i −0.0913433 + 0.0845883i
\(88\) 0 0
\(89\) 888.131 1.05777 0.528886 0.848693i \(-0.322610\pi\)
0.528886 + 0.848693i \(0.322610\pi\)
\(90\) 0 0
\(91\) 723.881 318.997i 0.833883 0.367472i
\(92\) 0 0
\(93\) 774.948 + 836.833i 0.864068 + 0.933071i
\(94\) 0 0
\(95\) −712.279 −0.769245
\(96\) 0 0
\(97\) 874.867i 0.915766i 0.889013 + 0.457883i \(0.151392\pi\)
−0.889013 + 0.457883i \(0.848608\pi\)
\(98\) 0 0
\(99\) −1159.85 89.1979i −1.17747 0.0905528i
\(100\) 0 0
\(101\) 1927.31i 1.89876i −0.314129 0.949380i \(-0.601713\pi\)
0.314129 0.949380i \(-0.398287\pi\)
\(102\) 0 0
\(103\) 613.904i 0.587279i −0.955916 0.293640i \(-0.905133\pi\)
0.955916 0.293640i \(-0.0948666\pi\)
\(104\) 0 0
\(105\) −553.117 597.288i −0.514083 0.555137i
\(106\) 0 0
\(107\) −204.617 −0.184870 −0.0924349 0.995719i \(-0.529465\pi\)
−0.0924349 + 0.995719i \(0.529465\pi\)
\(108\) 0 0
\(109\) 1671.02i 1.46839i −0.678937 0.734197i \(-0.737559\pi\)
0.678937 0.734197i \(-0.262441\pi\)
\(110\) 0 0
\(111\) 264.495 244.935i 0.226169 0.209443i
\(112\) 0 0
\(113\) 760.259i 0.632913i 0.948607 + 0.316456i \(0.102493\pi\)
−0.948607 + 0.316456i \(0.897507\pi\)
\(114\) 0 0
\(115\) −1156.32 −0.937628
\(116\) 0 0
\(117\) −420.039 1193.81i −0.331902 0.943314i
\(118\) 0 0
\(119\) 68.6507i 0.0528841i
\(120\) 0 0
\(121\) −525.251 −0.394629
\(122\) 0 0
\(123\) 891.326 + 962.505i 0.653400 + 0.705579i
\(124\) 0 0
\(125\) 1520.80 1.08819
\(126\) 0 0
\(127\) 437.334i 0.305568i −0.988260 0.152784i \(-0.951176\pi\)
0.988260 0.152784i \(-0.0488238\pi\)
\(128\) 0 0
\(129\) −940.682 + 871.116i −0.642034 + 0.594554i
\(130\) 0 0
\(131\) 1941.72 1.29503 0.647514 0.762053i \(-0.275809\pi\)
0.647514 + 0.762053i \(0.275809\pi\)
\(132\) 0 0
\(133\) −1294.96 −0.844264
\(134\) 0 0
\(135\) −1020.60 + 809.018i −0.650660 + 0.515772i
\(136\) 0 0
\(137\) 91.7739 0.0572319 0.0286160 0.999590i \(-0.490890\pi\)
0.0286160 + 0.999590i \(0.490890\pi\)
\(138\) 0 0
\(139\) 2394.64i 1.46123i −0.682791 0.730614i \(-0.739234\pi\)
0.682791 0.730614i \(-0.260766\pi\)
\(140\) 0 0
\(141\) 1736.24 1607.84i 1.03701 0.960317i
\(142\) 0 0
\(143\) −814.358 1847.97i −0.476224 1.08067i
\(144\) 0 0
\(145\) 180.480i 0.103366i
\(146\) 0 0
\(147\) 205.387 + 221.788i 0.115238 + 0.124441i
\(148\) 0 0
\(149\) −1308.92 −0.719669 −0.359835 0.933016i \(-0.617167\pi\)
−0.359835 + 0.933016i \(0.617167\pi\)
\(150\) 0 0
\(151\) −130.432 −0.0702940 −0.0351470 0.999382i \(-0.511190\pi\)
−0.0351470 + 0.999382i \(0.511190\pi\)
\(152\) 0 0
\(153\) −109.506 8.42154i −0.0578631 0.00444994i
\(154\) 0 0
\(155\) 2037.57 1.05588
\(156\) 0 0
\(157\) 699.252 0.355455 0.177727 0.984080i \(-0.443125\pi\)
0.177727 + 0.984080i \(0.443125\pi\)
\(158\) 0 0
\(159\) −1153.43 + 1068.13i −0.575302 + 0.532758i
\(160\) 0 0
\(161\) −2102.24 −1.02907
\(162\) 0 0
\(163\) 3824.04 1.83756 0.918780 0.394770i \(-0.129176\pi\)
0.918780 + 0.394770i \(0.129176\pi\)
\(164\) 0 0
\(165\) −1524.80 + 1412.04i −0.719426 + 0.666223i
\(166\) 0 0
\(167\) 304.441i 0.141068i −0.997509 0.0705339i \(-0.977530\pi\)
0.997509 0.0705339i \(-0.0224703\pi\)
\(168\) 0 0
\(169\) 1482.46 1621.45i 0.674768 0.738030i
\(170\) 0 0
\(171\) −158.856 + 2065.61i −0.0710408 + 0.923751i
\(172\) 0 0
\(173\) 527.690i 0.231905i 0.993255 + 0.115952i \(0.0369920\pi\)
−0.993255 + 0.115952i \(0.963008\pi\)
\(174\) 0 0
\(175\) 655.286 0.283057
\(176\) 0 0
\(177\) −1610.44 + 1491.35i −0.683889 + 0.633314i
\(178\) 0 0
\(179\) 2143.41 0.895007 0.447504 0.894282i \(-0.352313\pi\)
0.447504 + 0.894282i \(0.352313\pi\)
\(180\) 0 0
\(181\) 1860.14 0.763885 0.381942 0.924186i \(-0.375255\pi\)
0.381942 + 0.924186i \(0.375255\pi\)
\(182\) 0 0
\(183\) 2485.25 + 2683.71i 1.00391 + 1.08408i
\(184\) 0 0
\(185\) 644.008i 0.255937i
\(186\) 0 0
\(187\) −175.256 −0.0685348
\(188\) 0 0
\(189\) −1855.50 + 1470.84i −0.714115 + 0.566071i
\(190\) 0 0
\(191\) 240.884 0.0912551 0.0456276 0.998959i \(-0.485471\pi\)
0.0456276 + 0.998959i \(0.485471\pi\)
\(192\) 0 0
\(193\) 4404.98i 1.64289i 0.570290 + 0.821443i \(0.306831\pi\)
−0.570290 + 0.821443i \(0.693169\pi\)
\(194\) 0 0
\(195\) −2074.68 898.522i −0.761904 0.329972i
