Properties

Label 6223.2.a.k.1.9
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.170601\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.170601 q^{2} -1.60825 q^{3} -1.97090 q^{4} +0.206353 q^{5} -0.274369 q^{6} -0.677439 q^{8} -0.413531 q^{9} +0.0352041 q^{10} +2.95191 q^{11} +3.16969 q^{12} +6.02043 q^{13} -0.331868 q^{15} +3.82622 q^{16} +6.47770 q^{17} -0.0705489 q^{18} +5.49983 q^{19} -0.406701 q^{20} +0.503600 q^{22} +7.87219 q^{23} +1.08949 q^{24} -4.95742 q^{25} +1.02709 q^{26} +5.48981 q^{27} +3.67353 q^{29} -0.0566170 q^{30} -0.182599 q^{31} +2.00764 q^{32} -4.74741 q^{33} +1.10510 q^{34} +0.815026 q^{36} -9.06492 q^{37} +0.938277 q^{38} -9.68236 q^{39} -0.139792 q^{40} +0.717792 q^{41} +4.41197 q^{43} -5.81791 q^{44} -0.0853335 q^{45} +1.34301 q^{46} +3.34219 q^{47} -6.15352 q^{48} -0.845741 q^{50} -10.4178 q^{51} -11.8656 q^{52} -6.62197 q^{53} +0.936568 q^{54} +0.609137 q^{55} -8.84510 q^{57} +0.626708 q^{58} -7.35511 q^{59} +0.654077 q^{60} +15.3403 q^{61} -0.0311515 q^{62} -7.30993 q^{64} +1.24234 q^{65} -0.809914 q^{66} +6.35295 q^{67} -12.7669 q^{68} -12.6605 q^{69} -7.06485 q^{71} +0.280142 q^{72} -8.10741 q^{73} -1.54649 q^{74} +7.97277 q^{75} -10.8396 q^{76} -1.65182 q^{78} +5.73229 q^{79} +0.789553 q^{80} -7.58840 q^{81} +0.122456 q^{82} -9.79819 q^{83} +1.33670 q^{85} +0.752687 q^{86} -5.90796 q^{87} -1.99974 q^{88} +14.8905 q^{89} -0.0145580 q^{90} -15.5153 q^{92} +0.293664 q^{93} +0.570182 q^{94} +1.13491 q^{95} -3.22878 q^{96} +14.8333 q^{97} -1.22071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.170601 0.120633 0.0603166 0.998179i \(-0.480789\pi\)
0.0603166 + 0.998179i \(0.480789\pi\)
\(3\) −1.60825 −0.928524 −0.464262 0.885698i \(-0.653680\pi\)
−0.464262 + 0.885698i \(0.653680\pi\)
\(4\) −1.97090 −0.985448
\(5\) 0.206353 0.0922840 0.0461420 0.998935i \(-0.485307\pi\)
0.0461420 + 0.998935i \(0.485307\pi\)
\(6\) −0.274369 −0.112011
\(7\) 0 0
\(8\) −0.677439 −0.239511
\(9\) −0.413531 −0.137844
\(10\) 0.0352041 0.0111325
\(11\) 2.95191 0.890035 0.445018 0.895522i \(-0.353197\pi\)
0.445018 + 0.895522i \(0.353197\pi\)
\(12\) 3.16969 0.915012
\(13\) 6.02043 1.66977 0.834883 0.550427i \(-0.185535\pi\)
0.834883 + 0.550427i \(0.185535\pi\)
\(14\) 0 0
\(15\) −0.331868 −0.0856879
\(16\) 3.82622 0.956555
\(17\) 6.47770 1.57107 0.785537 0.618815i \(-0.212387\pi\)
0.785537 + 0.618815i \(0.212387\pi\)
\(18\) −0.0705489 −0.0166285
\(19\) 5.49983 1.26175 0.630874 0.775886i \(-0.282697\pi\)
0.630874 + 0.775886i \(0.282697\pi\)
\(20\) −0.406701 −0.0909410
\(21\) 0 0
\(22\) 0.503600 0.107368
\(23\) 7.87219 1.64147 0.820733 0.571312i \(-0.193565\pi\)
0.820733 + 0.571312i \(0.193565\pi\)
\(24\) 1.08949 0.222392
\(25\) −4.95742 −0.991484
\(26\) 1.02709 0.201429
\(27\) 5.48981 1.05651
\(28\) 0 0
\(29\) 3.67353 0.682157 0.341079 0.940035i \(-0.389208\pi\)
0.341079 + 0.940035i \(0.389208\pi\)
\(30\) −0.0566170 −0.0103368
\(31\) −0.182599 −0.0327957 −0.0163978 0.999866i \(-0.505220\pi\)
−0.0163978 + 0.999866i \(0.505220\pi\)
\(32\) 2.00764 0.354903
\(33\) −4.74741 −0.826419
\(34\) 1.10510 0.189524
\(35\) 0 0
\(36\) 0.815026 0.135838
\(37\) −9.06492 −1.49026 −0.745132 0.666917i \(-0.767614\pi\)
−0.745132 + 0.666917i \(0.767614\pi\)
\(38\) 0.938277 0.152209
\(39\) −9.68236 −1.55042
\(40\) −0.139792 −0.0221030
\(41\) 0.717792 0.112100 0.0560501 0.998428i \(-0.482149\pi\)
0.0560501 + 0.998428i \(0.482149\pi\)
\(42\) 0 0
\(43\) 4.41197 0.672819 0.336410 0.941716i \(-0.390787\pi\)
0.336410 + 0.941716i \(0.390787\pi\)
\(44\) −5.81791 −0.877083
\(45\) −0.0853335 −0.0127208
\(46\) 1.34301 0.198015
\(47\) 3.34219 0.487509 0.243754 0.969837i \(-0.421621\pi\)
0.243754 + 0.969837i \(0.421621\pi\)
\(48\) −6.15352 −0.888184
\(49\) 0 0
\(50\) −0.845741 −0.119606
\(51\) −10.4178 −1.45878
\(52\) −11.8656 −1.64547
\(53\) −6.62197 −0.909597 −0.454799 0.890594i \(-0.650289\pi\)
−0.454799 + 0.890594i \(0.650289\pi\)
\(54\) 0.936568 0.127451
\(55\) 0.609137 0.0821360
\(56\) 0 0
\(57\) −8.84510 −1.17156
\(58\) 0.626708 0.0822909
\(59\) −7.35511 −0.957553 −0.478777 0.877937i \(-0.658920\pi\)
−0.478777 + 0.877937i \(0.658920\pi\)
\(60\) 0.654077 0.0844409
\(61\) 15.3403 1.96413 0.982064 0.188549i \(-0.0603785\pi\)
0.982064 + 0.188549i \(0.0603785\pi\)
\(62\) −0.0311515 −0.00395625
\(63\) 0 0
\(64\) −7.30993 −0.913742
\(65\) 1.24234 0.154093
\(66\) −0.809914 −0.0996936
\(67\) 6.35295 0.776137 0.388068 0.921631i \(-0.373142\pi\)
0.388068 + 0.921631i \(0.373142\pi\)
\(68\) −12.7669 −1.54821
\(69\) −12.6605 −1.52414
\(70\) 0 0
\(71\) −7.06485 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(72\) 0.280142 0.0330151
\(73\) −8.10741 −0.948900 −0.474450 0.880282i \(-0.657353\pi\)
−0.474450 + 0.880282i \(0.657353\pi\)
\(74\) −1.54649 −0.179775
\(75\) 7.97277 0.920616
\(76\) −10.8396 −1.24339
\(77\) 0 0
