Properties

Label 6223.2.a.s.1.33
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $1$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [54,-14,0,46,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(1\)
Dimension: \(54\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.33
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.117634 q^{2} -1.63542 q^{3} -1.98616 q^{4} -2.28766 q^{5} -0.192381 q^{6} -0.468908 q^{8} -0.325386 q^{9} -0.269106 q^{10} -3.49315 q^{11} +3.24822 q^{12} +0.309784 q^{13} +3.74129 q^{15} +3.91717 q^{16} +1.81047 q^{17} -0.0382764 q^{18} -7.89879 q^{19} +4.54366 q^{20} -0.410913 q^{22} -2.28467 q^{23} +0.766864 q^{24} +0.233383 q^{25} +0.0364411 q^{26} +5.43842 q^{27} +5.11516 q^{29} +0.440103 q^{30} +6.98025 q^{31} +1.39861 q^{32} +5.71278 q^{33} +0.212973 q^{34} +0.646269 q^{36} -8.44681 q^{37} -0.929166 q^{38} -0.506628 q^{39} +1.07270 q^{40} +7.91169 q^{41} -1.00193 q^{43} +6.93796 q^{44} +0.744372 q^{45} -0.268754 q^{46} -7.30561 q^{47} -6.40623 q^{48} +0.0274538 q^{50} -2.96089 q^{51} -0.615281 q^{52} +4.42705 q^{53} +0.639743 q^{54} +7.99113 q^{55} +12.9179 q^{57} +0.601716 q^{58} +13.3546 q^{59} -7.43082 q^{60} +3.90611 q^{61} +0.821115 q^{62} -7.66981 q^{64} -0.708680 q^{65} +0.672017 q^{66} +6.28582 q^{67} -3.59590 q^{68} +3.73640 q^{69} -2.05298 q^{71} +0.152576 q^{72} -1.56116 q^{73} -0.993632 q^{74} -0.381681 q^{75} +15.6883 q^{76} -0.0595967 q^{78} +10.5077 q^{79} -8.96114 q^{80} -7.91797 q^{81} +0.930683 q^{82} +3.56441 q^{83} -4.14175 q^{85} -0.117861 q^{86} -8.36545 q^{87} +1.63796 q^{88} +3.06147 q^{89} +0.0875634 q^{90} +4.53772 q^{92} -11.4157 q^{93} -0.859387 q^{94} +18.0697 q^{95} -2.28732 q^{96} -11.7154 q^{97} +1.13662 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 14 q^{2} + 46 q^{4} - 42 q^{8} + 14 q^{9} - 20 q^{11} - 16 q^{15} + 38 q^{16} - 42 q^{18} - 28 q^{22} - 64 q^{23} - 10 q^{25} - 44 q^{29} - 12 q^{30} - 78 q^{32} - 38 q^{36} - 32 q^{37} - 40 q^{39}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.117634 0.0831798 0.0415899 0.999135i \(-0.486758\pi\)
0.0415899 + 0.999135i \(0.486758\pi\)
\(3\) −1.63542 −0.944213 −0.472106 0.881542i \(-0.656506\pi\)
−0.472106 + 0.881542i \(0.656506\pi\)
\(4\) −1.98616 −0.993081
\(5\) −2.28766 −1.02307 −0.511536 0.859262i \(-0.670923\pi\)
−0.511536 + 0.859262i \(0.670923\pi\)
\(6\) −0.192381 −0.0785394
\(7\) 0 0
\(8\) −0.468908 −0.165784
\(9\) −0.325386 −0.108462
\(10\) −0.269106 −0.0850989
\(11\) −3.49315 −1.05322 −0.526612 0.850106i \(-0.676538\pi\)
−0.526612 + 0.850106i \(0.676538\pi\)
\(12\) 3.24822 0.937680
\(13\) 0.309784 0.0859186 0.0429593 0.999077i \(-0.486321\pi\)
0.0429593 + 0.999077i \(0.486321\pi\)
\(14\) 0 0
\(15\) 3.74129 0.965998
\(16\) 3.91717 0.979291
\(17\) 1.81047 0.439105 0.219552 0.975601i \(-0.429540\pi\)
0.219552 + 0.975601i \(0.429540\pi\)
\(18\) −0.0382764 −0.00902184
\(19\) −7.89879 −1.81211 −0.906054 0.423162i \(-0.860920\pi\)
−0.906054 + 0.423162i \(0.860920\pi\)
\(20\) 4.54366 1.01599
\(21\) 0 0
\(22\) −0.410913 −0.0876069
\(23\) −2.28467 −0.476386 −0.238193 0.971218i \(-0.576555\pi\)
−0.238193 + 0.971218i \(0.576555\pi\)
\(24\) 0.766864 0.156535
\(25\) 0.233383 0.0466767
\(26\) 0.0364411 0.00714669
\(27\) 5.43842 1.04662
\(28\) 0 0
\(29\) 5.11516 0.949861 0.474930 0.880023i \(-0.342473\pi\)
0.474930 + 0.880023i \(0.342473\pi\)
\(30\) 0.440103 0.0803515
\(31\) 6.98025 1.25369 0.626845 0.779144i \(-0.284346\pi\)
0.626845 + 0.779144i \(0.284346\pi\)
\(32\) 1.39861 0.247241
\(33\) 5.71278 0.994467
\(34\) 0.212973 0.0365246
\(35\) 0 0
\(36\) 0.646269 0.107712
\(37\) −8.44681 −1.38865 −0.694324 0.719663i \(-0.744296\pi\)
−0.694324 + 0.719663i \(0.744296\pi\)
\(38\) −0.929166 −0.150731
\(39\) −0.506628 −0.0811254
\(40\) 1.07270 0.169609
\(41\) 7.91169 1.23560 0.617799 0.786336i \(-0.288024\pi\)
0.617799 + 0.786336i \(0.288024\pi\)
\(42\) 0 0
\(43\) −1.00193 −0.152793 −0.0763967 0.997078i \(-0.524342\pi\)
−0.0763967 + 0.997078i \(0.524342\pi\)
\(44\) 6.93796 1.04594
\(45\) 0.744372 0.110964
\(46\) −0.268754 −0.0396257
\(47\) −7.30561 −1.06563 −0.532816 0.846231i \(-0.678866\pi\)
−0.532816 + 0.846231i \(0.678866\pi\)
\(48\) −6.40623 −0.924659
\(49\) 0 0
\(50\) 0.0274538 0.00388255
\(51\) −2.96089 −0.414608
\(52\) −0.615281 −0.0853241
\(53\) 4.42705 0.608102 0.304051 0.952656i \(-0.401661\pi\)
0.304051 + 0.952656i \(0.401661\pi\)
\(54\) 0.639743 0.0870579
\(55\) 7.99113 1.07752
\(56\) 0 0
\(57\) 12.9179 1.71102
\(58\) 0.601716 0.0790092
\(59\) 13.3546 1.73862 0.869308 0.494272i \(-0.164565\pi\)
0.869308 + 0.494272i \(0.164565\pi\)
\(60\) −7.43082 −0.959314
\(61\) 3.90611 0.500126 0.250063 0.968230i \(-0.419549\pi\)
0.250063 + 0.968230i \(0.419549\pi\)
\(62\) 0.821115 0.104282
\(63\) 0 0
\(64\) −7.66981 −0.958726
\(65\) −0.708680 −0.0879009
\(66\) 0.672017 0.0827195
\(67\) 6.28582 0.767935 0.383967 0.923347i \(-0.374558\pi\)