\(196\) 0 0
\(197\) 844.824 0.305539 0.152770 0.988262i \(-0.451181\pi\)
0.152770 + 0.988262i \(0.451181\pi\)
\(198\) 0 0
\(199\) 263.619i 0.0939070i −0.998897 0.0469535i \(-0.985049\pi\)
0.998897 0.0469535i \(-0.0149513\pi\)
\(200\) 0 0
\(201\) −2963.45 3200.10i −1.03993 1.12297i
\(202\) 0 0
\(203\) 328.122i 0.113447i
\(204\) 0 0
\(205\) 2343.57 0.798448
\(206\) 0 0
\(207\) −257.887 + 3353.33i −0.0865913 + 1.12596i
\(208\) 0 0
\(209\) 3305.86i 1.09412i
\(210\) 0 0
\(211\) 3550.81i 1.15852i −0.815143 0.579260i \(-0.803341\pi\)
0.815143 0.579260i \(-0.196659\pi\)
\(212\) 0 0
\(213\) 2663.99 2466.98i 0.856966 0.793591i
\(214\) 0 0
\(215\) 2290.43i 0.726539i
\(216\) 0 0
\(217\) 3704.41 1.15886
\(218\) 0 0
\(219\) −2293.27 + 2123.68i −0.707602 + 0.655273i
\(220\) 0 0
\(221\) −76.8869 174.475i −0.0234026 0.0531061i
\(222\) 0 0
\(223\) 1532.84 0.460298 0.230149 0.973155i \(-0.426079\pi\)
0.230149 + 0.973155i \(0.426079\pi\)
\(224\) 0 0
\(225\) 80.3854 1045.26i 0.0238179 0.309706i
\(226\) 0 0
\(227\) 3596.28i 1.05151i 0.850635 + 0.525757i \(0.176218\pi\)
−0.850635 + 0.525757i \(0.823782\pi\)
\(228\) 0 0
\(229\) 3334.26i 0.962158i 0.876677 + 0.481079i \(0.159755\pi\)
−0.876677 + 0.481079i \(0.840245\pi\)
\(230\) 0 0
\(231\) −2772.16 + 2567.15i −0.789587 + 0.731196i
\(232\) 0 0
\(233\) 2980.15i 0.837923i 0.908004 + 0.418961i \(0.137606\pi\)
−0.908004 + 0.418961i \(0.862394\pi\)
\(234\) 0 0
\(235\) 4227.50i 1.17350i
\(236\) 0 0
\(237\) −696.744 + 645.218i −0.190964 + 0.176841i
\(238\) 0 0
\(239\) 6919.06i 1.87262i −0.351172 0.936311i \(-0.614217\pi\)
0.351172 0.936311i \(-0.385783\pi\)
\(240\) 0 0
\(241\) 2963.76i 0.792168i −0.918214 0.396084i \(-0.870369\pi\)
0.918214 0.396084i \(-0.129631\pi\)
\(242\) 0 0
\(243\) 2118.54 + 3140.17i 0.559278 + 0.828980i
\(244\) 0 0
\(245\) 540.024 0.140820
\(246\) 0 0
\(247\) −3291.12 + 1450.32i −0.847809 + 0.373609i
\(248\) 0 0
\(249\) 252.164 233.516i 0.0641778 0.0594317i
\(250\) 0 0
\(251\) −7220.24 −1.81569 −0.907843 0.419309i \(-0.862272\pi\)
−0.907843 + 0.419309i \(0.862272\pi\)
\(252\) 0 0
\(253\) 5366.76i 1.33362i
\(254\) 0 0
\(255\) −143.962 + 133.316i −0.0353540 + 0.0327395i
\(256\) 0 0
\(257\) 690.995i 0.167716i 0.996478 + 0.0838582i \(0.0267243\pi\)
−0.996478 + 0.0838582i \(0.973276\pi\)
\(258\) 0 0
\(259\) 1170.84i 0.280897i
\(260\) 0 0
\(261\) 523.394 + 40.2515i 0.124128 + 0.00954599i
\(262\) 0 0
\(263\) −4959.65 −1.16283 −0.581416 0.813606i \(-0.697501\pi\)
−0.581416 + 0.813606i \(0.697501\pi\)
\(264\) 0 0
\(265\) 2808.45i 0.651024i
\(266\) 0 0
\(267\) −3135.60 3386.00i −0.718710 0.776104i
\(268\) 0 0
\(269\) 6904.63i 1.56499i 0.622656 + 0.782496i \(0.286054\pi\)
−0.622656 + 0.782496i \(0.713946\pi\)
\(270\) 0 0
\(271\) −3639.53 −0.815814 −0.407907 0.913024i \(-0.633741\pi\)
−0.407907 + 0.913024i \(0.633741\pi\)
\(272\) 0 0
\(273\) −3771.88 1633.56i −0.836207 0.362152i
\(274\) 0 0
\(275\) 1672.86i 0.366826i
\(276\) 0 0
\(277\) 3926.59 0.851719 0.425859 0.904789i \(-0.359972\pi\)
0.425859 + 0.904789i \(0.359972\pi\)
\(278\) 0 0
\(279\) 454.428 5908.98i 0.0975122 1.26796i
\(280\) 0 0
\(281\) 6738.55 1.43056 0.715282 0.698836i \(-0.246298\pi\)
0.715282 + 0.698836i \(0.246298\pi\)
\(282\) 0 0
\(283\) 1725.89i 0.362522i −0.983435 0.181261i \(-0.941982\pi\)
0.983435 0.181261i \(-0.0580179\pi\)
\(284\) 0 0
\(285\) 2514.74 + 2715.56i 0.522668 + 0.564407i
\(286\) 0 0
\(287\) 4260.72 0.876315
\(288\) 0 0
\(289\) 4896.45 0.996632
\(290\) 0 0
\(291\) 3335.43 3088.77i 0.671912 0.622223i
\(292\) 0 0
\(293\) −8083.08 −1.61167 −0.805833 0.592142i \(-0.798282\pi\)
−0.805833 + 0.592142i \(0.798282\pi\)
\(294\) 0 0
\(295\) 3921.21i 0.773904i
\(296\) 0 0
\(297\) 3754.85 + 4736.84i 0.733598 + 0.925453i
\(298\) 0 0
\(299\) −5342.82 + 2354.45i −1.03339 + 0.455390i
\(300\) 0 0
\(301\) 4164.11i 0.797394i
\(302\) 0 0
\(303\) −7347.88 + 6804.49i −1.39315 + 1.29012i
\(304\) 0 0
\(305\) 6534.47 1.22676
\(306\) 0 0
\(307\) 2965.37 0.551278 0.275639 0.961261i \(-0.411111\pi\)
0.275639 + 0.961261i \(0.411111\pi\)
\(308\) 0 0
\(309\) −2340.51 + 2167.42i −0.430896 + 0.399031i
\(310\) 0 0