\(78\) −1.65182 −0.187032
\(79\) 5.73229 0.644933 0.322467 0.946581i \(-0.395488\pi\)
0.322467 + 0.946581i \(0.395488\pi\)
\(80\) 0.789553 0.0882747
\(81\) −7.58840 −0.843155
\(82\) 0.122456 0.0135230
\(83\) −9.79819 −1.07549 −0.537746 0.843107i \(-0.680724\pi\)
−0.537746 + 0.843107i \(0.680724\pi\)
\(84\) 0 0
\(85\) 1.33670 0.144985
\(86\) 0.752687 0.0811644
\(87\) −5.90796 −0.633399
\(88\) −1.99974 −0.213173
\(89\) 14.8905 1.57839 0.789193 0.614145i \(-0.210499\pi\)
0.789193 + 0.614145i \(0.210499\pi\)
\(90\) −0.0145580 −0.00153455
\(91\) 0 0
\(92\) −15.5153 −1.61758
\(93\) 0.293664 0.0304516
\(94\) 0.570182 0.0588098
\(95\) 1.13491 0.116439
\(96\) −3.22878 −0.329536
\(97\) 14.8333 1.50609 0.753046 0.657967i \(-0.228584\pi\)
0.753046 + 0.657967i \(0.228584\pi\)
\(98\) 0 0
\(99\) −1.22071 −0.122686
\(100\) 9.77055 0.977055
\(101\) −15.4154 −1.53389 −0.766943 0.641716i \(-0.778223\pi\)
−0.766943 + 0.641716i \(0.778223\pi\)
\(102\) −1.77728 −0.175977
\(103\) −12.6158 −1.24307 −0.621534 0.783387i \(-0.713490\pi\)
−0.621534 + 0.783387i \(0.713490\pi\)
\(104\) −4.07848 −0.399927
\(105\) 0 0
\(106\) −1.12972 −0.109728
\(107\) 18.0545 1.74539 0.872697 0.488262i \(-0.162369\pi\)
0.872697 + 0.488262i \(0.162369\pi\)
\(108\) −10.8198 −1.04114
\(109\) 5.67574 0.543638 0.271819 0.962348i \(-0.412375\pi\)
0.271819 + 0.962348i \(0.412375\pi\)
\(110\) 0.103919 0.00990833
\(111\) 14.5787 1.38375
\(112\) 0 0
\(113\) −0.331384 −0.0311740 −0.0155870 0.999879i \(-0.504962\pi\)
−0.0155870 + 0.999879i \(0.504962\pi\)
\(114\) −1.50898 −0.141329
\(115\) 1.62445 0.151481
\(116\) −7.24014 −0.672230
\(117\) −2.48963 −0.230167
\(118\) −1.25479 −0.115513
\(119\) 0 0
\(120\) 0.224820 0.0205232
\(121\) −2.28621 −0.207838
\(122\) 2.61708 0.236939
\(123\) −1.15439 −0.104088
\(124\) 0.359883 0.0323184
\(125\) −2.05475 −0.183782
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −5.26235 −0.465131
\(129\) −7.09555 −0.624729
\(130\) 0.211944 0.0185887
\(131\) 9.55770 0.835061 0.417530 0.908663i \(-0.362896\pi\)
0.417530 + 0.908663i \(0.362896\pi\)
\(132\) 9.35665 0.814392
\(133\) 0 0
\(134\) 1.08382 0.0936279
\(135\) 1.13284 0.0974994
\(136\) −4.38825 −0.376289
\(137\) 19.1217 1.63367 0.816837 0.576868i \(-0.195725\pi\)
0.816837 + 0.576868i \(0.195725\pi\)
\(138\) −2.15989 −0.183862
\(139\) 19.5559 1.65871 0.829353 0.558725i \(-0.188709\pi\)
0.829353 + 0.558725i \(0.188709\pi\)
\(140\) 0 0
\(141\) −5.37508 −0.452664
\(142\) −1.20527 −0.101144
\(143\) 17.7718 1.48615
\(144\) −1.58226 −0.131855
\(145\) 0.758045 0.0629522
\(146\) −1.38313 −0.114469
\(147\) 0 0
\(148\) 17.8660 1.46858
\(149\) −8.65860 −0.709340 −0.354670 0.934992i \(-0.615407\pi\)
−0.354670 + 0.934992i \(0.615407\pi\)
\(150\) 1.36016 0.111057
\(151\) −14.9600 −1.21743 −0.608715 0.793389i \(-0.708315\pi\)
−0.608715 + 0.793389i \(0.708315\pi\)
\(152\) −3.72580 −0.302202
\(153\) −2.67873 −0.216563
\(154\) 0 0
\(155\) −0.0376798 −0.00302652
\(156\) 19.0829 1.52786
\(157\) −13.5556 −1.08185 −0.540926 0.841070i \(-0.681926\pi\)
−0.540926 + 0.841070i \(0.681926\pi\)
\(158\) 0.977936 0.0778004
\(159\) 10.6498 0.844583
\(160\) 0.414282 0.0327519
\(161\) 0 0
\(162\) −1.29459 −0.101713
\(163\) 13.3149 1.04291 0.521453 0.853280i \(-0.325390\pi\)
0.521453 + 0.853280i \(0.325390\pi\)
\(164\) −1.41469 −0.110469
\(165\) −0.979644 −0.0762652
\(166\) −1.67158 −0.129740
\(167\) −5.40055 −0.417907 −0.208953 0.977926i \(-0.567006\pi\)
−0.208953 + 0.977926i \(0.567006\pi\)
\(168\) 0 0
\(169\) 23.2456 1.78812
\(170\) 0.228042 0.0174900
\(171\) −2.27435 −0.173924
\(172\) −8.69553 −0.663028
\(173\) −0.466383 −0.0354584 −0.0177292 0.999843i \(-0.505644\pi\)
−0.0177292 + 0.999843i \(0.505644\pi\)
\(174\) −1.00790 −0.0764090
\(175\) 0 0
\(176\) 11.2947 0.851367
\(177\) 11.8289 0.889111
\(178\) 2.54033 0.190406
\(179\) 10.0960 0.754611 0.377306 0.926089i \(-0.376851\pi\)
0.377306 + 0.926089i \(0.376851\pi\)
\(180\) 0.168183 0.0125356
\(181\) 22.2609 1.65464 0.827319 0.561732i \(-0.189865\pi\)
0.827319 + 0.561732i \(0.189865\pi\)
\(182\) 0 0
\(183\) −24.6711 −1.82374
\(184\) −5.33293 −0.393149
\(185\) −1.87058 −0.137528
\(186\) 0.0500995 0.00367347
\(187\) 19.1216 1.39831
\(188\) −6.58711 −0.480414
\(189\) 0 0
\(190\) 0.193617 0.0140464
\(191\) −8.20390 −0.593613 −0.296807 0.954938i \(-0.595922\pi\)
−0.296807 + 0.954938i \(0.595922\pi\)
\(192\) 11.7562 0.848431
\(193\) 7.11018 0.511802 0.255901 0.966703i \(-0.417628\pi\)
0.255901 + 0.966703i \(0.417628\pi\)
\(194\) 2.53058 0.181685
\(195\) −1.99799 −0.143079
\(196\) 0 0
\(197\) −12.9689 −0.923994 −0.461997 0.886882i \(-0.652867\pi\)
−0.461997 + 0.886882i \(0.652867\pi\)
\(198\) −0.208254 −0.0148000
\(199\) −20.6661 −1.46498 −0.732491 0.680777i \(-0.761642\pi\)
−0.732491 + 0.680777i \(0.761642\pi\)
\(200\) 3.35835 0.237471
\(201\) −10.2171 −0.720662