0.383967 + 0.923347i \(0.374558\pi\)
\(68\) −3.59590 −0.436066
\(69\) 3.73640 0.449810
\(70\) 0 0
\(71\) −2.05298 −0.243644 −0.121822 0.992552i \(-0.538874\pi\)
−0.121822 + 0.992552i \(0.538874\pi\)
\(72\) 0.152576 0.0179813
\(73\) −1.56116 −0.182720 −0.0913598 0.995818i \(-0.529121\pi\)
−0.0913598 + 0.995818i \(0.529121\pi\)
\(74\) −0.993632 −0.115507
\(75\) −0.381681 −0.0440727
\(76\) 15.6883 1.79957
\(77\) 0 0
\(78\) −0.0595967 −0.00674799
\(79\) 10.5077 1.18221 0.591106 0.806594i \(-0.298692\pi\)
0.591106 + 0.806594i \(0.298692\pi\)
\(80\) −8.96114 −1.00189
\(81\) −7.91797 −0.879774
\(82\) 0.930683 0.102777
\(83\) 3.56441 0.391245 0.195622 0.980679i \(-0.437327\pi\)
0.195622 + 0.980679i \(0.437327\pi\)
\(84\) 0 0
\(85\) −4.14175 −0.449236
\(86\) −0.117861 −0.0127093
\(87\) −8.36545 −0.896871
\(88\) 1.63796 0.174608
\(89\) 3.06147 0.324515 0.162257 0.986748i \(-0.448123\pi\)
0.162257 + 0.986748i \(0.448123\pi\)
\(90\) 0.0875634 0.00922999
\(91\) 0 0
\(92\) 4.53772 0.473090
\(93\) −11.4157 −1.18375
\(94\) −0.859387 −0.0886390
\(95\) 18.0697 1.85392
\(96\) −2.28732 −0.233448
\(97\) −11.7154 −1.18951 −0.594757 0.803905i \(-0.702752\pi\)
−0.594757 + 0.803905i \(0.702752\pi\)
\(98\) 0 0
\(99\) 1.13662 0.114235
\(100\) −0.463537 −0.0463537
\(101\) 5.08551 0.506027 0.253014 0.967463i \(-0.418578\pi\)
0.253014 + 0.967463i \(0.418578\pi\)
\(102\) −0.348302 −0.0344870
\(103\) 15.5195 1.52918 0.764591 0.644516i \(-0.222941\pi\)
0.764591 + 0.644516i \(0.222941\pi\)
\(104\) −0.145260 −0.0142439
\(105\) 0 0
\(106\) 0.520771 0.0505818
\(107\) −6.83685 −0.660943 −0.330472 0.943816i \(-0.607208\pi\)
−0.330472 + 0.943816i \(0.607208\pi\)
\(108\) −10.8016 −1.03938
\(109\) −3.46724 −0.332101 −0.166051 0.986117i \(-0.553101\pi\)
−0.166051 + 0.986117i \(0.553101\pi\)
\(110\) 0.940028 0.0896281
\(111\) 13.8141 1.31118
\(112\) 0 0
\(113\) −0.196498 −0.0184850 −0.00924248 0.999957i \(-0.502942\pi\)
−0.00924248 + 0.999957i \(0.502942\pi\)
\(114\) 1.51958 0.142322
\(115\) 5.22654 0.487377
\(116\) −10.1595 −0.943289
\(117\) −0.100799 −0.00931889
\(118\) 1.57095 0.144618
\(119\) 0 0
\(120\) −1.75432 −0.160147
\(121\) 1.20207 0.109279
\(122\) 0.459491 0.0416004
\(123\) −12.9390 −1.16667
\(124\) −13.8639 −1.24502
\(125\) 10.9044 0.975319
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −3.69944 −0.326988
\(129\) 1.63859 0.144270
\(130\) −0.0833648 −0.00731158
\(131\) 9.85159 0.860737 0.430369 0.902653i \(-0.358384\pi\)
0.430369 + 0.902653i \(0.358384\pi\)
\(132\) −11.3465 −0.987586
\(133\) 0 0
\(134\) 0.739425 0.0638766
\(135\) −12.4412 −1.07077
\(136\) −0.848946 −0.0727965
\(137\) −11.5555 −0.987250 −0.493625 0.869675i \(-0.664328\pi\)
−0.493625 + 0.869675i \(0.664328\pi\)
\(138\) 0.439528 0.0374151
\(139\) 8.57613 0.727418 0.363709 0.931513i \(-0.381510\pi\)
0.363709 + 0.931513i \(0.381510\pi\)
\(140\) 0 0
\(141\) 11.9478 1.00618
\(142\) −0.241501 −0.0202663
\(143\) −1.08212 −0.0904914
\(144\) −1.27459 −0.106216
\(145\) −11.7017 −0.971776
\(146\) −0.183645 −0.0151986
\(147\) 0 0
\(148\) 16.7767 1.37904
\(149\) 11.2269 0.919747 0.459873 0.887984i \(-0.347895\pi\)
0.459873 + 0.887984i \(0.347895\pi\)
\(150\) −0.0448986 −0.00366596
\(151\) −18.4540 −1.50176 −0.750882 0.660437i \(-0.770371\pi\)
−0.750882 + 0.660437i \(0.770371\pi\)
\(152\) 3.70381 0.300419
\(153\) −0.589103 −0.0476261
\(154\) 0 0
\(155\) −15.9684 −1.28262
\(156\) 1.00625 0.0805641
\(157\) −10.5588 −0.842681 −0.421341 0.906902i \(-0.638440\pi\)
−0.421341 + 0.906902i \(0.638440\pi\)
\(158\) 1.23606 0.0983360
\(159\) −7.24010 −0.574178
\(160\) −3.19954 −0.252946
\(161\) 0 0
\(162\) −0.931422 −0.0731794
\(163\) 21.9787 1.72150 0.860752 0.509024i \(-0.169994\pi\)
0.860752 + 0.509024i \(0.169994\pi\)
\(164\) −15.7139 −1.22705
\(165\) −13.0689 −1.01741
\(166\) 0.419295 0.0325436
\(167\) 4.43098 0.342880 0.171440 0.985195i \(-0.445158\pi\)
0.171440 + 0.985195i \(0.445158\pi\)
\(168\) 0 0
\(169\) −12.9040 −0.992618
\(170\) −0.487210 −0.0373673
\(171\) 2.57016 0.196545
\(172\) 1.99000 0.151736
\(173\) 19.6340 1.49274 0.746372 0.665529i \(-0.231794\pi\)
0.746372 + 0.665529i \(0.231794\pi\)
\(174\) −0.984061 −0.0746015
\(175\) 0 0
\(176\) −13.6832 −1.03141
\(177\) −21.8404 −1.64162
\(178\) 0.360132 0.0269931
\(179\) −2.80666 −0.209779 −0.104890 0.994484i \(-0.533449\pi\)
−0.104890 + 0.994484i \(0.533449\pi\)
\(180\) −1.47844 −0.110197
\(181\) −0.404035 −0.0300317 −0.0150158 0.999887i \(-0.504780\pi\)
−0.0150158 + 0.999887i \(0.504780\pi\)
\(182\) 0 0
\(183\) −6.38815 −0.472225
\(184\) 1.07130 0.0789772
\(185\) 19.3234 1.42069
\(186\) −1.34287 −0.0984641
\(187\) −6.32425 −0.462475
\(188\) 14.5101 1.05826
\(189\) 0 0
\(190\) 2.12562 0.154208
\(191\) −16.2081 −1.17278 −0.586388 0.810030i \(-0.699451\pi\)
−0.586388 + 0.810030i \(0.699451\pi\)
\(192\) 12.5434 0.905241
\(193\) −0.371031 −0.0267074 −0.0133537 0.999911i \(-0.504251\pi\)
