Properties

Label 8001.2.a.t.1.8
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.170601\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.170601 q^{2} -1.97090 q^{4} +0.206353 q^{5} -1.00000 q^{7} +0.677439 q^{8} -0.0352041 q^{10} -2.95191 q^{11} -6.02043 q^{13} +0.170601 q^{14} +3.82622 q^{16} +6.47770 q^{17} -5.49983 q^{19} -0.406701 q^{20} +0.503600 q^{22} -7.87219 q^{23} -4.95742 q^{25} +1.02709 q^{26} +1.97090 q^{28} -3.67353 q^{29} +0.182599 q^{31} -2.00764 q^{32} -1.10510 q^{34} -0.206353 q^{35} -9.06492 q^{37} +0.938277 q^{38} +0.139792 q^{40} +0.717792 q^{41} +4.41197 q^{43} +5.81791 q^{44} +1.34301 q^{46} +3.34219 q^{47} +1.00000 q^{49} +0.845741 q^{50} +11.8656 q^{52} +6.62197 q^{53} -0.609137 q^{55} -0.677439 q^{56} +0.626708 q^{58} -7.35511 q^{59} -15.3403 q^{61} -0.0311515 q^{62} -7.30993 q^{64} -1.24234 q^{65} +6.35295 q^{67} -12.7669 q^{68} +0.0352041 q^{70} +7.06485 q^{71} +8.10741 q^{73} +1.54649 q^{74} +10.8396 q^{76} +2.95191 q^{77} +5.73229 q^{79} +0.789553 q^{80} -0.122456 q^{82} -9.79819 q^{83} +1.33670 q^{85} -0.752687 q^{86} -1.99974 q^{88} +14.8905 q^{89} +6.02043 q^{91} +15.5153 q^{92} -0.570182 q^{94} -1.13491 q^{95} -14.8333 q^{97} -0.170601 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8} - 2 q^{10} + 22 q^{11} - 4 q^{13} - 2 q^{14} + 12 q^{16} + 18 q^{17} - 15 q^{19} + 40 q^{20} - 11 q^{22} + 5 q^{23} + 15 q^{25} + 24 q^{26} - 12 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.170601 −0.120633 −0.0603166 0.998179i \(-0.519211\pi\)
−0.0603166 + 0.998179i \(0.519211\pi\)
\(3\) 0 0
\(4\) −1.97090 −0.985448
\(5\) 0.206353 0.0922840 0.0461420 0.998935i \(-0.485307\pi\)
0.0461420 + 0.998935i \(0.485307\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0.677439 0.239511
\(9\) 0 0
\(10\) −0.0352041 −0.0111325
\(11\) −2.95191 −0.890035 −0.445018 0.895522i \(-0.646803\pi\)
−0.445018 + 0.895522i \(0.646803\pi\)
\(12\) 0 0
\(13\) −6.02043 −1.66977 −0.834883 0.550427i \(-0.814465\pi\)
−0.834883 + 0.550427i \(0.814465\pi\)
\(14\) 0.170601 0.0455951
\(15\) 0 0
\(16\) 3.82622 0.956555
\(17\) 6.47770 1.57107 0.785537 0.618815i \(-0.212387\pi\)
0.785537 + 0.618815i \(0.212387\pi\)
\(18\) 0 0
\(19\) −5.49983 −1.26175 −0.630874 0.775886i \(-0.717303\pi\)
−0.630874 + 0.775886i \(0.717303\pi\)
\(20\) −0.406701 −0.0909410
\(21\) 0 0
\(22\) 0.503600 0.107368
\(23\) −7.87219 −1.64147 −0.820733 0.571312i \(-0.806435\pi\)
−0.820733 + 0.571312i \(0.806435\pi\)
\(24\) 0 0
\(25\) −4.95742 −0.991484
\(26\) 1.02709 0.201429
\(27\) 0 0
\(28\) 1.97090 0.372464
\(29\) −3.67353 −0.682157 −0.341079 0.940035i \(-0.610792\pi\)
−0.341079 + 0.940035i \(0.610792\pi\)
\(30\) 0 0