\(202\) −2.62988 −0.185038
\(203\) 0 0
\(204\) 20.5323 1.43755
\(205\) 0.148119 0.0103451
\(206\) −2.15226 −0.149955
\(207\) −3.25540 −0.226266
\(208\) 23.0355 1.59722
\(209\) 16.2350 1.12300
\(210\) 0 0
\(211\) 2.16808 0.149257 0.0746283 0.997211i \(-0.476223\pi\)
0.0746283 + 0.997211i \(0.476223\pi\)
\(212\) 13.0512 0.896360
\(213\) 11.3621 0.778515
\(214\) 3.08012 0.210552
\(215\) 0.910425 0.0620905
\(216\) −3.71901 −0.253047
\(217\) 0 0
\(218\) 0.968289 0.0655808
\(219\) 13.0387 0.881076
\(220\) −1.20054 −0.0809407
\(221\) 38.9986 2.62333
\(222\) 2.48714 0.166926
\(223\) 1.10332 0.0738836 0.0369418 0.999317i \(-0.488238\pi\)
0.0369418 + 0.999317i \(0.488238\pi\)
\(224\) 0 0
\(225\) 2.05005 0.136670
\(226\) −0.0565346 −0.00376062
\(227\) 8.00286 0.531169 0.265584 0.964088i \(-0.414435\pi\)
0.265584 + 0.964088i \(0.414435\pi\)
\(228\) 17.4328 1.15451
\(229\) −0.363896 −0.0240469 −0.0120235 0.999928i \(-0.503827\pi\)
−0.0120235 + 0.999928i \(0.503827\pi\)
\(230\) 0.277134 0.0182736
\(231\) 0 0
\(232\) −2.48859 −0.163384
\(233\) −28.6092 −1.87425 −0.937125 0.348994i \(-0.886523\pi\)
−0.937125 + 0.348994i \(0.886523\pi\)
\(234\) −0.424734 −0.0277658
\(235\) 0.689672 0.0449893
\(236\) 14.4961 0.943619
\(237\) −9.21896 −0.598836
\(238\) 0 0
\(239\) −28.4902 −1.84288 −0.921438 0.388525i \(-0.872985\pi\)
−0.921438 + 0.388525i \(0.872985\pi\)
\(240\) −1.26980 −0.0819651
\(241\) 2.12643 0.136975 0.0684877 0.997652i \(-0.478183\pi\)
0.0684877 + 0.997652i \(0.478183\pi\)
\(242\) −0.390031 −0.0250721
\(243\) −4.26539 −0.273625
\(244\) −30.2342 −1.93554
\(245\) 0 0
\(246\) −0.196940 −0.0125564
\(247\) 33.1113 2.10682
\(248\) 0.123700 0.00785493
\(249\) 15.7579 0.998619
\(250\) −0.350542 −0.0221702
\(251\) −12.3182 −0.777519 −0.388759 0.921339i \(-0.627096\pi\)
−0.388759 + 0.921339i \(0.627096\pi\)
\(252\) 0 0
\(253\) 23.2380 1.46096
\(254\) −0.170601 −0.0107045
\(255\) −2.14974 −0.134622
\(256\) 13.7221 0.857631
\(257\) 4.35584 0.271710 0.135855 0.990729i \(-0.456622\pi\)
0.135855 + 0.990729i \(0.456622\pi\)
\(258\) −1.21051 −0.0753631
\(259\) 0 0
\(260\) −2.44851 −0.151850
\(261\) −1.51912 −0.0940311
\(262\) 1.63056 0.100736
\(263\) −7.24987 −0.447046 −0.223523 0.974699i \(-0.571756\pi\)
−0.223523 + 0.974699i \(0.571756\pi\)
\(264\) 3.21608 0.197936
\(265\) −1.36646 −0.0839413
\(266\) 0 0
\(267\) −23.9476 −1.46557
\(268\) −12.5210 −0.764842
\(269\) 1.81003 0.110360 0.0551798 0.998476i \(-0.482427\pi\)
0.0551798 + 0.998476i \(0.482427\pi\)
\(270\) 0.193264 0.0117617
\(271\) −15.9554 −0.969219 −0.484609 0.874731i \(-0.661038\pi\)
−0.484609 + 0.874731i \(0.661038\pi\)
\(272\) 24.7851 1.50282
\(273\) 0 0
\(274\) 3.26218 0.197075
\(275\) −14.6339 −0.882455
\(276\) 24.9524 1.50196
\(277\) −10.5622 −0.634621 −0.317310 0.948322i \(-0.602780\pi\)
−0.317310 + 0.948322i \(0.602780\pi\)
\(278\) 3.33625 0.200095
\(279\) 0.0755102 0.00452068
\(280\) 0 0
\(281\) 8.87376 0.529364 0.264682 0.964336i \(-0.414733\pi\)
0.264682 + 0.964336i \(0.414733\pi\)
\(282\) −0.916995 −0.0546063
\(283\) 13.8510 0.823359 0.411680 0.911329i \(-0.364942\pi\)
0.411680 + 0.911329i \(0.364942\pi\)
\(284\) 13.9241 0.826243
\(285\) −1.82522 −0.108116
\(286\) 3.03189 0.179279
\(287\) 0 0
\(288\) −0.830220 −0.0489212
\(289\) 24.9606 1.46827
\(290\) 0.129323 0.00759413
\(291\) −23.8557 −1.39844
\(292\) 15.9788 0.935091
\(293\) 9.28962 0.542705 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(294\) 0 0
\(295\) −1.51775 −0.0883669
\(296\) 6.14094 0.356935
\(297\) 16.2054 0.940335
\(298\) −1.47717 −0.0855700
\(299\) 47.3940 2.74087
\(300\) −15.7135 −0.907219
\(301\) 0 0
\(302\) −2.55220 −0.146863
\(303\) 24.7918 1.42425
\(304\) 21.0435 1.20693
\(305\) 3.16553 0.181258
\(306\) −0.456995 −0.0261246
\(307\) −28.5119 −1.62726 −0.813631 0.581382i \(-0.802512\pi\)
−0.813631 + 0.581382i \(0.802512\pi\)
\(308\) 0 0
\(309\) 20.2893 1.15422
\(310\) −0.00642822 −0.000365099 0
\(311\) −7.51913 −0.426371 −0.213185 0.977012i \(-0.568384\pi\)
−0.213185 + 0.977012i \(0.568384\pi\)
\(312\) 6.55921 0.371342
\(313\) −15.1262 −0.854983 −0.427492 0.904019i \(-0.640603\pi\)
−0.427492 + 0.904019i \(0.640603\pi\)
\(314\) −2.31259 −0.130507
\(315\) 0 0
\(316\) −11.2977 −0.635548
\(317\) −10.3384 −0.580661 −0.290331 0.956926i \(-0.593765\pi\)
−0.290331 + 0.956926i \(0.593765\pi\)
\(318\) 1.81687 0.101885
\(319\) 10.8439 0.607144
\(320\) −1.50843 −0.0843237
\(321\) −29.0361 −1.62064
\(322\) 0 0
\(323\) 35.6263 1.98230
\(324\) 14.9559 0.830886
\(325\) −29.8458 −1.65555
\(326\) 2.27154 0.125809
\(327\) −9.12802 −0.504781
\(328\) −0.486260 −0.0268492
\(329\) 0 0
\(330\) −0.167128 −0.00920012
\(331\) 1.33558 0.0734100 0.0367050 0.999326i \(-0.488314\pi\)
0.0367050 + 0.999326i \(0.488314\pi\)
\(332\) 19.3112 1.05984
\(333\) 3.74863 0.205424
\(334\) −0.921339 −0.0504135