−0.0133537 + 0.999911i \(0.504251\pi\)
\(194\) −1.37812 −0.0989436
\(195\) 1.15899 0.0829972
\(196\) 0 0
\(197\) −16.5695 −1.18053 −0.590263 0.807211i \(-0.700976\pi\)
−0.590263 + 0.807211i \(0.700976\pi\)
\(198\) 0.133705 0.00950201
\(199\) 0.493767 0.0350022 0.0175011 0.999847i \(-0.494429\pi\)
0.0175011 + 0.999847i \(0.494429\pi\)
\(200\) −0.109435 −0.00773825
\(201\) −10.2800 −0.725094
\(202\) 0.598229 0.0420912
\(203\) 0 0
\(204\) 5.88082 0.411740
\(205\) −18.0992 −1.26411
\(206\) 1.82562 0.127197
\(207\) 0.743398 0.0516698
\(208\) 1.21347 0.0841393
\(209\) 27.5916 1.90855
\(210\) 0 0
\(211\) 9.83931 0.677366 0.338683 0.940901i \(-0.390019\pi\)
0.338683 + 0.940901i \(0.390019\pi\)
\(212\) −8.79283 −0.603894
\(213\) 3.35750 0.230052
\(214\) −0.804246 −0.0549771
\(215\) 2.29208 0.156319
\(216\) −2.55012 −0.173514
\(217\) 0 0
\(218\) −0.407865 −0.0276241
\(219\) 2.55315 0.172526
\(220\) −15.8717 −1.07007
\(221\) 0.560856 0.0377272
\(222\) 1.62501 0.109064
\(223\) 14.9203 0.999138 0.499569 0.866274i \(-0.333492\pi\)
0.499569 + 0.866274i \(0.333492\pi\)
\(224\) 0 0
\(225\) −0.0759396 −0.00506264
\(226\) −0.0231148 −0.00153758
\(227\) −19.9131 −1.32168 −0.660840 0.750527i \(-0.729800\pi\)
−0.660840 + 0.750527i \(0.729800\pi\)
\(228\) −25.6570 −1.69918
\(229\) 7.44013 0.491658 0.245829 0.969313i \(-0.420940\pi\)
0.245829 + 0.969313i \(0.420940\pi\)
\(230\) 0.614818 0.0405399
\(231\) 0 0
\(232\) −2.39854 −0.157472
\(233\) −6.57658 −0.430846 −0.215423 0.976521i \(-0.569113\pi\)
−0.215423 + 0.976521i \(0.569113\pi\)
\(234\) −0.0118574 −0.000775143 0
\(235\) 16.7127 1.09022
\(236\) −26.5243 −1.72659
\(237\) −17.1846 −1.11626
\(238\) 0 0
\(239\) −20.3289 −1.31497 −0.657484 0.753469i \(-0.728379\pi\)
−0.657484 + 0.753469i \(0.728379\pi\)
\(240\) 14.6553 0.945993
\(241\) −4.98939 −0.321395 −0.160697 0.987004i \(-0.551374\pi\)
−0.160697 + 0.987004i \(0.551374\pi\)
\(242\) 0.141404 0.00908982
\(243\) −3.36602 −0.215930
\(244\) −7.75817 −0.496666
\(245\) 0 0
\(246\) −1.52206 −0.0970432
\(247\) −2.44692 −0.155694
\(248\) −3.27310 −0.207842
\(249\) −5.82932 −0.369418
\(250\) 1.28273 0.0811268
\(251\) 1.30825 0.0825763 0.0412882 0.999147i \(-0.486854\pi\)
0.0412882 + 0.999147i \(0.486854\pi\)
\(252\) 0 0
\(253\) 7.98068 0.501741
\(254\) −0.117634 −0.00738101
\(255\) 6.77352 0.424174
\(256\) 14.9044 0.931527
\(257\) −23.2218 −1.44853 −0.724267 0.689520i \(-0.757822\pi\)
−0.724267 + 0.689520i \(0.757822\pi\)
\(258\) 0.192753 0.0120003
\(259\) 0 0
\(260\) 1.40755 0.0872927
\(261\) −1.66440 −0.103024
\(262\) 1.15888 0.0715959
\(263\) 15.4914 0.955239 0.477619 0.878567i \(-0.341500\pi\)
0.477619 + 0.878567i \(0.341500\pi\)
\(264\) −2.67877 −0.164867
\(265\) −10.1276 −0.622132
\(266\) 0 0
\(267\) −5.00680 −0.306411
\(268\) −12.4847 −0.762621
\(269\) −21.2075 −1.29304 −0.646521 0.762896i \(-0.723777\pi\)
−0.646521 + 0.762896i \(0.723777\pi\)
\(270\) −1.46351 −0.0890666
\(271\) −14.7960 −0.898791 −0.449395 0.893333i \(-0.648361\pi\)
−0.449395 + 0.893333i \(0.648361\pi\)
\(272\) 7.09193 0.430011
\(273\) 0 0
\(274\) −1.35932 −0.0821192
\(275\) −0.815242 −0.0491610
\(276\) −7.42110 −0.446698
\(277\) 7.66953 0.460818 0.230409 0.973094i \(-0.425994\pi\)
0.230409 + 0.973094i \(0.425994\pi\)
\(278\) 1.00884 0.0605064
\(279\) −2.27128 −0.135978
\(280\) 0 0
\(281\) −3.63180 −0.216655 −0.108327 0.994115i \(-0.534549\pi\)
−0.108327 + 0.994115i \(0.534549\pi\)
\(282\) 1.40546 0.0836941
\(283\) 19.0692 1.13354 0.566772 0.823874i \(-0.308192\pi\)
0.566772 + 0.823874i \(0.308192\pi\)
\(284\) 4.07756 0.241959
\(285\) −29.5517 −1.75049
\(286\) −0.127294 −0.00752706
\(287\) 0 0
\(288\) −0.455087 −0.0268163
\(289\) −13.7222 −0.807187
\(290\) −1.37652 −0.0808321
\(291\) 19.1596 1.12316
\(292\) 3.10071 0.181455
\(293\) −9.54674 −0.557727 −0.278863 0.960331i \(-0.589958\pi\)
−0.278863 + 0.960331i \(0.589958\pi\)
\(294\) 0 0
\(295\) −30.5507 −1.77873
\(296\) 3.96078 0.230216
\(297\) −18.9972 −1.10233
\(298\) 1.32067 0.0765043
\(299\) −0.707753 −0.0409304
\(300\) 0.758080 0.0437678
\(301\) 0 0
\(302\) −2.17081 −0.124916
\(303\) −8.31697 −0.477797
\(304\) −30.9409 −1.77458
\(305\) −8.93584 −0.511665
\(306\) −0.0692985 −0.00396153
\(307\) 30.2979 1.72919 0.864595 0.502469i \(-0.167575\pi\)
0.864595 + 0.502469i \(0.167575\pi\)
\(308\) 0 0
\(309\) −25.3810 −1.44387
\(310\) −1.87843 −0.106688
\(311\) −31.3207 −1.77604 −0.888018 0.459808i \(-0.847918\pi\)
−0.888018 + 0.459808i \(0.847918\pi\)
\(312\) 0.237562 0.0134493
\(313\) −31.5568 −1.78369 −0.891847 0.452336i \(-0.850591\pi\)
−0.891847 + 0.452336i \(0.850591\pi\)
\(314\) −1.24207 −0.0700940
\(315\) 0 0
\(316\) −20.8700 −1.17403
\(317\) 11.8895 0.667784 0.333892 0.942611i \(-0.391638\pi\)
0.333892 + 0.942611i \(0.391638\pi\)
\(318\) −0.851682 −0.0477599
\(319\) −17.8680 −1.00042
\(320\) 17.5459 0.980846
\(321\) 11.1812 0.624071
\(322\) 0 0