\(311\) −5347.16 −0.974950 −0.487475 0.873137i \(-0.662082\pi\)
−0.487475 + 0.873137i \(0.662082\pi\)
\(312\) 0 0
\(313\) 1308.54 0.236303 0.118151 0.992996i \(-0.462303\pi\)
0.118151 + 0.992996i \(0.462303\pi\)
\(314\) 0 0
\(315\) −324.347 + 4217.52i −0.0580155 + 0.754382i
\(316\) 0 0
\(317\) −8882.61 −1.57381 −0.786904 0.617076i \(-0.788317\pi\)
−0.786904 + 0.617076i \(0.788317\pi\)
\(318\) 0 0
\(319\) 837.653 0.147021
\(320\) 0 0
\(321\) 722.412 + 780.102i 0.125611 + 0.135642i
\(322\) 0 0
\(323\) 312.120i 0.0537672i
\(324\) 0 0
\(325\) 1665.40 733.901i 0.284245 0.125260i
\(326\) 0 0
\(327\) −6370.77 + 5899.64i −1.07738 + 0.997709i
\(328\) 0 0
\(329\) 7685.81i 1.28794i
\(330\) 0 0
\(331\) −114.766 −0.0190578 −0.00952890 0.999955i \(-0.503033\pi\)
−0.00952890 + 0.999955i \(0.503033\pi\)
\(332\) 0 0
\(333\) −1867.63 143.629i −0.307344 0.0236362i
\(334\) 0 0
\(335\) −7791.81 −1.27078
\(336\) 0 0
\(337\) 6600.09 1.06685 0.533427 0.845846i \(-0.320904\pi\)
0.533427 + 0.845846i \(0.320904\pi\)
\(338\) 0 0
\(339\) 2898.49 2684.14i 0.464378 0.430037i
\(340\) 0 0
\(341\) 9456.87i 1.50181i
\(342\) 0 0
\(343\) 6770.53 1.06581
\(344\) 0 0
\(345\) 4082.45 + 4408.46i 0.637077 + 0.687953i
\(346\) 0 0
\(347\) 11146.5 1.72443 0.862215 0.506543i \(-0.169077\pi\)
0.862215 + 0.506543i \(0.169077\pi\)
\(348\) 0 0
\(349\) 7940.69i 1.21792i −0.793200 0.608962i \(-0.791586\pi\)
0.793200 0.608962i \(-0.208414\pi\)
\(350\) 0 0
\(351\) −3068.43 + 5816.21i −0.466611 + 0.884463i
\(352\) 0 0
\(353\) −12526.0 −1.88864 −0.944320 0.329028i \(-0.893279\pi\)
−0.944320 + 0.329028i \(0.893279\pi\)
\(354\) 0 0
\(355\) 6486.45i 0.969760i
\(356\) 0 0
\(357\) −261.731 + 242.375i −0.0388019 + 0.0359324i
\(358\) 0 0
\(359\) 446.881i 0.0656977i 0.999460 + 0.0328488i \(0.0104580\pi\)
−0.999460 + 0.0328488i \(0.989542\pi\)
\(360\) 0 0
\(361\) −971.486 −0.141637
\(362\) 0 0
\(363\) 1854.43 + 2002.52i 0.268133 + 0.289546i
\(364\) 0 0
\(365\) 5583.79i 0.800737i
\(366\) 0 0
\(367\) 824.173i 0.117225i 0.998281 + 0.0586124i \(0.0186676\pi\)
−0.998281 + 0.0586124i \(0.981332\pi\)
\(368\) 0 0
\(369\) 522.672 6796.36i 0.0737378 0.958820i
\(370\) 0 0
\(371\) 5105.89i 0.714514i
\(372\) 0 0
\(373\) 7900.66 1.09673 0.548365 0.836239i \(-0.315250\pi\)
0.548365 + 0.836239i \(0.315250\pi\)
\(374\) 0 0
\(375\) −5369.26 5798.04i −0.739380 0.798425i
\(376\) 0 0
\(377\) 367.487 + 833.917i 0.0502031 + 0.113923i
\(378\) 0 0
\(379\) −2866.75 −0.388536 −0.194268 0.980948i \(-0.562233\pi\)
−0.194268 + 0.980948i \(0.562233\pi\)
\(380\) 0 0
\(381\) −1667.33 + 1544.03i −0.224200 + 0.207620i
\(382\) 0 0
\(383\) 5271.61i 0.703307i −0.936130 0.351654i \(-0.885619\pi\)
0.936130 0.351654i \(-0.114381\pi\)
\(384\) 0 0
\(385\) 6749.82i 0.893514i
\(386\) 0 0
\(387\) 6642.26 + 510.821i 0.872468 + 0.0670969i
\(388\) 0 0
\(389\) 9006.25i 1.17387i 0.809635 + 0.586934i \(0.199665\pi\)
−0.809635 + 0.586934i \(0.800335\pi\)
\(390\) 0 0
\(391\) 506.698i 0.0655366i
\(392\) 0 0
\(393\) −6855.35 7402.80i −0.879915 0.950183i
\(394\) 0 0
\(395\) 1696.47i 0.216098i
\(396\) 0 0
\(397\) 13005.2i 1.64412i −0.569403 0.822058i \(-0.692826\pi\)
0.569403 0.822058i \(-0.307174\pi\)
\(398\) 0 0
\(399\) 4571.93 + 4937.03i 0.573641 + 0.619450i
\(400\) 0 0
\(401\) −3443.96 −0.428886 −0.214443 0.976737i \(-0.568794\pi\)
−0.214443 + 0.976737i \(0.568794\pi\)
\(402\) 0 0
\(403\) 9414.70 4148.83i 1.16372 0.512824i
\(404\) 0 0
\(405\) 6687.66 + 1034.75i 0.820525 + 0.126955i
\(406\) 0 0
\(407\) −2989.00 −0.364027
\(408\) 0 0
\(409\) 514.697i 0.0622252i −0.999516 0.0311126i \(-0.990095\pi\)
0.999516 0.0311126i \(-0.00990505\pi\)
\(410\) 0 0
\(411\) −324.013 349.888i −0.0388866 0.0419920i
\(412\) 0 0
\(413\) 7128.95i 0.849377i
\(414\) 0 0
\(415\) 613.985i 0.0726249i
\(416\) 0 0
\(417\) −9129.56 + 8454.41i −1.07213 + 0.992840i
\(418\) 0 0
\(419\) 5248.91 0.611996 0.305998 0.952032i \(-0.401010\pi\)
0.305998 + 0.952032i \(0.401010\pi\)
\(420\) 0 0
\(421\) 11487.1i 1.32981i 0.746929 + 0.664904i \(0.231528\pi\)
−0.746929 + 0.664904i \(0.768472\pi\)
\(422\) 0 0
\(423\) −12259.8 942.836i −1.40920 0.108374i
\(424\) 0 0
\(425\) 157.941i 0.0180266i