\(335\) 1.31095 0.0716250
\(336\) 0 0
\(337\) −12.6188 −0.687388 −0.343694 0.939082i \(-0.611678\pi\)
−0.343694 + 0.939082i \(0.611678\pi\)
\(338\) 3.96572 0.215707
\(339\) 0.532949 0.0289458
\(340\) −2.63449 −0.142875
\(341\) −0.539015 −0.0291893
\(342\) −0.388007 −0.0209810
\(343\) 0 0
\(344\) −2.98884 −0.161148
\(345\) −2.61253 −0.140654
\(346\) −0.0795655 −0.00427747
\(347\) −2.34794 −0.126044 −0.0630221 0.998012i \(-0.520074\pi\)
−0.0630221 + 0.998012i \(0.520074\pi\)
\(348\) 11.6440 0.624182
\(349\) 14.3453 0.767885 0.383943 0.923357i \(-0.374566\pi\)
0.383943 + 0.923357i \(0.374566\pi\)
\(350\) 0 0
\(351\) 33.0510 1.76413
\(352\) 5.92637 0.315876
\(353\) −18.7887 −1.00002 −0.500011 0.866019i \(-0.666671\pi\)
−0.500011 + 0.866019i \(0.666671\pi\)
\(354\) 2.01802 0.107256
\(355\) −1.45786 −0.0773750
\(356\) −29.3476 −1.55542
\(357\) 0 0
\(358\) 1.72239 0.0910312
\(359\) −11.5788 −0.611107 −0.305553 0.952175i \(-0.598841\pi\)
−0.305553 + 0.952175i \(0.598841\pi\)
\(360\) 0.0578082 0.00304676
\(361\) 11.2481 0.592006
\(362\) 3.79773 0.199604
\(363\) 3.67681 0.192982
\(364\) 0 0
\(365\) −1.67299 −0.0875683
\(366\) −4.20892 −0.220004
\(367\) −5.31371 −0.277373 −0.138687 0.990336i \(-0.544288\pi\)
−0.138687 + 0.990336i \(0.544288\pi\)
\(368\) 30.1207 1.57015
\(369\) −0.296829 −0.0154523
\(370\) −0.319123 −0.0165904
\(371\) 0 0
\(372\) −0.578782 −0.0300084
\(373\) −36.9922 −1.91539 −0.957693 0.287792i \(-0.907079\pi\)
−0.957693 + 0.287792i \(0.907079\pi\)
\(374\) 3.26217 0.168683
\(375\) 3.30455 0.170646
\(376\) −2.26413 −0.116764
\(377\) 22.1162 1.13904
\(378\) 0 0
\(379\) −14.5568 −0.747730 −0.373865 0.927483i \(-0.621968\pi\)
−0.373865 + 0.927483i \(0.621968\pi\)
\(380\) −2.23678 −0.114745
\(381\) 1.60825 0.0823932
\(382\) −1.39959 −0.0716095
\(383\) 16.5337 0.844833 0.422416 0.906402i \(-0.361182\pi\)
0.422416 + 0.906402i \(0.361182\pi\)
\(384\) 8.46318 0.431885
\(385\) 0 0
\(386\) 1.21301 0.0617403
\(387\) −1.82449 −0.0927439
\(388\) −29.2349 −1.48418
\(389\) 0.903542 0.0458114 0.0229057 0.999738i \(-0.492708\pi\)
0.0229057 + 0.999738i \(0.492708\pi\)
\(390\) −0.340859 −0.0172601
\(391\) 50.9937 2.57886
\(392\) 0 0
\(393\) −15.3712 −0.775374
\(394\) −2.21250 −0.111464
\(395\) 1.18288 0.0595170
\(396\) 2.40589 0.120900
\(397\) 19.6722 0.987318 0.493659 0.869656i \(-0.335659\pi\)
0.493659 + 0.869656i \(0.335659\pi\)
\(398\) −3.52566 −0.176725
\(399\) 0 0
\(400\) −18.9682 −0.948408
\(401\) 19.5957 0.978562 0.489281 0.872126i \(-0.337259\pi\)
0.489281 + 0.872126i \(0.337259\pi\)
\(402\) −1.74306 −0.0869357
\(403\) −1.09932 −0.0547612
\(404\) 30.3821 1.51156
\(405\) −1.56589 −0.0778098
\(406\) 0 0
\(407\) −26.7589 −1.32639
\(408\) 7.05741 0.349394
\(409\) 16.0598 0.794106 0.397053 0.917796i \(-0.370033\pi\)
0.397053 + 0.917796i \(0.370033\pi\)
\(410\) 0.0252692 0.00124796
\(411\) −30.7524 −1.51691
\(412\) 24.8643 1.22498
\(413\) 0 0
\(414\) −0.555374 −0.0272952
\(415\) −2.02189 −0.0992506
\(416\) 12.0868 0.592606
\(417\) −31.4507 −1.54015
\(418\) 2.76971 0.135471
\(419\) 12.9330 0.631818 0.315909 0.948790i \(-0.397691\pi\)
0.315909 + 0.948790i \(0.397691\pi\)
\(420\) 0 0
\(421\) −24.9490 −1.21594 −0.607970 0.793960i \(-0.708016\pi\)
−0.607970 + 0.793960i \(0.708016\pi\)
\(422\) 0.369876 0.0180053
\(423\) −1.38210 −0.0672000
\(424\) 4.48598 0.217859
\(425\) −32.1127 −1.55769
\(426\) 1.93838 0.0939148
\(427\) 0 0
\(428\) −35.5835 −1.71999
\(429\) −28.5815 −1.37993
\(430\) 0.155320 0.00749017
\(431\) −7.50132 −0.361326 −0.180663 0.983545i \(-0.557824\pi\)
−0.180663 + 0.983545i \(0.557824\pi\)
\(432\) 21.0052 1.01061
\(433\) 14.1428 0.679661 0.339831 0.940487i \(-0.389630\pi\)
0.339831 + 0.940487i \(0.389630\pi\)
\(434\) 0 0
\(435\) −1.21913 −0.0584526
\(436\) −11.1863 −0.535726
\(437\) 43.2957 2.07112
\(438\) 2.22442 0.106287
\(439\) −9.05446 −0.432146 −0.216073 0.976377i \(-0.569325\pi\)
−0.216073 + 0.976377i \(0.569325\pi\)
\(440\) −0.412653 −0.0196725
\(441\) 0 0
\(442\) 6.65320 0.316460
\(443\) −29.2026 −1.38746 −0.693729 0.720236i \(-0.744033\pi\)
−0.693729 + 0.720236i \(0.744033\pi\)
\(444\) −28.7330 −1.36361
\(445\) 3.07270 0.145660
\(446\) 0.188227 0.00891282
\(447\) 13.9252 0.658639
\(448\) 0 0
\(449\) 1.14072 0.0538341 0.0269170 0.999638i \(-0.491431\pi\)
0.0269170 + 0.999638i \(0.491431\pi\)
\(450\) 0.349740 0.0164869
\(451\) 2.11886 0.0997732
\(452\) 0.653124 0.0307204
\(453\) 24.0595 1.13041
\(454\) 1.36530 0.0640766
\(455\) 0 0
\(456\) 5.99202 0.280602
\(457\) −21.9756 −1.02798 −0.513988 0.857797i \(-0.671832\pi\)
−0.513988 + 0.857797i \(0.671832\pi\)
\(458\) −0.0620810 −0.00290086
\(459\) 35.5614 1.65986
\(460\) −3.20163 −0.149277
\(461\) 22.1987 1.03390 0.516948 0.856017i \(-0.327068\pi\)
0.516948 + 0.856017i \(0.327068\pi\)
\(462\) 0 0
\(463\) 3.57602 0.166192 0.0830958 0.996542i \(-0.473519\pi\)