\(323\) −14.3006 −0.795705
\(324\) 15.7264 0.873687
\(325\) 0.0722984 0.00401039
\(326\) 2.58544 0.143194
\(327\) 5.67041 0.313574
\(328\) −3.70985 −0.204842
\(329\) 0 0
\(330\) −1.53734 −0.0846280
\(331\) 30.0225 1.65019 0.825093 0.564998i \(-0.191123\pi\)
0.825093 + 0.564998i \(0.191123\pi\)
\(332\) −7.07949 −0.388538
\(333\) 2.74847 0.150615
\(334\) 0.521234 0.0285207
\(335\) −14.3798 −0.785653
\(336\) 0 0
\(337\) −27.8584 −1.51754 −0.758772 0.651356i \(-0.774201\pi\)
−0.758772 + 0.651356i \(0.774201\pi\)
\(338\) −1.51795 −0.0825657
\(339\) 0.321358 0.0174537
\(340\) 8.22618 0.446127
\(341\) −24.3830 −1.32042
\(342\) 0.302338 0.0163485
\(343\) 0 0
\(344\) 0.469815 0.0253307
\(345\) −8.54761 −0.460188
\(346\) 2.30962 0.124166
\(347\) −23.1186 −1.24107 −0.620535 0.784179i \(-0.713084\pi\)
−0.620535 + 0.784179i \(0.713084\pi\)
\(348\) 16.6151 0.890665
\(349\) 2.86945 0.153598 0.0767991 0.997047i \(-0.475530\pi\)
0.0767991 + 0.997047i \(0.475530\pi\)
\(350\) 0 0
\(351\) 1.68473 0.0899244
\(352\) −4.88554 −0.260400
\(353\) −3.23557 −0.172212 −0.0861059 0.996286i \(-0.527442\pi\)
−0.0861059 + 0.996286i \(0.527442\pi\)
\(354\) −2.56917 −0.136550
\(355\) 4.69653 0.249266
\(356\) −6.08057 −0.322270
\(357\) 0 0
\(358\) −0.330158 −0.0174494
\(359\) 8.22817 0.434266 0.217133 0.976142i \(-0.430329\pi\)
0.217133 + 0.976142i \(0.430329\pi\)
\(360\) −0.349042 −0.0183961
\(361\) 43.3910 2.28373
\(362\) −0.0475282 −0.00249803
\(363\) −1.96590 −0.103183
\(364\) 0 0
\(365\) 3.57139 0.186935
\(366\) −0.751463 −0.0392796
\(367\) 5.35818 0.279695 0.139847 0.990173i \(-0.455339\pi\)
0.139847 + 0.990173i \(0.455339\pi\)
\(368\) −8.94942 −0.466521
\(369\) −2.57435 −0.134015
\(370\) 2.27309 0.118172
\(371\) 0 0
\(372\) 22.6734 1.17556
\(373\) 6.99935 0.362413 0.181206 0.983445i \(-0.442000\pi\)
0.181206 + 0.983445i \(0.442000\pi\)
\(374\) −0.743947 −0.0384686
\(375\) −17.8333 −0.920908
\(376\) 3.42566 0.176665
\(377\) 1.58459 0.0816107
\(378\) 0 0
\(379\) 34.4246 1.76827 0.884137 0.467227i \(-0.154747\pi\)
0.884137 + 0.467227i \(0.154747\pi\)
\(380\) −35.8895 −1.84109
\(381\) 1.63542 0.0837853
\(382\) −1.90662 −0.0975512
\(383\) 24.4691 1.25031 0.625157 0.780499i \(-0.285035\pi\)
0.625157 + 0.780499i \(0.285035\pi\)
\(384\) 6.05016 0.308746
\(385\) 0 0
\(386\) −0.0436458 −0.00222151
\(387\) 0.326015 0.0165723
\(388\) 23.2686 1.18128
\(389\) −12.6458 −0.641170 −0.320585 0.947220i \(-0.603879\pi\)
−0.320585 + 0.947220i \(0.603879\pi\)
\(390\) 0.136337 0.00690368
\(391\) −4.13633 −0.209183
\(392\) 0 0
\(393\) −16.1115 −0.812719
\(394\) −1.94913 −0.0981959
\(395\) −24.0381 −1.20949
\(396\) −2.25751 −0.113444
\(397\) −5.83699 −0.292950 −0.146475 0.989214i \(-0.546793\pi\)
−0.146475 + 0.989214i \(0.546793\pi\)
\(398\) 0.0580837 0.00291147
\(399\) 0 0
\(400\) 0.914201 0.0457101
\(401\) 5.13604 0.256481 0.128241 0.991743i \(-0.459067\pi\)
0.128241 + 0.991743i \(0.459067\pi\)
\(402\) −1.20927 −0.0603131
\(403\) 2.16237 0.107715
\(404\) −10.1007 −0.502526
\(405\) 18.1136 0.900072
\(406\) 0 0
\(407\) 29.5059 1.46256
\(408\) 1.38839 0.0687354
\(409\) 36.8806 1.82363 0.911815 0.410602i \(-0.134681\pi\)
0.911815 + 0.410602i \(0.134681\pi\)
\(410\) −2.12909 −0.105148
\(411\) 18.8981 0.932174
\(412\) −30.8242 −1.51860
\(413\) 0 0
\(414\) 0.0874489 0.00429788
\(415\) −8.15415 −0.400271
\(416\) 0.433266 0.0212426
\(417\) −14.0256 −0.686837
\(418\) 3.24571 0.158753
\(419\) −30.1959 −1.47517 −0.737584 0.675255i \(-0.764033\pi\)
−0.737584 + 0.675255i \(0.764033\pi\)
\(420\) 0 0
\(421\) −2.43091 −0.118475 −0.0592377 0.998244i \(-0.518867\pi\)
−0.0592377 + 0.998244i \(0.518867\pi\)
\(422\) 1.15744 0.0563431
\(423\) 2.37714 0.115581
\(424\) −2.07588 −0.100814
\(425\) 0.422535 0.0204959
\(426\) 0.394956 0.0191357
\(427\) 0 0
\(428\) 13.5791 0.656370
\(429\) 1.76973 0.0854432
\(430\) 0.269627 0.0130026
\(431\) −40.3288 −1.94257 −0.971286 0.237916i \(-0.923536\pi\)
−0.971286 + 0.237916i \(0.923536\pi\)
\(432\) 21.3032 1.02495
\(433\) 30.2222 1.45239 0.726193 0.687491i \(-0.241288\pi\)
0.726193 + 0.687491i \(0.241288\pi\)
\(434\) 0 0
\(435\) 19.1373 0.917563
\(436\) 6.88649 0.329803
\(437\) 18.0461 0.863263
\(438\) 0.300338 0.0143507
\(439\) 3.99077 0.190469 0.0952345 0.995455i \(-0.469640\pi\)
0.0952345 + 0.995455i \(0.469640\pi\)
\(440\) −3.74710 −0.178636
\(441\) 0 0
\(442\) 0.0659757 0.00313814
\(443\) 7.31386 0.347492 0.173746 0.984791i \(-0.444413\pi\)
0.173746 + 0.984791i \(0.444413\pi\)
\(444\) −27.4371 −1.30211
\(445\) −7.00359 −0.332002
\(446\) 1.75514 0.0831081
\(447\) −18.3608 −0.868437
\(448\) 0 0
\(449\) −32.0626 −1.51313 −0.756563 0.653921i \(-0.773123\pi\)
−0.756563 + 0.653921i \(0.773123\pi\)
\(450\) −0.00893308 −0.000421109 0
\(451\) −27.6367 −1.30136
\(452\) 0.390277 0.0183571
\(453\) 30.1801 1.41798
\(454\) −2.34246 −0.109937
\(455\) 0 0
\(456\) −6.05730 −0.283659
\(457\) 7.32535 0.342665 0.171333 0.985213i \(-0.445193\pi\)