\(426\) 0 0
\(427\) 11880.0 1.34640
\(428\) 0 0
\(429\) −4170.26 + 9629.12i −0.469329 + 1.08368i
\(430\) 0 0
\(431\) 8461.46i 0.945648i −0.881157 0.472824i \(-0.843235\pi\)
0.881157 0.472824i \(-0.156765\pi\)
\(432\) 0 0
\(433\) 5640.82 0.626052 0.313026 0.949745i \(-0.398657\pi\)
0.313026 + 0.949745i \(0.398657\pi\)
\(434\) 0 0
\(435\) 688.081 637.196i 0.0758413 0.0702327i
\(436\) 0 0
\(437\) 9557.83 1.04625
\(438\) 0 0
\(439\) 7198.90i 0.782654i −0.920252 0.391327i \(-0.872016\pi\)
0.920252 0.391327i \(-0.127984\pi\)
\(440\) 0 0
\(441\) 120.438 1566.07i 0.0130049 0.169104i
\(442\) 0 0
\(443\) 17156.9 1.84007 0.920035 0.391836i \(-0.128160\pi\)
0.920035 + 0.391836i \(0.128160\pi\)
\(444\) 0 0
\(445\) −8244.44 −0.878256
\(446\) 0 0
\(447\) 4621.21 + 4990.25i 0.488984 + 0.528033i
\(448\) 0 0
\(449\) 4902.95 0.515333 0.257666 0.966234i \(-0.417046\pi\)
0.257666 + 0.966234i \(0.417046\pi\)
\(450\) 0 0
\(451\) 10877.1i 1.13566i
\(452\) 0 0
\(453\) 460.497 + 497.271i 0.0477617 + 0.0515758i
\(454\) 0 0
\(455\) −6719.72 + 2961.22i −0.692363 + 0.305108i
\(456\) 0 0
\(457\) 9773.10i 1.00036i −0.865920 0.500182i \(-0.833266\pi\)
0.865920 0.500182i \(-0.166734\pi\)
\(458\) 0 0
\(459\) 354.511 + 447.225i 0.0360504 + 0.0454786i
\(460\) 0 0
\(461\) −3178.87 −0.321160 −0.160580 0.987023i \(-0.551337\pi\)
−0.160580 + 0.987023i \(0.551337\pi\)
\(462\) 0 0
\(463\) −11372.6 −1.14153 −0.570767 0.821112i \(-0.693354\pi\)
−0.570767 + 0.821112i \(0.693354\pi\)
\(464\) 0 0
\(465\) −7193.77 7768.25i −0.717426 0.774718i
\(466\) 0 0
\(467\) 12139.3 1.20287 0.601435 0.798922i \(-0.294596\pi\)
0.601435 + 0.798922i \(0.294596\pi\)
\(468\) 0 0
\(469\) −14165.9 −1.39471
\(470\) 0 0
\(471\) −2468.75 2665.90i −0.241516 0.260803i
\(472\) 0 0
\(473\) 10630.4 1.03338
\(474\) 0 0
\(475\) −2979.25 −0.287784
\(476\) 0 0
\(477\) 8144.52 + 626.352i 0.781786 + 0.0601230i
\(478\) 0 0
\(479\) 17422.1i 1.66187i 0.556370 + 0.830935i \(0.312194\pi\)
−0.556370 + 0.830935i \(0.687806\pi\)
\(480\) 0 0
\(481\) −1311.31 2975.67i −0.124304 0.282076i
\(482\) 0 0
\(483\) 7422.10 + 8014.81i 0.699207 + 0.755044i
\(484\) 0 0
\(485\) 8121.31i 0.760350i
\(486\) 0 0
\(487\) 283.738 0.0264012 0.0132006 0.999913i \(-0.495798\pi\)
0.0132006 + 0.999913i \(0.495798\pi\)
\(488\) 0 0
\(489\) −13501.0 14579.2i −1.24854 1.34825i
\(490\) 0 0
\(491\) 2027.77 0.186379 0.0931893 0.995648i \(-0.470294\pi\)
0.0931893 + 0.995648i \(0.470294\pi\)
\(492\) 0 0
\(493\) 79.0863 0.00722488
\(494\) 0 0
\(495\) 10766.8 + 828.016i 0.977638 + 0.0751850i
\(496\) 0 0
\(497\) 11792.7i 1.06433i
\(498\) 0 0
\(499\) −10231.8 −0.917908 −0.458954 0.888460i \(-0.651776\pi\)
−0.458954 + 0.888460i \(0.651776\pi\)
\(500\) 0 0
\(501\) −1160.68 + 1074.85i −0.103504 + 0.0958494i
\(502\) 0 0
\(503\) 3177.73 0.281686 0.140843 0.990032i \(-0.455019\pi\)
0.140843 + 0.990032i \(0.455019\pi\)
\(504\) 0 0
\(505\) 17891.1i 1.57652i
\(506\) 0 0
\(507\) −11415.7 + 72.7359i −0.999980 + 0.00637143i
\(508\) 0 0
\(509\) 18102.5 1.57638 0.788191 0.615431i \(-0.211018\pi\)
0.788191 + 0.615431i \(0.211018\pi\)
\(510\) 0 0
\(511\) 10151.6i 0.878828i
\(512\) 0 0
\(513\) 8436.00 6687.14i 0.726040 0.575525i
\(514\) 0 0
\(515\) 5698.82i 0.487611i
\(516\) 0 0
\(517\) −19620.9 −1.66910
\(518\) 0 0
\(519\) 2011.82 1863.04i 0.170152 0.157569i
\(520\) 0 0
\(521\) 13744.0i 1.15573i −0.816133 0.577864i \(-0.803887\pi\)
0.816133 0.577864i \(-0.196113\pi\)
\(522\) 0 0
\(523\) 10574.1i 0.884076i −0.896996 0.442038i \(-0.854256\pi\)
0.896996 0.442038i \(-0.145744\pi\)
\(524\) 0 0
\(525\) −2313.52 2498.28i −0.192325 0.207683i
\(526\) 0 0
\(527\) 892.862i 0.0738021i
\(528\) 0 0
\(529\) 3349.26 0.275274
\(530\) 0 0
\(531\) 11371.5 + 874.525i 0.929346 + 0.0714711i
\(532\) 0 0
\(533\) 10828.6 4771.89i 0.879994 0.387792i
\(534\) 0 0
\(535\) 1899.44 0.153495
\(536\) 0 0
\(537\) −7567.45 8171.77i −0.608118 0.656681i
\(538\) 0 0
\(539\) 2506.38i 0.200292i
\(540\) 0 0
\(541\) 2835.35i 0.225326i −0.993633 0.112663i \(-0.964062\pi\)
0.993633 0.112663i \(-0.0359380\pi\)
\(542\) 0 0
\(543\) −6567.33 7091.79i −0.519026 0.560475i
\(544\) 0 0