0.0830958 + 0.996542i \(0.473519\pi\)
\(464\) 14.0557 0.652521
\(465\) 0.0605986 0.00281019
\(466\) −4.88076 −0.226097
\(467\) 5.02468 0.232514 0.116257 0.993219i \(-0.462910\pi\)
0.116257 + 0.993219i \(0.462910\pi\)
\(468\) 4.90681 0.226817
\(469\) 0 0
\(470\) 0.117659 0.00542720
\(471\) 21.8007 1.00452
\(472\) 4.98264 0.229345
\(473\) 13.0238 0.598833
\(474\) −1.57277 −0.0722395
\(475\) −27.2649 −1.25100
\(476\) 0 0
\(477\) 2.73839 0.125382
\(478\) −4.86046 −0.222312
\(479\) 39.0051 1.78219 0.891094 0.453818i \(-0.149938\pi\)
0.891094 + 0.453818i \(0.149938\pi\)
\(480\) −0.666270 −0.0304109
\(481\) −54.5747 −2.48839
\(482\) 0.362771 0.0165238
\(483\) 0 0
\(484\) 4.50589 0.204813
\(485\) 3.06090 0.138988
\(486\) −0.727681 −0.0330083
\(487\) −1.09342 −0.0495476 −0.0247738 0.999693i \(-0.507887\pi\)
−0.0247738 + 0.999693i \(0.507887\pi\)
\(488\) −10.3921 −0.470430
\(489\) −21.4138 −0.968364
\(490\) 0 0
\(491\) −26.2655 −1.18535 −0.592673 0.805443i \(-0.701927\pi\)
−0.592673 + 0.805443i \(0.701927\pi\)
\(492\) 2.27518 0.102573
\(493\) 23.7960 1.07172
\(494\) 5.64883 0.254153
\(495\) −0.251897 −0.0113219
\(496\) −0.698663 −0.0313709
\(497\) 0 0
\(498\) 2.68832 0.120467
\(499\) −29.5452 −1.32262 −0.661311 0.750111i \(-0.730000\pi\)
−0.661311 + 0.750111i \(0.730000\pi\)
\(500\) 4.04969 0.181108
\(501\) 8.68543 0.388036
\(502\) −2.10150 −0.0937946
\(503\) 42.8080 1.90871 0.954357 0.298670i \(-0.0965429\pi\)
0.954357 + 0.298670i \(0.0965429\pi\)
\(504\) 0 0
\(505\) −3.18101 −0.141553
\(506\) 3.96443 0.176241
\(507\) −37.3847 −1.66031
\(508\) 1.97090 0.0874443
\(509\) 36.8649 1.63401 0.817004 0.576632i \(-0.195633\pi\)
0.817004 + 0.576632i \(0.195633\pi\)
\(510\) −0.366748 −0.0162399
\(511\) 0 0
\(512\) 12.8657 0.568590
\(513\) 30.1930 1.33305
\(514\) 0.743112 0.0327773
\(515\) −2.60330 −0.114715
\(516\) 13.9846 0.615637
\(517\) 9.86586 0.433900
\(518\) 0 0
\(519\) 0.750060 0.0329240
\(520\) −0.841607 −0.0369069
\(521\) 2.49859 0.109465 0.0547327 0.998501i \(-0.482569\pi\)
0.0547327 + 0.998501i \(0.482569\pi\)
\(522\) −0.259163 −0.0113433
\(523\) −17.7123 −0.774506 −0.387253 0.921974i \(-0.626576\pi\)
−0.387253 + 0.921974i \(0.626576\pi\)
\(524\) −18.8372 −0.822908
\(525\) 0 0
\(526\) −1.23684 −0.0539286
\(527\) −1.18282 −0.0515245
\(528\) −18.1646 −0.790515
\(529\) 38.9714 1.69441
\(530\) −0.233120 −0.0101261
\(531\) 3.04156 0.131993
\(532\) 0 0
\(533\) 4.32142 0.187181
\(534\) −4.08549 −0.176796
\(535\) 3.72560 0.161072
\(536\) −4.30374 −0.185893
\(537\) −16.2369 −0.700674
\(538\) 0.308794 0.0133130
\(539\) 0 0
\(540\) −2.23271 −0.0960806
\(541\) 36.2962 1.56050 0.780248 0.625470i \(-0.215093\pi\)
0.780248 + 0.625470i \(0.215093\pi\)
\(542\) −2.72200 −0.116920
\(543\) −35.8011 −1.53637
\(544\) 13.0049 0.557579
\(545\) 1.17121 0.0501691
\(546\) 0 0
\(547\) 1.05534 0.0451231 0.0225615 0.999745i \(-0.492818\pi\)
0.0225615 + 0.999745i \(0.492818\pi\)
\(548\) −37.6868 −1.60990
\(549\) −6.34370 −0.270743
\(550\) −2.49655 −0.106453
\(551\) 20.2038 0.860710
\(552\) 8.57669 0.365048
\(553\) 0 0
\(554\) −1.80192 −0.0765564
\(555\) 3.00836 0.127698
\(556\) −38.5426 −1.63457
\(557\) 4.73085 0.200453 0.100226 0.994965i \(-0.468043\pi\)
0.100226 + 0.994965i \(0.468043\pi\)
\(558\) 0.0128821 0.000545344 0
\(559\) 26.5620 1.12345
\(560\) 0 0
\(561\) −30.7523 −1.29836
\(562\) 1.51387 0.0638589
\(563\) −29.8718 −1.25894 −0.629472 0.777023i \(-0.716729\pi\)
−0.629472 + 0.777023i \(0.716729\pi\)
\(564\) 10.5937 0.446076
\(565\) −0.0683823 −0.00287686
\(566\) 2.36300 0.0993245
\(567\) 0 0
\(568\) 4.78601 0.200817
\(569\) −40.9556 −1.71695 −0.858473 0.512859i \(-0.828587\pi\)
−0.858473 + 0.512859i \(0.828587\pi\)
\(570\) −0.311384 −0.0130424
\(571\) 28.0854 1.17534 0.587668 0.809102i \(-0.300046\pi\)
0.587668 + 0.809102i \(0.300046\pi\)
\(572\) −35.0263 −1.46452
\(573\) 13.1939 0.551184
\(574\) 0 0
\(575\) −39.0258 −1.62749
\(576\) 3.02288 0.125953
\(577\) 24.4957 1.01977 0.509884 0.860243i \(-0.329688\pi\)
0.509884 + 0.860243i \(0.329688\pi\)
\(578\) 4.25832 0.177123
\(579\) −11.4350 −0.475220
\(580\) −1.49403 −0.0620361
\(581\) 0 0
\(582\) −4.06980 −0.168699
\(583\) −19.5475 −0.809573
\(584\) 5.49228 0.227272
\(585\) −0.513744 −0.0212407
\(586\) 1.58482 0.0654683
\(587\) −26.5944 −1.09767 −0.548834 0.835931i \(-0.684928\pi\)
−0.548834 + 0.835931i \(0.684928\pi\)
\(588\) 0 0
\(589\) −1.00426 −0.0413799
\(590\) −0.258930 −0.0106600
\(591\) 20.8572 0.857950
\(592\) −34.6844 −1.42552
\(593\) −1.49143 −0.0612459 −0.0306229 0.999531i \(-0.509749\pi\)
−0.0306229 + 0.999531i \(0.509749\pi\)
\(594\) 2.76467 0.113436
\(595\) 0 0
\(596\) 17.0652 0.699017
\(597\) 33.2363 1.36027
\(598\) 8.08547 0.330639
\(599\) −28.5590 −1.16689 −0.583445 0.812153i \(-0.698296\pi\)
−0.583445 + 0.812153i \(0.698296\pi\)