0.171333 + 0.985213i \(0.445193\pi\)
\(458\) 0.875212 0.0408960
\(459\) 9.84612 0.459577
\(460\) −10.3808 −0.484005
\(461\) 0.281945 0.0131315 0.00656574 0.999978i \(-0.497910\pi\)
0.00656574 + 0.999978i \(0.497910\pi\)
\(462\) 0 0
\(463\) −19.1133 −0.888270 −0.444135 0.895960i \(-0.646489\pi\)
−0.444135 + 0.895960i \(0.646489\pi\)
\(464\) 20.0369 0.930190
\(465\) 26.1152 1.21106
\(466\) −0.773629 −0.0358377
\(467\) 33.8343 1.56566 0.782831 0.622234i \(-0.213775\pi\)
0.782831 + 0.622234i \(0.213775\pi\)
\(468\) 0.200204 0.00925442
\(469\) 0 0
\(470\) 1.96598 0.0906841
\(471\) 17.2681 0.795671
\(472\) −6.26206 −0.288235
\(473\) 3.49990 0.160926
\(474\) −2.02149 −0.0928502
\(475\) −1.84345 −0.0845832
\(476\) 0 0
\(477\) −1.44050 −0.0659559
\(478\) −2.39137 −0.109379
\(479\) −18.0017 −0.822519 −0.411259 0.911518i \(-0.634911\pi\)
−0.411259 + 0.911518i \(0.634911\pi\)
\(480\) 5.23260 0.238835
\(481\) −2.61669 −0.119311
\(482\) −0.586922 −0.0267335
\(483\) 0 0
\(484\) −2.38751 −0.108523
\(485\) 26.8008 1.21696
\(486\) −0.395958 −0.0179610
\(487\) 1.40651 0.0637351 0.0318676 0.999492i \(-0.489855\pi\)
0.0318676 + 0.999492i \(0.489855\pi\)
\(488\) −1.83161 −0.0829129
\(489\) −35.9445 −1.62547
\(490\) 0 0
\(491\) −16.3078 −0.735961 −0.367980 0.929834i \(-0.619951\pi\)
−0.367980 + 0.929834i \(0.619951\pi\)
\(492\) 25.6989 1.15860
\(493\) 9.26086 0.417088
\(494\) −0.287841 −0.0129506
\(495\) −2.60020 −0.116870
\(496\) 27.3428 1.22773
\(497\) 0 0
\(498\) −0.685726 −0.0307281
\(499\) 7.88273 0.352879 0.176440 0.984311i \(-0.443542\pi\)
0.176440 + 0.984311i \(0.443542\pi\)
\(500\) −21.6579 −0.968570
\(501\) −7.24654 −0.323751
\(502\) 0.153895 0.00686868
\(503\) −4.73607 −0.211171 −0.105585 0.994410i \(-0.533672\pi\)
−0.105585 + 0.994410i \(0.533672\pi\)
\(504\) 0 0
\(505\) −11.6339 −0.517702
\(506\) 0.938798 0.0417347
\(507\) 21.1036 0.937243
\(508\) 1.98616 0.0881217
\(509\) 34.6521 1.53593 0.767964 0.640493i \(-0.221270\pi\)
0.767964 + 0.640493i \(0.221270\pi\)
\(510\) 0.796796 0.0352827
\(511\) 0 0
\(512\) 9.15216 0.404472
\(513\) −42.9570 −1.89660
\(514\) −2.73167 −0.120489
\(515\) −35.5033 −1.56446
\(516\) −3.25450 −0.143271
\(517\) 25.5195 1.12235
\(518\) 0 0
\(519\) −32.1099 −1.40947
\(520\) 0.332306 0.0145726
\(521\) −31.3197 −1.37214 −0.686071 0.727534i \(-0.740666\pi\)
−0.686071 + 0.727534i \(0.740666\pi\)
\(522\) −0.195790 −0.00856949
\(523\) −25.5072 −1.11535 −0.557677 0.830058i \(-0.688307\pi\)
−0.557677 + 0.830058i \(0.688307\pi\)
\(524\) −19.5669 −0.854782
\(525\) 0 0
\(526\) 1.82231 0.0794565
\(527\) 12.6376 0.550501
\(528\) 22.3779 0.973873
\(529\) −17.7803 −0.773056
\(530\) −1.19135 −0.0517488
\(531\) −4.34538 −0.188574
\(532\) 0 0
\(533\) 2.45091 0.106161
\(534\) −0.588969 −0.0254872
\(535\) 15.6404 0.676193
\(536\) −2.94747 −0.127311
\(537\) 4.59008 0.198076
\(538\) −2.49472 −0.107555
\(539\) 0 0
\(540\) 24.7103 1.06336
\(541\) 7.49876 0.322397 0.161198 0.986922i \(-0.448464\pi\)
0.161198 + 0.986922i \(0.448464\pi\)
\(542\) −1.74051 −0.0747612
\(543\) 0.660769 0.0283563
\(544\) 2.53214 0.108565
\(545\) 7.93186 0.339763
\(546\) 0 0
\(547\) 15.8592 0.678090 0.339045 0.940770i \(-0.389896\pi\)
0.339045 + 0.940770i \(0.389896\pi\)
\(548\) 22.9510 0.980419
\(549\) −1.27099 −0.0542446
\(550\) −0.0959002 −0.00408920
\(551\) −40.4036 −1.72125
\(552\) −1.75203 −0.0745713
\(553\) 0 0
\(554\) 0.902197 0.0383307
\(555\) −31.6020 −1.34143
\(556\) −17.0336 −0.722385
\(557\) −3.30361 −0.139978 −0.0699892 0.997548i \(-0.522296\pi\)
−0.0699892 + 0.997548i \(0.522296\pi\)
\(558\) −0.267179 −0.0113106
\(559\) −0.310383 −0.0131278
\(560\) 0 0
\(561\) 10.3428 0.436675
\(562\) −0.427223 −0.0180213
\(563\) 28.6290 1.20657 0.603285 0.797526i \(-0.293858\pi\)
0.603285 + 0.797526i \(0.293858\pi\)
\(564\) −23.7302 −0.999222
\(565\) 0.449520 0.0189115
\(566\) 2.24318 0.0942880
\(567\) 0 0
\(568\) 0.962661 0.0403923
\(569\) 18.9825 0.795789 0.397894 0.917431i \(-0.369741\pi\)
0.397894 + 0.917431i \(0.369741\pi\)
\(570\) −3.47628 −0.145606
\(571\) −43.6174 −1.82533 −0.912666 0.408707i \(-0.865980\pi\)
−0.912666 + 0.408707i \(0.865980\pi\)
\(572\) 2.14927 0.0898653
\(573\) 26.5071 1.10735
\(574\) 0 0
\(575\) −0.533203 −0.0222361
\(576\) 2.49565 0.103985
\(577\) −3.14395 −0.130884 −0.0654422 0.997856i \(-0.520846\pi\)
−0.0654422 + 0.997856i \(0.520846\pi\)
\(578\) −1.61419 −0.0671416
\(579\) 0.606793 0.0252175
\(580\) 23.2415 0.965052
\(581\) 0 0
\(582\) 2.25382 0.0934238
\(583\) −15.4643 −0.640467
\(584\) 0.732039 0.0302920
\(585\) 0.230594 0.00953390
\(586\) −1.12302 −0.0463916
\(587\) −36.1059 −1.49025 −0.745125 0.666925i \(-0.767610\pi\)
−0.745125 + 0.666925i \(0.767610\pi\)
\(588\) 0 0
\(589\) −55.1356 −2.27182
\(590\) −3.59380 −0.147954
\(591\) 27.0981 1.11467
\(592\) −33.0876 −1.35989
\(593\) −6.83095 −0.280514 −0.140257 0.990115i \(-0.544793\pi\)