\(545\) 15511.9i 1.21919i
\(546\) 0 0
\(547\) 16130.5i 1.26086i −0.776247 0.630428i \(-0.782879\pi\)
0.776247 0.630428i \(-0.217121\pi\)
\(548\) 0 0
\(549\) 1457.35 18950.0i 0.113293 1.47316i
\(550\) 0 0
\(551\) 1491.80i 0.115341i
\(552\) 0 0
\(553\) 3084.27i 0.237173i
\(554\) 0 0
\(555\) −2455.28 + 2273.71i −0.187785 + 0.173898i
\(556\) 0 0
\(557\) −8262.29 −0.628518 −0.314259 0.949337i \(-0.601756\pi\)
−0.314259 + 0.949337i \(0.601756\pi\)
\(558\) 0 0
\(559\) 4663.69 + 10583.0i 0.352868 + 0.800742i
\(560\) 0 0
\(561\) 618.753 + 668.165i 0.0465664 + 0.0502851i
\(562\) 0 0
\(563\) −13178.8 −0.986537 −0.493269 0.869877i \(-0.664198\pi\)
−0.493269 + 0.869877i \(0.664198\pi\)
\(564\) 0 0
\(565\) 7057.42i 0.525500i
\(566\) 0 0
\(567\) 12158.5 + 1881.22i 0.900545 + 0.139336i
\(568\) 0 0
\(569\) 15552.6i 1.14587i −0.819602 0.572934i \(-0.805805\pi\)
0.819602 0.572934i \(-0.194195\pi\)
\(570\) 0 0
\(571\) 14416.3i 1.05658i 0.849065 + 0.528288i \(0.177166\pi\)
−0.849065 + 0.528288i \(0.822834\pi\)
\(572\) 0 0
\(573\) −850.454 918.369i −0.0620039 0.0669553i
\(574\) 0 0
\(575\) −4836.53 −0.350778
\(576\) 0 0
\(577\) 2926.84i 0.211171i −0.994410 0.105586i \(-0.966328\pi\)
0.994410 0.105586i \(-0.0336717\pi\)
\(578\) 0 0
\(579\) 16794.0 15552.0i 1.20541 1.11627i
\(580\) 0 0
\(581\) 1116.26i 0.0797075i
\(582\) 0 0
\(583\) 13034.7 0.925971
\(584\) 0 0
\(585\) 3899.18 + 11082.0i 0.275575 + 0.783223i
\(586\) 0 0
\(587\) 23204.1i 1.63158i −0.578351 0.815788i \(-0.696304\pi\)
0.578351 0.815788i \(-0.303696\pi\)
\(588\) 0 0
\(589\) −16842.1 −1.17821
\(590\) 0 0
\(591\) −2982.70 3220.89i −0.207601 0.224179i
\(592\) 0 0
\(593\) −19130.9 −1.32481 −0.662404 0.749147i \(-0.730464\pi\)
−0.662404 + 0.749147i \(0.730464\pi\)
\(594\) 0 0
\(595\) 637.278i 0.0439090i
\(596\) 0 0
\(597\) −1005.05 + 930.724i −0.0689011 + 0.0638057i
\(598\) 0 0
\(599\) 22189.1 1.51356 0.756778 0.653672i \(-0.226772\pi\)
0.756778 + 0.653672i \(0.226772\pi\)
\(600\) 0 0
\(601\) −25181.6 −1.70912 −0.854559 0.519354i \(-0.826173\pi\)
−0.854559 + 0.519354i \(0.826173\pi\)
\(602\) 0 0
\(603\) −1737.76 + 22596.3i −0.117358 + 1.52602i
\(604\) 0 0
\(605\) 4875.86 0.327656
\(606\) 0 0
\(607\) 5820.53i 0.389206i 0.980882 + 0.194603i \(0.0623418\pi\)
−0.980882 + 0.194603i \(0.937658\pi\)
\(608\) 0 0
\(609\) 1250.97 1158.45i 0.0832376 0.0770820i
\(610\) 0 0
\(611\) −8607.89 19533.4i −0.569948 1.29335i
\(612\) 0 0
\(613\) 18698.4i 1.23201i −0.787742 0.616005i \(-0.788750\pi\)
0.787742 0.616005i \(-0.211250\pi\)
\(614\) 0 0
\(615\) −8274.10 8934.85i −0.542510 0.585834i
\(616\) 0 0
\(617\) −524.183 −0.0342023 −0.0171011 0.999854i \(-0.505444\pi\)
−0.0171011 + 0.999854i \(0.505444\pi\)
\(618\) 0 0
\(619\) 4171.79 0.270886 0.135443 0.990785i \(-0.456754\pi\)
0.135443 + 0.990785i \(0.456754\pi\)
\(620\) 0 0
\(621\) 13695.1 10855.9i 0.884967 0.701504i
\(622\) 0 0
\(623\) −14988.8 −0.963906
\(624\) 0 0
\(625\) −9263.96 −0.592894
\(626\) 0 0
\(627\) 12603.6 11671.5i 0.802773 0.743407i
\(628\) 0 0
\(629\) −282.204 −0.0178890
\(630\) 0 0
\(631\) 6128.07 0.386616 0.193308 0.981138i \(-0.438078\pi\)
0.193308 + 0.981138i \(0.438078\pi\)
\(632\) 0 0
\(633\) −13537.5 + 12536.3i −0.850025 + 0.787164i
\(634\) 0 0
\(635\) 4059.73i 0.253709i
\(636\) 0 0
\(637\) 2495.20 1099.58i 0.155202 0.0683938i
\(638\) 0 0
\(639\) −18810.8 1446.64i −1.16454 0.0895587i
\(640\) 0 0
\(641\) 4201.54i 0.258894i −0.991586 0.129447i \(-0.958680\pi\)
0.991586 0.129447i \(-0.0413201\pi\)
\(642\) 0 0
\(643\) −25108.7 −1.53995 −0.769976 0.638072i \(-0.779732\pi\)
−0.769976 + 0.638072i \(0.779732\pi\)
\(644\) 0 0
\(645\) 8732.26 8086.49i 0.533073 0.493652i
\(646\) 0 0
\(647\) 3133.13 0.190380 0.0951900 0.995459i \(-0.469654\pi\)
0.0951900 + 0.995459i \(0.469654\pi\)
\(648\) 0 0
\(649\) 18199.3 1.10075
\(650\) 0 0
\(651\) −13078.6 14123.1i −0.787392 0.850271i
\(652\) 0 0
\(653\) 22671.8i 1.35868i −0.733825 0.679339i \(-0.762267\pi\)
0.733825 0.679339i \(-0.237733\pi\)
\(654\) 0 0
\(655\) −18024.8 −1.07525
\(656\) 0 0
\(657\) 16193.0 + 1245.32i 0.961569 + 0.0739492i
\(658\) 0 0
\(659\) 3368.74 0.199131 0.0995656 0.995031i \(-0.468255\pi\)