\(600\) −5.40107 −0.220498
\(601\) 7.45416 0.304062 0.152031 0.988376i \(-0.451419\pi\)
0.152031 + 0.988376i \(0.451419\pi\)
\(602\) 0 0
\(603\) −2.62714 −0.106986
\(604\) 29.4847 1.19971
\(605\) −0.471768 −0.0191801
\(606\) 4.22950 0.171812
\(607\) −6.18969 −0.251232 −0.125616 0.992079i \(-0.540091\pi\)
−0.125616 + 0.992079i \(0.540091\pi\)
\(608\) 11.0417 0.447798
\(609\) 0 0
\(610\) 0.540042 0.0218657
\(611\) 20.1214 0.814026
\(612\) 5.27950 0.213411
\(613\) 37.3292 1.50771 0.753857 0.657039i \(-0.228191\pi\)
0.753857 + 0.657039i \(0.228191\pi\)
\(614\) −4.86417 −0.196302
\(615\) −0.238212 −0.00960563
\(616\) 0 0
\(617\) 45.8234 1.84478 0.922391 0.386257i \(-0.126232\pi\)
0.922391 + 0.386257i \(0.126232\pi\)
\(618\) 3.46138 0.139237
\(619\) 19.5672 0.786473 0.393236 0.919437i \(-0.371355\pi\)
0.393236 + 0.919437i \(0.371355\pi\)
\(620\) 0.0742630 0.00298247
\(621\) 43.2169 1.73423
\(622\) −1.28277 −0.0514345
\(623\) 0 0
\(624\) −37.0468 −1.48306
\(625\) 24.3631 0.974524
\(626\) −2.58055 −0.103139
\(627\) −26.1100 −1.04273
\(628\) 26.7166 1.06611
\(629\) −58.7199 −2.34132
\(630\) 0 0
\(631\) −2.98989 −0.119026 −0.0595129 0.998228i \(-0.518955\pi\)
−0.0595129 + 0.998228i \(0.518955\pi\)
\(632\) −3.88328 −0.154469
\(633\) −3.48681 −0.138588
\(634\) −1.76374 −0.0700470
\(635\) −0.206353 −0.00818888
\(636\) −20.9896 −0.832292
\(637\) 0 0
\(638\) 1.84999 0.0732417
\(639\) 2.92154 0.115574
\(640\) −1.08590 −0.0429241
\(641\) 45.0880 1.78087 0.890434 0.455112i \(-0.150401\pi\)
0.890434 + 0.455112i \(0.150401\pi\)
\(642\) −4.95360 −0.195503
\(643\) −43.4923 −1.71517 −0.857585 0.514342i \(-0.828036\pi\)
−0.857585 + 0.514342i \(0.828036\pi\)
\(644\) 0 0
\(645\) −1.46419 −0.0576525
\(646\) 6.07788 0.239131
\(647\) 11.9165 0.468485 0.234242 0.972178i \(-0.424739\pi\)
0.234242 + 0.972178i \(0.424739\pi\)
\(648\) 5.14068 0.201945
\(649\) −21.7116 −0.852256
\(650\) −5.09173 −0.199714
\(651\) 0 0
\(652\) −26.2424 −1.02773
\(653\) −0.522585 −0.0204503 −0.0102252 0.999948i \(-0.503255\pi\)
−0.0102252 + 0.999948i \(0.503255\pi\)
\(654\) −1.55725 −0.0608933
\(655\) 1.97226 0.0770627
\(656\) 2.74643 0.107230
\(657\) 3.35266 0.130800
\(658\) 0 0
\(659\) 18.0786 0.704243 0.352121 0.935954i \(-0.385460\pi\)
0.352121 + 0.935954i \(0.385460\pi\)
\(660\) 1.93078 0.0751554
\(661\) 10.6760 0.415249 0.207625 0.978209i \(-0.433427\pi\)
0.207625 + 0.978209i \(0.433427\pi\)
\(662\) 0.227851 0.00885569
\(663\) −62.7194 −2.43582
\(664\) 6.63768 0.257592
\(665\) 0 0
\(666\) 0.639520 0.0247809
\(667\) 28.9187 1.11974
\(668\) 10.6439 0.411825
\(669\) −1.77441 −0.0686027
\(670\) 0.223650 0.00864036
\(671\) 45.2833 1.74814
\(672\) 0 0
\(673\) 44.6274 1.72026 0.860130 0.510074i \(-0.170382\pi\)
0.860130 + 0.510074i \(0.170382\pi\)
\(674\) −2.15278 −0.0829219
\(675\) −27.2153 −1.04752
\(676\) −45.8146 −1.76210
\(677\) 45.2122 1.73765 0.868823 0.495123i \(-0.164877\pi\)
0.868823 + 0.495123i \(0.164877\pi\)
\(678\) 0.0909217 0.00349183
\(679\) 0 0
\(680\) −0.905530 −0.0347255
\(681\) −12.8706 −0.493203
\(682\) −0.0919566 −0.00352120
\(683\) 6.72334 0.257261 0.128631 0.991693i \(-0.458942\pi\)
0.128631 + 0.991693i \(0.458942\pi\)
\(684\) 4.48250 0.171393
\(685\) 3.94582 0.150762
\(686\) 0 0
\(687\) 0.585235 0.0223281
\(688\) 16.8812 0.643589
\(689\) −39.8671 −1.51882
\(690\) −0.445700 −0.0169675
\(691\) 9.59035 0.364834 0.182417 0.983221i \(-0.441608\pi\)
0.182417 + 0.983221i \(0.441608\pi\)
\(692\) 0.919192 0.0349424
\(693\) 0 0
\(694\) −0.400562 −0.0152051
\(695\) 4.03542 0.153072
\(696\) 4.00228 0.151706
\(697\) 4.64964 0.176118
\(698\) 2.44732 0.0926325
\(699\) 46.0107 1.74029
\(700\) 0 0
\(701\) 18.0322 0.681066 0.340533 0.940233i \(-0.389393\pi\)
0.340533 + 0.940233i \(0.389393\pi\)
\(702\) 5.63854 0.212813
\(703\) −49.8555 −1.88034
\(704\) −21.5783 −0.813262
\(705\) −1.10917 −0.0417736
\(706\) −3.20538 −0.120636
\(707\) 0 0
\(708\) −23.3134 −0.876172
\(709\) 29.8573 1.12131 0.560657 0.828048i \(-0.310549\pi\)
0.560657 + 0.828048i \(0.310549\pi\)
\(710\) −0.248712 −0.00933399
\(711\) −2.37048 −0.0888999
\(712\) −10.0874 −0.378041
\(713\) −1.43745 −0.0538330
\(714\) 0 0
\(715\) 3.66726 0.137148
\(716\) −19.8982 −0.743630
\(717\) 45.8193 1.71115
\(718\) −1.97536 −0.0737198
\(719\) −25.0473 −0.934108 −0.467054 0.884229i \(-0.654685\pi\)
−0.467054 + 0.884229i \(0.654685\pi\)
\(720\) −0.326505 −0.0121681
\(721\) 0 0
\(722\) 1.91894 0.0714156
\(723\) −3.41983 −0.127185
\(724\) −43.8739 −1.63056
\(725\) −18.2112 −0.676348
\(726\) 0.627267 0.0232801
\(727\) −43.1090 −1.59882 −0.799412 0.600784i \(-0.794855\pi\)
−0.799412 + 0.600784i \(0.794855\pi\)
\(728\) 0 0
\(729\) 29.6250 1.09722
\(730\) −0.285414 −0.0105636
\(731\) 28.5794 1.05705
\(732\) 48.6241 1.79720
\(733\) −5.25092 −0.193947 −0.0969736 0.995287i \(-0.530916\pi\)