−0.140257 + 0.990115i \(0.544793\pi\)
\(594\) −2.23471 −0.0916914
\(595\) 0 0
\(596\) −22.2985 −0.913383
\(597\) −0.807518 −0.0330495
\(598\) −0.0832557 −0.00340458
\(599\) −7.00453 −0.286198 −0.143099 0.989708i \(-0.545707\pi\)
−0.143099 + 0.989708i \(0.545707\pi\)
\(600\) 0.178973 0.00730655
\(601\) −7.51669 −0.306612 −0.153306 0.988179i \(-0.548992\pi\)
−0.153306 + 0.988179i \(0.548992\pi\)
\(602\) 0 0
\(603\) −2.04532 −0.0832917
\(604\) 36.6526 1.49137
\(605\) −2.74993 −0.111800
\(606\) −0.978358 −0.0397431
\(607\) −28.5901 −1.16044 −0.580218 0.814461i \(-0.697033\pi\)
−0.580218 + 0.814461i \(0.697033\pi\)
\(608\) −11.0473 −0.448028
\(609\) 0 0
\(610\) −1.05116 −0.0425602
\(611\) −2.26316 −0.0915576
\(612\) 1.17005 0.0472966
\(613\) 22.6255 0.913834 0.456917 0.889509i \(-0.348954\pi\)
0.456917 + 0.889509i \(0.348954\pi\)
\(614\) 3.56406 0.143834
\(615\) 29.6000 1.19359
\(616\) 0 0
\(617\) 12.5516 0.505310 0.252655 0.967556i \(-0.418696\pi\)
0.252655 + 0.967556i \(0.418696\pi\)
\(618\) −2.98566 −0.120101
\(619\) −0.905356 −0.0363893 −0.0181947 0.999834i \(-0.505792\pi\)
−0.0181947 + 0.999834i \(0.505792\pi\)
\(620\) 31.7159 1.27374
\(621\) −12.4250 −0.498597
\(622\) −3.68438 −0.147730
\(623\) 0 0
\(624\) −1.98455 −0.0794454
\(625\) −26.1124 −1.04450
\(626\) −3.71215 −0.148367
\(627\) −45.1241 −1.80208
\(628\) 20.9714 0.836851
\(629\) −15.2927 −0.609761
\(630\) 0 0
\(631\) 29.6232 1.17928 0.589641 0.807666i \(-0.299269\pi\)
0.589641 + 0.807666i \(0.299269\pi\)
\(632\) −4.92716 −0.195992
\(633\) −16.0914 −0.639578
\(634\) 1.39861 0.0555461
\(635\) 2.28766 0.0907830
\(636\) 14.3800 0.570205
\(637\) 0 0
\(638\) −2.10188 −0.0832143
\(639\) 0.668012 0.0264261
\(640\) 8.46307 0.334532
\(641\) 48.2219 1.90465 0.952326 0.305083i \(-0.0986843\pi\)
0.952326 + 0.305083i \(0.0986843\pi\)
\(642\) 1.31528 0.0519101
\(643\) 22.8599 0.901506 0.450753 0.892649i \(-0.351156\pi\)
0.450753 + 0.892649i \(0.351156\pi\)
\(644\) 0 0
\(645\) −3.74853 −0.147598
\(646\) −1.68223 −0.0661865
\(647\) −19.3916 −0.762363 −0.381181 0.924500i \(-0.624483\pi\)
−0.381181 + 0.924500i \(0.624483\pi\)
\(648\) 3.71280 0.145852
\(649\) −46.6494 −1.83115
\(650\) 0.00850474 0.000333583 0
\(651\) 0 0
\(652\) −43.6533 −1.70959
\(653\) −30.4775 −1.19268 −0.596339 0.802732i \(-0.703379\pi\)
−0.596339 + 0.802732i \(0.703379\pi\)
\(654\) 0.667032 0.0260830
\(655\) −22.5371 −0.880597
\(656\) 30.9914 1.21001
\(657\) 0.507978 0.0198181
\(658\) 0 0
\(659\) 13.5899 0.529387 0.264693 0.964333i \(-0.414729\pi\)
0.264693 + 0.964333i \(0.414729\pi\)
\(660\) 25.9569 1.01037
\(661\) 41.1524 1.60064 0.800321 0.599572i \(-0.204663\pi\)
0.800321 + 0.599572i \(0.204663\pi\)
\(662\) 3.53166 0.137262
\(663\) −0.917237 −0.0356225
\(664\) −1.67138 −0.0648621
\(665\) 0 0
\(666\) 0.323314 0.0125282
\(667\) −11.6864 −0.452500
\(668\) −8.80065 −0.340507
\(669\) −24.4011 −0.943399
\(670\) −1.69155 −0.0653504
\(671\) −13.6446 −0.526744
\(672\) 0 0
\(673\) −28.8349 −1.11150 −0.555752 0.831348i \(-0.687570\pi\)
−0.555752 + 0.831348i \(0.687570\pi\)
\(674\) −3.27710 −0.126229
\(675\) 1.26924 0.0488529
\(676\) 25.6295 0.985750
\(677\) 33.2881 1.27937 0.639683 0.768639i \(-0.279065\pi\)
0.639683 + 0.768639i \(0.279065\pi\)
\(678\) 0.0378026 0.00145180
\(679\) 0 0
\(680\) 1.94210 0.0744761
\(681\) 32.5664 1.24795
\(682\) −2.86827 −0.109832
\(683\) −15.0093 −0.574315 −0.287158 0.957883i \(-0.592710\pi\)
−0.287158 + 0.957883i \(0.592710\pi\)
\(684\) −5.10475 −0.195185
\(685\) 26.4350 1.01003
\(686\) 0 0
\(687\) −12.1678 −0.464230
\(688\) −3.92474 −0.149629
\(689\) 1.37143 0.0522472
\(690\) −1.00549 −0.0382783
\(691\) 27.6312 1.05114 0.525570 0.850750i \(-0.323852\pi\)
0.525570 + 0.850750i \(0.323852\pi\)
\(692\) −38.9963 −1.48242
\(693\) 0 0
\(694\) −2.71953 −0.103232
\(695\) −19.6193 −0.744201
\(696\) 3.92263 0.148687
\(697\) 14.3239 0.542557
\(698\) 0.337545 0.0127763
\(699\) 10.7555 0.406811
\(700\) 0 0
\(701\) 3.11329 0.117587 0.0587936 0.998270i \(-0.481275\pi\)
0.0587936 + 0.998270i \(0.481275\pi\)
\(702\) 0.198182 0.00747989
\(703\) 66.7196 2.51638
\(704\) 26.7918 1.00975
\(705\) −27.3324 −1.02940
\(706\) −0.380613 −0.0143245
\(707\) 0 0
\(708\) 43.3785 1.63026
\(709\) 34.8890 1.31028 0.655141 0.755507i \(-0.272609\pi\)
0.655141 + 0.755507i \(0.272609\pi\)
\(710\) 0.552471 0.0207339
\(711\) −3.41906 −0.128225
\(712\) −1.43555 −0.0537994
\(713\) −15.9476 −0.597240
\(714\) 0 0
\(715\) 2.47552 0.0925793
\(716\) 5.57448 0.208328
\(717\) 33.2464 1.24161
\(718\) 0.967912 0.0361222
\(719\) 25.7784 0.961373 0.480687 0.876892i \(-0.340387\pi\)
0.480687 + 0.876892i \(0.340387\pi\)
\(720\) 2.91583 0.108666
\(721\) 0 0
\(722\) 5.10425 0.189961
\(723\) 8.15977 0.303465
\(724\) 0.802479 0.0298239
\(725\) 1.19379 0.0443363
\(726\) −0.231256 −0.00858272
\(727\) −14.1393 −0.524398 −0.262199 0.965014i \(-0.584448\pi\)
−0.262199 + 0.965014i \(0.584448\pi\)