0.0995656 + 0.995031i \(0.468255\pi\)
\(660\) 0 0
\(661\) 32396.1i 1.90630i −0.302505 0.953148i \(-0.597823\pi\)
0.302505 0.953148i \(-0.402177\pi\)
\(662\) 0 0
\(663\) −393.731 + 909.125i −0.0230637 + 0.0532541i
\(664\) 0 0
\(665\) 12021.0 0.700983
\(666\) 0 0
\(667\) 2421.80i 0.140589i
\(668\) 0 0
\(669\) −5411.78 5843.95i −0.312752 0.337728i
\(670\) 0 0
\(671\) 30328.1i 1.74486i
\(672\) 0 0
\(673\) 3243.21 0.185760 0.0928802 0.995677i \(-0.470393\pi\)
0.0928802 + 0.995677i \(0.470393\pi\)
\(674\) 0 0
\(675\) −4268.86 + 3383.88i −0.243420 + 0.192956i
\(676\) 0 0
\(677\) 20223.6i 1.14809i −0.818823 0.574046i \(-0.805373\pi\)
0.818823 0.574046i \(-0.194627\pi\)
\(678\) 0 0
\(679\) 14764.9i 0.834501i
\(680\) 0 0
\(681\) 13710.8 12696.9i 0.771513 0.714458i
\(682\) 0 0
\(683\) 13278.6i 0.743913i 0.928250 + 0.371957i \(0.121313\pi\)
−0.928250 + 0.371957i \(0.878687\pi\)
\(684\) 0 0
\(685\) −851.929 −0.0475190
\(686\) 0 0
\(687\) 12711.9 11771.8i 0.705951 0.653744i
\(688\) 0 0
\(689\) 5718.46 + 12976.6i 0.316191 + 0.717514i
\(690\) 0 0
\(691\) 5397.48 0.297149 0.148574 0.988901i \(-0.452532\pi\)
0.148574 + 0.988901i \(0.452532\pi\)
\(692\) 0 0
\(693\) 19574.5 + 1505.37i 1.07298 + 0.0825172i
\(694\) 0 0
\(695\) 22229.2i 1.21324i
\(696\) 0 0
\(697\) 1026.95i 0.0558084i
\(698\) 0 0
\(699\) 11361.8 10521.6i 0.614797 0.569332i
\(700\) 0 0
\(701\) 4506.62i 0.242814i −0.992603 0.121407i \(-0.961259\pi\)
0.992603 0.121407i \(-0.0387407\pi\)
\(702\) 0 0
\(703\) 5323.20i 0.285588i
\(704\) 0 0
\(705\) −16117.4 + 14925.4i −0.861014 + 0.797340i
\(706\) 0 0
\(707\) 32526.9i 1.73027i
\(708\) 0 0
\(709\) 27832.3i 1.47428i 0.675739 + 0.737141i \(0.263825\pi\)
−0.675739 + 0.737141i \(0.736175\pi\)
\(710\) 0 0
\(711\) 4919.79 + 378.355i 0.259503 + 0.0199570i
\(712\) 0 0
\(713\) −27341.5 −1.43611
\(714\) 0 0
\(715\) 7559.61 + 17154.6i 0.395403 + 0.897265i
\(716\) 0 0
\(717\) −26378.9 + 24428.1i −1.37397 + 1.27236i
\(718\) 0 0
\(719\) 9535.06 0.494573 0.247286 0.968942i \(-0.420461\pi\)
0.247286 + 0.968942i \(0.420461\pi\)
\(720\) 0 0
\(721\) 10360.7i 0.535165i
\(722\) 0 0
\(723\) −11299.3 + 10463.7i −0.581226 + 0.538244i
\(724\) 0 0
\(725\) 754.895i 0.0386705i
\(726\) 0 0
\(727\) 12962.8i 0.661298i 0.943754 + 0.330649i \(0.107268\pi\)
−0.943754 + 0.330649i \(0.892732\pi\)
\(728\) 0 0
\(729\) 4492.28 19163.5i 0.228232 0.973607i
\(730\) 0 0
\(731\) 1003.66 0.0507823
\(732\) 0 0
\(733\) 28525.8i 1.43741i 0.695314 + 0.718706i \(0.255265\pi\)
−0.695314 + 0.718706i \(0.744735\pi\)
\(734\) 0 0
\(735\) −1906.59 2058.84i −0.0956809 0.103322i
\(736\) 0 0
\(737\) 36163.7i 1.80747i
\(738\) 0 0
\(739\) −13883.8 −0.691100 −0.345550 0.938400i \(-0.612308\pi\)
−0.345550 + 0.938400i \(0.612308\pi\)
\(740\) 0 0
\(741\) 17148.8 + 7426.96i 0.850172 + 0.368200i
\(742\) 0 0
\(743\) 1055.64i 0.0521233i 0.999660 + 0.0260616i \(0.00829662\pi\)
−0.999660 + 0.0260616i \(0.991703\pi\)
\(744\) 0 0
\(745\) 12150.6 0.597533
\(746\) 0 0
\(747\) −1780.56 136.934i −0.0872120 0.00670701i
\(748\) 0 0
\(749\) 3453.28 0.168465
\(750\) 0 0
\(751\) 21421.1i 1.04084i 0.853912 + 0.520418i \(0.174224\pi\)
−0.853912 + 0.520418i \(0.825776\pi\)
\(752\) 0 0
\(753\) 25491.5 + 27527.2i 1.23368 + 1.33220i
\(754\) 0 0
\(755\) 1210.79 0.0583643
\(756\) 0 0
\(757\) −24778.3 −1.18967 −0.594837 0.803846i \(-0.702783\pi\)
−0.594837 + 0.803846i \(0.702783\pi\)
\(758\) 0 0
\(759\) 20460.8 18947.6i 0.978496 0.906134i
\(760\) 0 0
\(761\) −136.102 −0.00648319 −0.00324160 0.999995i \(-0.501032\pi\)
−0.00324160 + 0.999995i \(0.501032\pi\)
\(762\) 0 0
\(763\) 28201.5i 1.33809i
\(764\) 0 0
\(765\) 1016.54 + 78.1764i 0.0480430 + 0.00369474i
\(766\) 0 0
\(767\) 7984.22 + 18118.1i 0.375872 + 0.852943i
\(768\) 0 0
\(769\) 1618.85i 0.0759130i −0.999279 0.0379565i \(-0.987915\pi\)
0.999279 0.0379565i \(-0.0120848\pi\)
\(770\) 0 0
\(771\) 2634.42 2439.60i 0.123056 0.113956i
\(772\) 0 0
\(773\) 6005.83 0.279450 0.139725 0.990190i \(-0.455378\pi\)
0.139725 + 0.990190i \(0.455378\pi\)
\(774\) 0 0
\(775\) 8522.56 0.395018
\(776\) 0 0
\(777\) −4463.82 + 4133.71i −0.206099 + 0.190857i
\(778\) 0 0