−0.0969736 + 0.995287i \(0.530916\pi\)
\(734\) −0.906525 −0.0334605
\(735\) 0 0
\(736\) 15.8045 0.582562
\(737\) 18.7534 0.690789
\(738\) −0.0506394 −0.00186406
\(739\) 5.24635 0.192990 0.0964950 0.995333i \(-0.469237\pi\)
0.0964950 + 0.995333i \(0.469237\pi\)
\(740\) 3.68671 0.135526
\(741\) −53.2513 −1.95624
\(742\) 0 0
\(743\) 11.7455 0.430899 0.215449 0.976515i \(-0.430878\pi\)
0.215449 + 0.976515i \(0.430878\pi\)
\(744\) −0.198940 −0.00729349
\(745\) −1.78673 −0.0654607
\(746\) −6.31092 −0.231059
\(747\) 4.05186 0.148250
\(748\) −37.6867 −1.37796
\(749\) 0 0
\(750\) 0.563759 0.0205856
\(751\) 24.2930 0.886463 0.443231 0.896407i \(-0.353832\pi\)
0.443231 + 0.896407i \(0.353832\pi\)
\(752\) 12.7880 0.466329
\(753\) 19.8108 0.721945
\(754\) 3.77305 0.137407
\(755\) −3.08705 −0.112349
\(756\) 0 0
\(757\) −28.3351 −1.02986 −0.514929 0.857233i \(-0.672182\pi\)
−0.514929 + 0.857233i \(0.672182\pi\)
\(758\) −2.48340 −0.0902011
\(759\) −37.3726 −1.35654
\(760\) −0.768831 −0.0278884
\(761\) 0.521485 0.0189038 0.00945190 0.999955i \(-0.496991\pi\)
0.00945190 + 0.999955i \(0.496991\pi\)
\(762\) 0.274369 0.00993935
\(763\) 0 0
\(764\) 16.1690 0.584975
\(765\) −0.552765 −0.0199853
\(766\) 2.82067 0.101915
\(767\) −44.2809 −1.59889
\(768\) −22.0686 −0.796331
\(769\) 42.0950 1.51798 0.758992 0.651100i \(-0.225692\pi\)
0.758992 + 0.651100i \(0.225692\pi\)
\(770\) 0 0
\(771\) −7.00528 −0.252289
\(772\) −14.0134 −0.504354
\(773\) −44.2658 −1.59213 −0.796066 0.605210i \(-0.793089\pi\)
−0.796066 + 0.605210i \(0.793089\pi\)
\(774\) −0.311260 −0.0111880
\(775\) 0.905218 0.0325164
\(776\) −10.0487 −0.360726
\(777\) 0 0
\(778\) 0.154145 0.00552638
\(779\) 3.94773 0.141442
\(780\) 3.93782 0.140997
\(781\) −20.8548 −0.746244
\(782\) 8.69959 0.311097
\(783\) 20.1670 0.720709
\(784\) 0 0
\(785\) −2.79723 −0.0998376
\(786\) −2.62234 −0.0935358
\(787\) 30.4455 1.08526 0.542632 0.839971i \(-0.317428\pi\)
0.542632 + 0.839971i \(0.317428\pi\)
\(788\) 25.5603 0.910547
\(789\) 11.6596 0.415093
\(790\) 0.201800 0.00717973
\(791\) 0 0
\(792\) 0.826955 0.0293846
\(793\) 92.3554 3.27963
\(794\) 3.35610 0.119103
\(795\) 2.19762 0.0779415
\(796\) 40.7307 1.44366
\(797\) 31.4005 1.11226 0.556131 0.831095i \(-0.312285\pi\)
0.556131 + 0.831095i \(0.312285\pi\)
\(798\) 0 0
\(799\) 21.6497 0.765912
\(800\) −9.95269 −0.351881
\(801\) −6.15767 −0.217571
\(802\) 3.34305 0.118047
\(803\) −23.9324 −0.844554
\(804\) 20.1369 0.710174
\(805\) 0 0
\(806\) −0.187546 −0.00660602
\(807\) −2.91098 −0.102471
\(808\) 10.4430 0.367382
\(809\) −35.4110 −1.24499 −0.622493 0.782626i \(-0.713880\pi\)
−0.622493 + 0.782626i \(0.713880\pi\)
\(810\) −0.267143 −0.00938644
\(811\) 33.1853 1.16529 0.582647 0.812725i \(-0.302017\pi\)
0.582647 + 0.812725i \(0.302017\pi\)
\(812\) 0 0
\(813\) 25.6602 0.899943
\(814\) −4.56509 −0.160006
\(815\) 2.74758 0.0962436
\(816\) −39.8607 −1.39540
\(817\) 24.2651 0.848928
\(818\) 2.73982 0.0957956
\(819\) 0 0
\(820\) −0.291926 −0.0101945
\(821\) −40.6379 −1.41827 −0.709136 0.705072i \(-0.750915\pi\)
−0.709136 + 0.705072i \(0.750915\pi\)
\(822\) −5.24640 −0.182989
\(823\) −47.6335 −1.66040 −0.830200 0.557465i \(-0.811774\pi\)
−0.830200 + 0.557465i \(0.811774\pi\)
\(824\) 8.54641 0.297728
\(825\) 23.5349 0.819381
\(826\) 0 0
\(827\) 33.7637 1.17408 0.587039 0.809559i \(-0.300294\pi\)
0.587039 + 0.809559i \(0.300294\pi\)
\(828\) 6.41605 0.222973
\(829\) −27.3714 −0.950649 −0.475325 0.879811i \(-0.657669\pi\)
−0.475325 + 0.879811i \(0.657669\pi\)
\(830\) −0.344937 −0.0119729
\(831\) 16.9867 0.589260
\(832\) −44.0089 −1.52574
\(833\) 0 0
\(834\) −5.36553 −0.185793
\(835\) −1.11442 −0.0385661
\(836\) −31.9975 −1.10666
\(837\) −1.00243 −0.0346491
\(838\) 2.20638 0.0762182
\(839\) −19.6027 −0.676761 −0.338380 0.941009i \(-0.609879\pi\)
−0.338380 + 0.941009i \(0.609879\pi\)
\(840\) 0 0
\(841\) −15.5052 −0.534661
\(842\) −4.25633 −0.146683
\(843\) −14.2712 −0.491527
\(844\) −4.27305 −0.147085
\(845\) 4.79680 0.165015
\(846\) −0.235788 −0.00810655
\(847\) 0 0
\(848\) −25.3371 −0.870080
\(849\) −22.2759 −0.764509
\(850\) −5.47846 −0.187910
\(851\) −71.3609 −2.44622
\(852\) −22.3934 −0.767186
\(853\) −16.1746 −0.553809 −0.276905 0.960897i \(-0.589309\pi\)
−0.276905 + 0.960897i \(0.589309\pi\)
\(854\) 0 0
\(855\) −0.469319 −0.0160504
\(856\) −12.2308 −0.418041
\(857\) −21.3510 −0.729335 −0.364668 0.931138i \(-0.618817\pi\)
−0.364668 + 0.931138i \(0.618817\pi\)
\(858\) −4.87603 −0.166465
\(859\) −0.615958 −0.0210162 −0.0105081 0.999945i \(-0.503345\pi\)
−0.0105081 + 0.999945i \(0.503345\pi\)
\(860\) −1.79435 −0.0611869
\(861\) 0 0
\(862\) −1.27973 −0.0435879
\(863\) −50.4704 −1.71803 −0.859016 0.511949i \(-0.828924\pi\)
−0.859016 + 0.511949i \(0.828924\pi\)
\(864\) 11.0215 0.374961
\(865\) −0.0962396 −0.00327225
\(866\) 2.41278 0.0819897
\(867\) −40.1430 −1.36333