\(31\) 0.182599 0.0327957 0.0163978 0.999866i \(-0.494780\pi\)
0.0163978 + 0.999866i \(0.494780\pi\)
\(32\) −2.00764 −0.354903
\(33\) 0 0
\(34\) −1.10510 −0.189524
\(35\) −0.206353 −0.0348801
\(36\) 0 0
\(37\) −9.06492 −1.49026 −0.745132 0.666917i \(-0.767614\pi\)
−0.745132 + 0.666917i \(0.767614\pi\)
\(38\) 0.938277 0.152209
\(39\) 0 0
\(40\) 0.139792 0.0221030
\(41\) 0.717792 0.112100 0.0560501 0.998428i \(-0.482149\pi\)
0.0560501 + 0.998428i \(0.482149\pi\)
\(42\) 0 0
\(43\) 4.41197 0.672819 0.336410 0.941716i \(-0.390787\pi\)
0.336410 + 0.941716i \(0.390787\pi\)
\(44\) 5.81791 0.877083
\(45\) 0 0
\(46\) 1.34301 0.198015
\(47\) 3.34219 0.487509 0.243754 0.969837i \(-0.421621\pi\)
0.243754 + 0.969837i \(0.421621\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0.845741 0.119606
\(51\) 0 0
\(52\) 11.8656 1.64547
\(53\) 6.62197 0.909597 0.454799 0.890594i \(-0.349711\pi\)
0.454799 + 0.890594i \(0.349711\pi\)
\(54\) 0 0
\(55\) −0.609137 −0.0821360
\(56\) −0.677439 −0.0905266
\(57\) 0 0
\(58\) 0.626708 0.0822909
\(59\) −7.35511 −0.957553 −0.478777 0.877937i \(-0.658920\pi\)
−0.478777 + 0.877937i \(0.658920\pi\)
\(60\) 0 0
\(61\) −15.3403 −1.96413 −0.982064 0.188549i \(-0.939621\pi\)
−0.982064 + 0.188549i \(0.939621\pi\)
\(62\) −0.0311515 −0.00395625
\(63\) 0 0
\(64\) −7.30993 −0.913742
\(65\) −1.24234 −0.154093
\(66\) 0 0
\(67\) 6.35295 0.776137 0.388068 0.921631i \(-0.373142\pi\)
0.388068 + 0.921631i \(0.373142\pi\)
\(68\) −12.7669 −1.54821
\(69\) 0 0
\(70\) 0.0352041 0.00420770
\(71\) 7.06485 0.838444 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(72\) 0 0
\(73\) 8.10741 0.948900 0.474450 0.880282i \(-0.342647\pi\)
0.474450 + 0.880282i \(0.342647\pi\)
\(74\) 1.54649 0.179775
\(75\) 0 0
\(76\) 10.8396 1.24339
\(77\) 2.95191 0.336402
\(78\) 0 0
\(79\) 5.73229 0.644933 0.322467 0.946581i \(-0.395488\pi\)
0.322467 + 0.946581i \(0.395488\pi\)
\(80\) 0.789553 0.0882747
\(81\) 0 0
\(82\) −0.122456 −0.0135230
\(83\) −9.79819 −1.07549 −0.537746 0.843107i \(-0.680724\pi\)
−0.537746 + 0.843107i \(0.680724\pi\)
\(84\) 0 0
\(85\) 1.33670 0.144985
\(86\) −0.752687 −0.0811644
\(87\) 0 0
\(88\) −1.99974 −0.213173
\(89\) 14.8905 1.57839 0.789193 0.614145i \(-0.210499\pi\)
0.789193 + 0.614145i \(0.210499\pi\)
\(90\) 0 0
\(91\) 6.02043 0.631113
\(92\) 15.5153 1.61758
\(93\) 0 0
\(94\) −0.570182 −0.0588098
\(95\) −1.13491 −0.116439
\(96\) 0 0
\(97\) −14.8333 −1.50609 −0.753046 0.657967i \(-0.771416\pi\)
−0.753046 + 0.657967i \(0.771416\pi\)
\(98\) −0.170601 −0.0172333
\(99\) 0 0
\(100\) 9.77055 0.977055
\(101\) −15.4154 −1.53389 −0.766943 0.641716i \(-0.778223\pi\)
−0.766943 + 0.641716i \(0.778223\pi\)
\(102\) 0 0