\(779\) −19371.3 −0.890949
\(780\) 0 0
\(781\) −30105.2 −1.37932
\(782\) 0 0
\(783\) −1694.42 2137.55i −0.0773352 0.0975604i
\(784\) 0 0
\(785\) −6491.10 −0.295130
\(786\) 0 0
\(787\) 4785.90 0.216771 0.108386 0.994109i \(-0.465432\pi\)
0.108386 + 0.994109i \(0.465432\pi\)
\(788\) 0 0
\(789\) 17510.3 + 18908.7i 0.790094 + 0.853189i
\(790\) 0 0
\(791\) 12830.7i 0.576749i
\(792\) 0 0
\(793\) 30192.8 13305.3i 1.35205 0.595818i
\(794\) 0 0
\(795\) 10707.2 9915.38i 0.477667 0.442343i
\(796\) 0 0
\(797\) 37086.1i 1.64825i 0.566408 + 0.824125i \(0.308333\pi\)
−0.566408 + 0.824125i \(0.691667\pi\)
\(798\) 0 0
\(799\) −1852.49 −0.0820229
\(800\) 0 0
\(801\) −1838.71 + 23908.9i −0.0811082 + 1.05466i
\(802\) 0 0
\(803\) 25915.7 1.13891
\(804\) 0 0
\(805\) 19514.9 0.854424
\(806\) 0 0
\(807\) 26323.9 24377.2i 1.14826 1.06334i
\(808\) 0 0
\(809\) 16614.0i 0.722022i 0.932562 + 0.361011i \(0.117568\pi\)
−0.932562 + 0.361011i \(0.882432\pi\)
\(810\) 0 0
\(811\) −8890.17 −0.384927 −0.192464 0.981304i \(-0.561648\pi\)
−0.192464 + 0.981304i \(0.561648\pi\)
\(812\) 0 0
\(813\) 12849.6 + 13875.7i 0.554310 + 0.598576i
\(814\) 0 0
\(815\) −35498.3 −1.52571
\(816\) 0 0
\(817\) 18932.1i 0.810710i
\(818\) 0 0
\(819\) 7088.90 + 20147.7i 0.302450 + 0.859605i
\(820\) 0 0
\(821\) −5346.72 −0.227286 −0.113643 0.993522i \(-0.536252\pi\)
−0.113643 + 0.993522i \(0.536252\pi\)
\(822\) 0 0
\(823\) 702.708i 0.0297629i 0.999889 + 0.0148815i \(0.00473709\pi\)
−0.999889 + 0.0148815i \(0.995263\pi\)
\(824\) 0 0
\(825\) −6377.77 + 5906.12i −0.269146 + 0.249242i
\(826\) 0 0
\(827\) 7134.36i 0.299983i 0.988687 + 0.149991i \(0.0479246\pi\)
−0.988687 + 0.149991i \(0.952075\pi\)
\(828\) 0 0
\(829\) −6453.83 −0.270387 −0.135193 0.990819i \(-0.543166\pi\)
−0.135193 + 0.990819i \(0.543166\pi\)
\(830\) 0 0
\(831\) −13863.1 14970.1i −0.578706 0.624920i
\(832\) 0 0
\(833\) 236.638i 0.00984275i
\(834\) 0 0
\(835\) 2826.09i 0.117127i
\(836\) 0 0
\(837\) −24132.4 + 19129.5i −0.996579 + 0.789978i
\(838\) 0 0
\(839\) 21446.2i 0.882486i 0.897388 + 0.441243i \(0.145462\pi\)
−0.897388 + 0.441243i \(0.854538\pi\)
\(840\) 0 0
\(841\) 24011.0 0.984501
\(842\) 0 0
\(843\) −23790.8 25690.7i −0.972005 1.04963i
\(844\) 0 0
\(845\) −13761.6 + 15051.8i −0.560252 + 0.612778i
\(846\) 0 0
\(847\) 8864.56 0.359610
\(848\) 0 0
\(849\) −6579.97 + 6093.37i −0.265988 + 0.246318i
\(850\) 0 0
\(851\) 8641.73i 0.348102i
\(852\) 0 0
\(853\) 30530.3i 1.22548i −0.790283 0.612742i \(-0.790066\pi\)
0.790283 0.612742i \(-0.209934\pi\)
\(854\) 0 0
\(855\) 1474.64 19174.9i 0.0589844 0.766980i
\(856\) 0 0
\(857\) 37294.0i 1.48651i 0.669008 + 0.743256i \(0.266719\pi\)
−0.669008 + 0.743256i \(0.733281\pi\)
\(858\) 0 0
\(859\) 35599.1i 1.41400i 0.707213 + 0.707000i \(0.249952\pi\)
−0.707213 + 0.707000i \(0.750048\pi\)
\(860\) 0 0
\(861\) −15042.7 16244.0i −0.595418 0.642966i
\(862\) 0 0
\(863\) 8099.09i 0.319463i −0.987161 0.159731i \(-0.948937\pi\)
0.987161 0.159731i \(-0.0510628\pi\)
\(864\) 0 0
\(865\) 4898.50i 0.192548i
\(866\) 0 0
\(867\) −17287.2 18667.7i −0.677168 0.731245i
\(868\) 0 0
\(869\) 7873.75 0.307363
\(870\) 0 0
\(871\) −36002.4 + 15865.4i −1.40057 + 0.617197i
\(872\) 0 0
\(873\) −23551.9 1811.25i −0.913069 0.0702194i
\(874\) 0 0
\(875\) −25666.2 −0.991628
\(876\) 0 0
\(877\) 10329.6i 0.397725i −0.980027 0.198863i \(-0.936275\pi\)
0.980027 0.198863i \(-0.0637248\pi\)
\(878\) 0 0
\(879\) 28537.8 + 30816.7i 1.09506 + 1.18251i
\(880\) 0 0
\(881\) 41904.8i 1.60251i −0.598325 0.801253i \(-0.704167\pi\)
0.598325 0.801253i \(-0.295833\pi\)
\(882\) 0 0
\(883\) 25236.1i 0.961793i 0.876777 + 0.480896i \(0.159689\pi\)
−0.876777 + 0.480896i \(0.840311\pi\)
\(884\) 0 0
\(885\) 14949.6 13844.1i 0.567825 0.525834i
\(886\) 0 0
\(887\) 44523.9 1.68542 0.842709 0.538370i \(-0.180960\pi\)
0.842709 + 0.538370i \(0.180960\pi\)
\(888\) 0 0
\(889\) 7380.79i 0.278452i
\(890\) 0 0
\(891\) 4802.51 31039.1i 0.180572 1.16706i
\(892\) 0 0
\(893\) 34943.5i 1.30945i
\(894\) 0 0
\(895\) −19897.1 −0.743114
\(896\) 0 0
\(897\) 27839.5 + 12057.0i 1.03627 + 0.448797i
\(898\) 0 0
\(899\) 4267.51i 0.158320i