\(868\) 0 0
\(869\) 16.9212 0.574013
\(870\) −0.207984 −0.00705133
\(871\) 38.2475 1.29597
\(872\) −3.84497 −0.130207
\(873\) −6.13403 −0.207605
\(874\) 7.38630 0.249845
\(875\) 0 0
\(876\) −25.6980 −0.868255
\(877\) 40.6889 1.37397 0.686983 0.726673i \(-0.258935\pi\)
0.686983 + 0.726673i \(0.258935\pi\)
\(878\) −1.54470 −0.0521312
\(879\) −14.9400 −0.503915
\(880\) 2.33069 0.0785676
\(881\) −34.1963 −1.15210 −0.576052 0.817413i \(-0.695407\pi\)
−0.576052 + 0.817413i \(0.695407\pi\)
\(882\) 0 0
\(883\) −20.2286 −0.680745 −0.340373 0.940291i \(-0.610553\pi\)
−0.340373 + 0.940291i \(0.610553\pi\)
\(884\) −76.8621 −2.58515
\(885\) 2.44092 0.0820507
\(886\) −4.98200 −0.167374
\(887\) −43.6034 −1.46406 −0.732030 0.681273i \(-0.761427\pi\)
−0.732030 + 0.681273i \(0.761427\pi\)
\(888\) −9.87616 −0.331422
\(889\) 0 0
\(890\) 0.524206 0.0175714
\(891\) −22.4003 −0.750438
\(892\) −2.17452 −0.0728084
\(893\) 18.3815 0.615113
\(894\) 2.37565 0.0794537
\(895\) 2.08334 0.0696385
\(896\) 0 0
\(897\) −76.2214 −2.54496
\(898\) 0.194609 0.00649418
\(899\) −0.670782 −0.0223718
\(900\) −4.04043 −0.134681
\(901\) −42.8952 −1.42904
\(902\) 0.361480 0.0120360
\(903\) 0 0
\(904\) 0.224493 0.00746652
\(905\) 4.59361 0.152697
\(906\) 4.10457 0.136365
\(907\) 24.4877 0.813102 0.406551 0.913628i \(-0.366731\pi\)
0.406551 + 0.913628i \(0.366731\pi\)
\(908\) −15.7728 −0.523439
\(909\) 6.37473 0.211436
\(910\) 0 0
\(911\) 30.1286 0.998206 0.499103 0.866543i \(-0.333663\pi\)
0.499103 + 0.866543i \(0.333663\pi\)
\(912\) −33.8433 −1.12066
\(913\) −28.9234 −0.957225
\(914\) −3.74906 −0.124008
\(915\) −5.09096 −0.168302
\(916\) 0.717200 0.0236970
\(917\) 0 0
\(918\) 6.06681 0.200235
\(919\) −37.4612 −1.23573 −0.617865 0.786284i \(-0.712002\pi\)
−0.617865 + 0.786284i \(0.712002\pi\)
\(920\) −1.10047 −0.0362814
\(921\) 45.8543 1.51095
\(922\) 3.78713 0.124722
\(923\) −42.5335 −1.40001
\(924\) 0 0
\(925\) 44.9386 1.47757
\(926\) 0.610073 0.0200482
\(927\) 5.21701 0.171349
\(928\) 7.37511 0.242100
\(929\) 10.3163 0.338468 0.169234 0.985576i \(-0.445871\pi\)
0.169234 + 0.985576i \(0.445871\pi\)
\(930\) 0.0103382 0.000339003 0
\(931\) 0 0
\(932\) 56.3857 1.84698
\(933\) 12.0926 0.395895
\(934\) 0.857216 0.0280490
\(935\) 3.94581 0.129042
\(936\) 1.68658 0.0551275
\(937\) −24.4343 −0.798235 −0.399117 0.916900i \(-0.630683\pi\)
−0.399117 + 0.916900i \(0.630683\pi\)
\(938\) 0 0
\(939\) 24.3267 0.793872
\(940\) −1.35927 −0.0443346
\(941\) −10.3783 −0.338324 −0.169162 0.985588i \(-0.554106\pi\)
−0.169162 + 0.985588i \(0.554106\pi\)
\(942\) 3.71923 0.121179
\(943\) 5.65060 0.184009
\(944\) −28.1422 −0.915952
\(945\) 0 0
\(946\) 2.22187 0.0722391
\(947\) 20.3460 0.661157 0.330579 0.943778i \(-0.392756\pi\)
0.330579 + 0.943778i \(0.392756\pi\)
\(948\) 18.1696 0.590121
\(949\) −48.8101 −1.58444
\(950\) −4.65143 −0.150912
\(951\) 16.6267 0.539158
\(952\) 0 0
\(953\) 25.1505 0.814704 0.407352 0.913271i \(-0.366452\pi\)
0.407352 + 0.913271i \(0.366452\pi\)
\(954\) 0.467172 0.0151253
\(955\) −1.69290 −0.0547810
\(956\) 56.1511 1.81606
\(957\) −17.4398 −0.563748
\(958\) 6.65432 0.214991
\(959\) 0 0
\(960\) 2.42593 0.0782966
\(961\) −30.9667 −0.998924
\(962\) −9.31051 −0.300183
\(963\) −7.46609 −0.240591
\(964\) −4.19097 −0.134982
\(965\) 1.46721 0.0472311
\(966\) 0 0
\(967\) −27.8536 −0.895711 −0.447855 0.894106i \(-0.647812\pi\)
−0.447855 + 0.894106i \(0.647812\pi\)
\(968\) 1.54877 0.0497794
\(969\) −57.2959 −1.84061
\(970\) 0.522193 0.0167666
\(971\) 2.52631 0.0810732 0.0405366 0.999178i \(-0.487093\pi\)
0.0405366 + 0.999178i \(0.487093\pi\)
\(972\) 8.40664 0.269643
\(973\) 0 0
\(974\) −0.186539 −0.00597708
\(975\) 47.9995 1.53721
\(976\) 58.6954 1.87880
\(977\) 52.7486 1.68758 0.843789 0.536674i \(-0.180320\pi\)
0.843789 + 0.536674i \(0.180320\pi\)
\(978\) −3.65321 −0.116817
\(979\) 43.9554 1.40482
\(980\) 0 0
\(981\) −2.34710 −0.0749370
\(982\) −4.48092 −0.142992
\(983\) 7.36372 0.234866 0.117433 0.993081i \(-0.462533\pi\)
0.117433 + 0.993081i \(0.462533\pi\)
\(984\) 0.782029 0.0249302
\(985\) −2.67617 −0.0852698
\(986\) 4.05963 0.129285
\(987\) 0 0
\(988\) −65.2590 −2.07616
\(989\) 34.7319 1.10441
\(990\) −0.0429739 −0.00136580
\(991\) 31.3967 0.997350 0.498675 0.866789i \(-0.333820\pi\)
0.498675 + 0.866789i \(0.333820\pi\)
\(992\) −0.366592 −0.0116393
\(993\) −2.14794 −0.0681629
\(994\) 0 0
\(995\) −4.26452 −0.135194
\(996\) −31.0573 −0.984087
\(997\) 16.1969 0.512960 0.256480 0.966550i \(-0.417437\pi\)
0.256480 + 0.966550i \(0.417437\pi\)
\(998\) −5.04044 −0.159552
\(999\) −49.7647 −1.57449
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.9 16
7.6 odd 2 889.2.a.c.1.9 16
21.20 even 2 8001.2.a.t.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.9 16 7.6 odd 2
6223.2.a.k.1.9 16 1.1 even 1 trivial
8001.2.a.t.1.8 16 21.20 even 2