Properties

Label 2-6223-1.1-c1-0-138
Degree $2$
Conductor $6223$
Sign $-1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.117·2-s − 1.63·3-s − 1.98·4-s − 2.28·5-s − 0.192·6-s − 0.468·8-s − 0.325·9-s − 0.269·10-s − 3.49·11-s + 3.24·12-s + 0.309·13-s + 3.74·15-s + 3.91·16-s + 1.81·17-s − 0.0382·18-s − 7.89·19-s + 4.54·20-s − 0.410·22-s − 2.28·23-s + 0.766·24-s + 0.233·25-s + 0.0364·26-s + 5.43·27-s + 5.11·29-s + 0.440·30-s + 6.98·31-s + 1.39·32-s + ⋯
L(s)  = 1  + 0.0831·2-s − 0.944·3-s − 0.993·4-s − 1.02·5-s − 0.0785·6-s − 0.165·8-s − 0.108·9-s − 0.0850·10-s − 1.05·11-s + 0.937·12-s + 0.0859·13-s + 0.965·15-s + 0.979·16-s + 0.439·17-s − 0.00902·18-s − 1.81·19-s + 1.01·20-s − 0.0876·22-s − 0.476·23-s + 0.156·24-s + 0.0466·25-s + 0.00714·26-s + 1.04·27-s + 0.949·29-s + 0.0803·30-s + 1.25·31-s + 0.247·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $-1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 + T \)
good2 \( 1 - 0.117T + 2T^{2} \)
3 \( 1 + 1.63T + 3T^{2} \)
5 \( 1 + 2.28T + 5T^{2} \)
11 \( 1 + 3.49T + 11T^{2} \)
13 \( 1 - 0.309T + 13T^{2} \)
17 \( 1 - 1.81T + 17T^{2} \)
19 \( 1 + 7.89T + 19T^{2} \)
23 \( 1 + 2.28T + 23T^{2} \)
29 \( 1 - 5.11T + 29T^{2} \)
31 \( 1 - 6.98T + 31T^{2} \)
37 \( 1 + 8.44T + 37T^{2} \)
41 \( 1 - 7.91T + 41T^{2} \)
43 \( 1 + 1.00T + 43T^{2} \)
47 \( 1 + 7.30T + 47T^{2} \)
53 \( 1 - 4.42T + 53T^{2} \)
59 \( 1 - 13.3T + 59T^{2} \)
61 \( 1 - 3.90T + 61T^{2} \)
67 \( 1 - 6.28T + 67T^{2} \)
71 \( 1 + 2.05T + 71T^{2} \)
73 \( 1 + 1.56T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 - 3.56T + 83T^{2} \)
89 \( 1 - 3.06T + 89T^{2} \)
97 \( 1 + 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.006943799076774172823956933975, −6.88656984603684478962240459763, −6.17208399956251288295431078158, −5.43673345818659003594033962034, −4.80856261306876379462347746268, −4.21653706726582034782060224543, −3.44484513458091150663029158045, −2.40674160213922615348569601633, −0.75215254083349391763656613647, 0, 0.75215254083349391763656613647, 2.40674160213922615348569601633, 3.44484513458091150663029158045, 4.21653706726582034782060224543, 4.80856261306876379462347746268, 5.43673345818659003594033962034, 6.17208399956251288295431078158, 6.88656984603684478962240459763, 8.006943799076774172823956933975

Graph of the $Z$-function along the critical line