\(728\) 0 0
\(729\) 29.2588 1.08366
\(730\) 0.420117 0.0155492
\(731\) −1.81397 −0.0670923
\(732\) 12.6879 0.468958
\(733\) −37.6113 −1.38921 −0.694603 0.719394i \(-0.744420\pi\)
−0.694603 + 0.719394i \(0.744420\pi\)
\(734\) 0.630304 0.0232650
\(735\) 0 0
\(736\) −3.19535 −0.117782
\(737\) −21.9573 −0.808807
\(738\) −0.302831 −0.0111474
\(739\) 2.14016 0.0787271 0.0393635 0.999225i \(-0.487467\pi\)
0.0393635 + 0.999225i \(0.487467\pi\)
\(740\) −38.3795 −1.41086
\(741\) 4.00175 0.147008
\(742\) 0 0
\(743\) 31.1326 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(744\) 5.35290 0.196247
\(745\) −25.6834 −0.940967
\(746\) 0.823362 0.0301454
\(747\) −1.15981 −0.0424352
\(748\) 12.5610 0.459275
\(749\) 0 0
\(750\) −2.09780 −0.0766009
\(751\) 18.8104 0.686402 0.343201 0.939262i \(-0.388489\pi\)
0.343201 + 0.939262i \(0.388489\pi\)
\(752\) −28.6173 −1.04356
\(753\) −2.13955 −0.0779696
\(754\) 0.186402 0.00678835
\(755\) 42.2164 1.53641
\(756\) 0 0
\(757\) 6.53602 0.237556 0.118778 0.992921i \(-0.462102\pi\)
0.118778 + 0.992921i \(0.462102\pi\)
\(758\) 4.04951 0.147085
\(759\) −13.0518 −0.473750
\(760\) −8.47305 −0.307350
\(761\) −19.3016 −0.699682 −0.349841 0.936809i \(-0.613764\pi\)
−0.349841 + 0.936809i \(0.613764\pi\)
\(762\) 0.192381 0.00696925
\(763\) 0 0
\(764\) 32.1919 1.16466
\(765\) 1.34767 0.0487250
\(766\) 2.87840 0.104001
\(767\) 4.13702 0.149379
\(768\) −24.3751 −0.879560
\(769\) 6.53725 0.235739 0.117870 0.993029i \(-0.462394\pi\)
0.117870 + 0.993029i \(0.462394\pi\)
\(770\) 0 0
\(771\) 37.9774 1.36772
\(772\) 0.736927 0.0265226
\(773\) −7.22321 −0.259801 −0.129900 0.991527i \(-0.541466\pi\)
−0.129900 + 0.991527i \(0.541466\pi\)
\(774\) 0.0383504 0.00137848
\(775\) 1.62907 0.0585181
\(776\) 5.49343 0.197203
\(777\) 0 0
\(778\) −1.48758 −0.0533324
\(779\) −62.4928 −2.23904
\(780\) −2.30195 −0.0824229
\(781\) 7.17137 0.256612
\(782\) −0.486573 −0.0173998
\(783\) 27.8184 0.994147
\(784\) 0 0
\(785\) 24.1549 0.862124
\(786\) −1.89526 −0.0676018
\(787\) −15.7689 −0.562099 −0.281050 0.959693i \(-0.590683\pi\)
−0.281050 + 0.959693i \(0.590683\pi\)
\(788\) 32.9097 1.17236
\(789\) −25.3350 −0.901949
\(790\) −2.82769 −0.100605
\(791\) 0 0
\(792\) −0.532970 −0.0189383
\(793\) 1.21005 0.0429701
\(794\) −0.686628 −0.0243675
\(795\) 16.5629 0.587425
\(796\) −0.980700 −0.0347600
\(797\) −33.7298 −1.19477 −0.597386 0.801954i \(-0.703794\pi\)
−0.597386 + 0.801954i \(0.703794\pi\)
\(798\) 0 0
\(799\) −13.2266 −0.467924
\(800\) 0.326412 0.0115404
\(801\) −0.996158 −0.0351975
\(802\) 0.604172 0.0213341
\(803\) 5.45335 0.192445
\(804\) 20.4177 0.720077
\(805\) 0 0
\(806\) 0.254368 0.00895973
\(807\) 34.6832 1.22091
\(808\) −2.38464 −0.0838912
\(809\) 46.5214 1.63561 0.817803 0.575498i \(-0.195192\pi\)
0.817803 + 0.575498i \(0.195192\pi\)
\(810\) 2.13078 0.0748678
\(811\) −10.8343 −0.380443 −0.190221 0.981741i \(-0.560921\pi\)
−0.190221 + 0.981741i \(0.560921\pi\)
\(812\) 0 0
\(813\) 24.1977 0.848650
\(814\) 3.47090 0.121655
\(815\) −50.2798 −1.76122
\(816\) −11.5983 −0.406022
\(817\) 7.91407 0.276878
\(818\) 4.33841 0.151689
\(819\) 0 0
\(820\) 35.9480 1.25536
\(821\) 15.5281 0.541934 0.270967 0.962589i \(-0.412657\pi\)
0.270967 + 0.962589i \(0.412657\pi\)
\(822\) 2.22306 0.0775380
\(823\) 53.3811 1.86075 0.930374 0.366611i \(-0.119482\pi\)
0.930374 + 0.366611i \(0.119482\pi\)
\(824\) −7.27722 −0.253514
\(825\) 1.33327 0.0464184
\(826\) 0 0
\(827\) 20.2963 0.705772 0.352886 0.935666i \(-0.385200\pi\)
0.352886 + 0.935666i \(0.385200\pi\)
\(828\) −1.47651 −0.0513123
\(829\) 28.8465 1.00188 0.500940 0.865482i \(-0.332988\pi\)
0.500940 + 0.865482i \(0.332988\pi\)
\(830\) −0.959205 −0.0332945
\(831\) −12.5429 −0.435110
\(832\) −2.37598 −0.0823723
\(833\) 0 0
\(834\) −1.64989 −0.0571309
\(835\) −10.1366 −0.350791
\(836\) −54.8015 −1.89535
\(837\) 37.9615 1.31214
\(838\) −3.55207 −0.122704
\(839\) 19.0230 0.656745 0.328373 0.944548i \(-0.393500\pi\)
0.328373 + 0.944548i \(0.393500\pi\)
\(840\) 0 0
\(841\) −2.83518 −0.0977648
\(842\) −0.285958 −0.00985475
\(843\) 5.93953 0.204568
\(844\) −19.5425 −0.672679
\(845\) 29.5200 1.01552
\(846\) 0.279632 0.00961396
\(847\) 0 0
\(848\) 17.3415 0.595509
\(849\) −31.1862 −1.07031
\(850\) 0.0497044 0.00170485
\(851\) 19.2982 0.661532
\(852\) −6.66854 −0.228460
\(853\) −5.20728 −0.178294 −0.0891469 0.996018i \(-0.528414\pi\)
−0.0891469 + 0.996018i \(0.528414\pi\)
\(854\) 0 0
\(855\) −5.87964 −0.201079
\(856\) 3.20585 0.109574
\(857\) 44.9487 1.53542 0.767710 0.640798i \(-0.221396\pi\)
0.767710 + 0.640798i \(0.221396\pi\)
\(858\) 0.208180 0.00710714
\(859\) −10.6438 −0.363161 −0.181580 0.983376i \(-0.558121\pi\)
−0.181580 + 0.983376i \(0.558121\pi\)
\(860\) −4.55245 −0.155237
\(861\) 0 0
\(862\) −4.74404 −0.161583
\(863\) 52.4727 1.78619 0.893096 0.449866i \(-0.148528\pi\)
0.893096 + 0.449866i \(0.148528\pi\)
\(864\) 7.60621 0.258769