\(900\) 0 0
\(901\) 1230.66 0.0455041
\(902\) 0 0
\(903\) 15875.7 14701.6i 0.585061 0.541794i
\(904\) 0 0
\(905\) −17267.5 −0.634245
\(906\) 0 0
\(907\) 43646.4i 1.59786i 0.601426 + 0.798928i \(0.294599\pi\)
−0.601426 + 0.798928i \(0.705401\pi\)
\(908\) 0 0
\(909\) 51884.2 + 3990.14i 1.89317 + 0.145594i
\(910\) 0 0
\(911\) −27333.6 −0.994076 −0.497038 0.867729i \(-0.665579\pi\)
−0.497038 + 0.867729i \(0.665579\pi\)
\(912\) 0 0
\(913\) −2849.65 −0.103297
\(914\) 0 0
\(915\) −23070.3 24912.7i −0.833532 0.900095i
\(916\) 0 0
\(917\) −32770.0 −1.18011
\(918\) 0 0
\(919\) 8688.66i 0.311874i −0.987767 0.155937i \(-0.950160\pi\)
0.987767 0.155937i \(-0.0498397\pi\)
\(920\) 0 0
\(921\) −10469.4 11305.5i −0.374569 0.404482i
\(922\) 0 0
\(923\) −13207.5 29970.9i −0.470996 1.06880i
\(924\) 0 0
\(925\) 2693.69i 0.0957492i
\(926\) 0 0
\(927\) 16526.6 + 1270.97i 0.585550 + 0.0450316i
\(928\) 0 0
\(929\) −29884.3 −1.05541 −0.527703 0.849429i \(-0.676946\pi\)
−0.527703 + 0.849429i \(0.676946\pi\)
\(930\) 0 0
\(931\) −4463.70 −0.157134
\(932\) 0 0
\(933\) 18878.5 + 20386.0i 0.662436 + 0.715337i
\(934\) 0 0
\(935\) 1626.89 0.0569037
\(936\) 0 0
\(937\) −3468.12 −0.120916 −0.0604581 0.998171i \(-0.519256\pi\)
−0.0604581 + 0.998171i \(0.519256\pi\)
\(938\) 0 0
\(939\) −4619.86 4988.79i −0.160557 0.173379i
\(940\) 0 0
\(941\) 47466.8 1.64439 0.822196 0.569204i \(-0.192749\pi\)
0.822196 + 0.569204i \(0.192749\pi\)
\(942\) 0 0
\(943\) −31447.5 −1.08597
\(944\) 0 0
\(945\) 17224.4 13653.6i 0.592921 0.470003i
\(946\) 0 0
\(947\) 16570.8i 0.568615i −0.958733 0.284307i \(-0.908236\pi\)
0.958733 0.284307i \(-0.0917636\pi\)
\(948\) 0 0
\(949\) 11369.5 + 25800.2i 0.388904 + 0.882517i
\(950\) 0 0
\(951\) 31360.6 + 33865.0i 1.06933 + 1.15473i
\(952\) 0 0
\(953\) 2230.85i 0.0758284i −0.999281 0.0379142i \(-0.987929\pi\)
0.999281 0.0379142i \(-0.0120714\pi\)
\(954\) 0 0
\(955\) −2236.10 −0.0757681
\(956\) 0 0
\(957\) −2957.38 3193.55i −0.0998940 0.107871i
\(958\) 0 0
\(959\) −1548.85 −0.0521532
\(960\) 0 0
\(961\) 18388.1 0.617235
\(962\) 0 0
\(963\) 423.621 5508.39i 0.0141755 0.184326i
\(964\) 0 0
\(965\) 40891.0i 1.36407i
\(966\) 0 0
\(967\) 1058.32 0.0351946 0.0175973 0.999845i \(-0.494398\pi\)
0.0175973 + 0.999845i \(0.494398\pi\)
\(968\) 0 0
\(969\) 1189.96 1101.96i 0.0394499 0.0365325i
\(970\) 0 0
\(971\) −50203.6 −1.65923 −0.829614 0.558337i \(-0.811440\pi\)
−0.829614 + 0.558337i \(0.811440\pi\)
\(972\) 0 0
\(973\) 40413.8i 1.33156i
\(974\) 0 0
\(975\) −8677.78 3758.25i −0.285037 0.123446i
\(976\) 0 0
\(977\) 1194.58 0.0391177 0.0195589 0.999809i \(-0.493774\pi\)
0.0195589 + 0.999809i \(0.493774\pi\)
\(978\) 0 0
\(979\) 38264.4i 1.24917i
\(980\) 0 0
\(981\) 44984.8 + 3459.54i 1.46407 + 0.112594i
\(982\) 0 0
\(983\) 48036.1i 1.55861i −0.626645 0.779305i \(-0.715573\pi\)
0.626645 0.779305i \(-0.284427\pi\)
\(984\) 0 0
\(985\) −7842.42 −0.253686
\(986\) 0 0
\(987\) −29302.2 + 27135.2i −0.944983 + 0.875099i
\(988\) 0 0
\(989\) 30734.5i 0.988170i
\(990\) 0 0
\(991\) 37626.2i 1.20609i −0.797707 0.603046i \(-0.793954\pi\)
0.797707 0.603046i \(-0.206046\pi\)
\(992\) 0 0
\(993\) 405.190 + 437.547i 0.0129489 + 0.0139830i
\(994\) 0 0
\(995\) 2447.16i 0.0779699i
\(996\) 0 0
\(997\) 10770.7 0.342139 0.171070 0.985259i \(-0.445278\pi\)
0.171070 + 0.985259i \(0.445278\pi\)
\(998\) 0 0
\(999\) 6046.18 + 7627.42i 0.191484 + 0.241563i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.n.d.623.13 56
3.2 odd 2 inner 624.4.n.d.623.42 yes 56
4.3 odd 2 inner 624.4.n.d.623.43 yes 56
12.11 even 2 inner 624.4.n.d.623.16 yes 56
13.12 even 2 inner 624.4.n.d.623.14 yes 56
39.38 odd 2 inner 624.4.n.d.623.41 yes 56
52.51 odd 2 inner 624.4.n.d.623.44 yes 56
156.155 even 2 inner 624.4.n.d.623.15 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.n.d.623.13 56 1.1 even 1 trivial
624.4.n.d.623.14 yes 56 13.12 even 2 inner
624.4.n.d.623.15 yes 56 156.155 even 2 inner
624.4.n.d.623.16 yes 56 12.11 even 2 inner
624.4.n.d.623.41 yes 56 39.38 odd 2 inner
624.4.n.d.623.42 yes 56 3.2 odd 2 inner
624.4.n.d.623.43 yes 56 4.3 odd 2 inner
624.4.n.d.623.44 yes 56 52.51 odd 2 inner