\(865\) −44.9159 −1.52719
\(866\) 3.55516 0.120809
\(867\) 22.4416 0.762157
\(868\) 0 0
\(869\) −36.7050 −1.24513
\(870\) 2.25120 0.0763227
\(871\) 1.94724 0.0659798
\(872\) 1.62582 0.0550570
\(873\) 3.81201 0.129017
\(874\) 2.12284 0.0718060
\(875\) 0 0
\(876\) −5.07098 −0.171333
\(877\) −34.6023 −1.16844 −0.584218 0.811597i \(-0.698599\pi\)
−0.584218 + 0.811597i \(0.698599\pi\)
\(878\) 0.469450 0.0158432
\(879\) 15.6130 0.526613
\(880\) 31.3026 1.05521
\(881\) −14.8015 −0.498674 −0.249337 0.968417i \(-0.580213\pi\)
−0.249337 + 0.968417i \(0.580213\pi\)
\(882\) 0 0
\(883\) 55.3107 1.86135 0.930677 0.365841i \(-0.119219\pi\)
0.930677 + 0.365841i \(0.119219\pi\)
\(884\) −1.11395 −0.0374662
\(885\) 49.9633 1.67950
\(886\) 0.860358 0.0289043
\(887\) 15.2860 0.513253 0.256626 0.966511i \(-0.417389\pi\)
0.256626 + 0.966511i \(0.417389\pi\)
\(888\) −6.47755 −0.217372
\(889\) 0 0
\(890\) −0.823860 −0.0276159
\(891\) 27.6586 0.926598
\(892\) −29.6342 −0.992225
\(893\) 57.7055 1.93104
\(894\) −2.15986 −0.0722364
\(895\) 6.42067 0.214619
\(896\) 0 0
\(897\) 1.15748 0.0386470
\(898\) −3.77165 −0.125861
\(899\) 35.7051 1.19083
\(900\) 0.150828 0.00502761
\(901\) 8.01506 0.267020
\(902\) −3.25101 −0.108247
\(903\) 0 0
\(904\) 0.0921394 0.00306451
\(905\) 0.924294 0.0307246
\(906\) 3.55020 0.117948
\(907\) 17.0436 0.565924 0.282962 0.959131i \(-0.408683\pi\)
0.282962 + 0.959131i \(0.408683\pi\)
\(908\) 39.5507 1.31254
\(909\) −1.65475 −0.0548847
\(910\) 0 0
\(911\) 1.20681 0.0399835 0.0199917 0.999800i \(-0.493636\pi\)
0.0199917 + 0.999800i \(0.493636\pi\)
\(912\) 50.6015 1.67558
\(913\) −12.4510 −0.412068
\(914\) 0.861710 0.0285028
\(915\) 14.6139 0.483121
\(916\) −14.7773 −0.488256
\(917\) 0 0
\(918\) 1.15824 0.0382275
\(919\) −25.2862 −0.834113 −0.417057 0.908881i \(-0.636938\pi\)
−0.417057 + 0.908881i \(0.636938\pi\)
\(920\) −2.45077 −0.0807994
\(921\) −49.5499 −1.63272
\(922\) 0.0331663 0.00109227
\(923\) −0.635981 −0.0209336
\(924\) 0 0
\(925\) −1.97135 −0.0648174
\(926\) −2.24837 −0.0738861
\(927\) −5.04983 −0.165858
\(928\) 7.15410 0.234845
\(929\) 40.6238 1.33282 0.666412 0.745584i \(-0.267829\pi\)
0.666412 + 0.745584i \(0.267829\pi\)
\(930\) 3.07203 0.100736
\(931\) 0 0
\(932\) 13.0622 0.427865
\(933\) 51.2227 1.67696
\(934\) 3.98006 0.130231
\(935\) 14.4677 0.473145
\(936\) 0.0472656 0.00154492
\(937\) −19.0315 −0.621733 −0.310866 0.950454i \(-0.600619\pi\)
−0.310866 + 0.950454i \(0.600619\pi\)
\(938\) 0 0
\(939\) 51.6087 1.68419
\(940\) −33.1942 −1.08268
\(941\) −57.2741 −1.86708 −0.933541 0.358470i \(-0.883299\pi\)
−0.933541 + 0.358470i \(0.883299\pi\)
\(942\) 2.03131 0.0661837
\(943\) −18.0756 −0.588622
\(944\) 52.3120 1.70261
\(945\) 0 0
\(946\) 0.411707 0.0133858
\(947\) −20.1712 −0.655477 −0.327739 0.944768i \(-0.606287\pi\)
−0.327739 + 0.944768i \(0.606287\pi\)
\(948\) 34.1314 1.10854
\(949\) −0.483621 −0.0156990
\(950\) −0.216852 −0.00703561
\(951\) −19.4445 −0.630530
\(952\) 0 0
\(953\) 0.775304 0.0251146 0.0125573 0.999921i \(-0.496003\pi\)
0.0125573 + 0.999921i \(0.496003\pi\)
\(954\) −0.169452 −0.00548620
\(955\) 37.0786 1.19983
\(956\) 40.3765 1.30587
\(957\) 29.2217 0.944605
\(958\) −2.11761 −0.0684169
\(959\) 0 0
\(960\) −28.6950 −0.926127
\(961\) 17.7239 0.571739
\(962\) −0.307811 −0.00992423
\(963\) 2.22461 0.0716872
\(964\) 9.90974 0.319171
\(965\) 0.848792 0.0273236
\(966\) 0 0
\(967\) −25.5917 −0.822973 −0.411486 0.911416i \(-0.634990\pi\)
−0.411486 + 0.911416i \(0.634990\pi\)
\(968\) −0.563661 −0.0181167
\(969\) 23.3875 0.751315
\(970\) 3.15268 0.101226
\(971\) −22.8004 −0.731701 −0.365851 0.930674i \(-0.619222\pi\)
−0.365851 + 0.930674i \(0.619222\pi\)
\(972\) 6.68546 0.214436
\(973\) 0 0
\(974\) 0.165454 0.00530147
\(975\) −0.118239 −0.00378666
\(976\) 15.3009 0.489769
\(977\) −26.4348 −0.845723 −0.422861 0.906194i \(-0.638974\pi\)
−0.422861 + 0.906194i \(0.638974\pi\)
\(978\) −4.22829 −0.135206
\(979\) −10.6942 −0.341787
\(980\) 0 0
\(981\) 1.12819 0.0360203
\(982\) −1.91835 −0.0612171
\(983\) −19.5759 −0.624375 −0.312187 0.950021i \(-0.601062\pi\)
−0.312187 + 0.950021i \(0.601062\pi\)
\(984\) 6.06719 0.193415
\(985\) 37.9053 1.20776
\(986\) 1.08939 0.0346933
\(987\) 0 0
\(988\) 4.85998 0.154616
\(989\) 2.28908 0.0727886
\(990\) −0.305872 −0.00972124
\(991\) −44.5489 −1.41514 −0.707572 0.706641i \(-0.750209\pi\)
−0.707572 + 0.706641i \(0.750209\pi\)
\(992\) 9.76263 0.309964
\(993\) −49.0995 −1.55813
\(994\) 0 0
\(995\) −1.12957 −0.0358098
\(996\) 11.5780 0.366862
\(997\) 54.7584 1.73422 0.867108 0.498121i \(-0.165976\pi\)
0.867108 + 0.498121i \(0.165976\pi\)
\(998\) 0.927276 0.0293524
\(999\) −45.9373 −1.45339
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.s.1.33 54
7.6 odd 2 inner 6223.2.a.s.1.34 yes 54
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.s.1.33 54 1.1 even 1 trivial
6223.2.a.s.1.34 yes 54 7.6 odd 2 inner