\(103\) 12.6158 1.24307 0.621534 0.783387i \(-0.286510\pi\)
0.621534 + 0.783387i \(0.286510\pi\)
\(104\) −4.07848 −0.399927
\(105\) 0 0
\(106\) −1.12972 −0.109728
\(107\) −18.0545 −1.74539 −0.872697 0.488262i \(-0.837631\pi\)
−0.872697 + 0.488262i \(0.837631\pi\)
\(108\) 0 0
\(109\) 5.67574 0.543638 0.271819 0.962348i \(-0.412375\pi\)
0.271819 + 0.962348i \(0.412375\pi\)
\(110\) 0.103919 0.00990833
\(111\) 0 0
\(112\) −3.82622 −0.361544
\(113\) 0.331384 0.0311740 0.0155870 0.999879i \(-0.495038\pi\)
0.0155870 + 0.999879i \(0.495038\pi\)
\(114\) 0 0
\(115\) −1.62445 −0.151481
\(116\) 7.24014 0.672230
\(117\) 0 0
\(118\) 1.25479 0.115513
\(119\) −6.47770 −0.593810
\(120\) 0 0
\(121\) −2.28621 −0.207838
\(122\) 2.61708 0.236939
\(123\) 0 0
\(124\) −0.359883 −0.0323184
\(125\) −2.05475 −0.183782
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 5.26235 0.465131
\(129\) 0 0
\(130\) 0.211944 0.0185887
\(131\) 9.55770 0.835061 0.417530 0.908663i \(-0.362896\pi\)
0.417530 + 0.908663i \(0.362896\pi\)
\(132\) 0 0
\(133\) 5.49983 0.476896
\(134\) −1.08382 −0.0936279
\(135\) 0 0
\(136\) 4.38825 0.376289
\(137\) −19.1217 −1.63367 −0.816837 0.576868i \(-0.804275\pi\)
−0.816837 + 0.576868i \(0.804275\pi\)
\(138\) 0 0
\(139\) −19.5559 −1.65871 −0.829353 0.558725i \(-0.811291\pi\)
−0.829353 + 0.558725i \(0.811291\pi\)
\(140\) 0.406701 0.0343725
\(141\) 0 0
\(142\) −1.20527 −0.101144
\(143\) 17.7718 1.48615
\(144\) 0 0
\(145\) −0.758045 −0.0629522
\(146\) −1.38313 −0.114469
\(147\) 0 0
\(148\) 17.8660 1.46858
\(149\) 8.65860 0.709340 0.354670 0.934992i \(-0.384593\pi\)
0.354670 + 0.934992i \(0.384593\pi\)
\(150\) 0 0
\(151\) −14.9600 −1.21743 −0.608715 0.793389i \(-0.708315\pi\)
−0.608715 + 0.793389i \(0.708315\pi\)
\(152\) −3.72580 −0.302202
\(153\) 0 0
\(154\) −0.503600 −0.0405812
\(155\) 0.0376798 0.00302652
\(156\) 0 0
\(157\) 13.5556 1.08185 0.540926 0.841070i \(-0.318074\pi\)
0.540926 + 0.841070i \(0.318074\pi\)
\(158\) −0.977936 −0.0778004
\(159\) 0 0
\(160\) −0.414282 −0.0327519
\(161\) 7.87219 0.620416
\(162\) 0 0
\(163\) 13.3149 1.04291 0.521453 0.853280i \(-0.325390\pi\)
0.521453 + 0.853280i \(0.325390\pi\)
\(164\) −1.41469 −0.110469
\(165\) 0 0
\(166\) 1.67158 0.129740
\(167\) −5.40055 −0.417907 −0.208953 0.977926i \(-0.567006\pi\)
−0.208953 + 0.977926i \(0.567006\pi\)
\(168\) 0 0
\(169\) 23.2456 1.78812
\(170\) −0.228042 −0.0174900
\(171\) 0 0
\(172\) −8.69553 −0.663028
\(173\) −0.466383 −0.0354584 −0.0177292 0.999843i \(-0.505644\pi\)
−0.0177292 + 0.999843i \(0.505644\pi\)
\(174\) 0 0
\(175\) 4.95742 0.374746
\(176\) −11.2947 −0.851367
\(177\) 0 0
\(178\) −2.54033 −0.190406
\(179\) −10.0960 −0.754611 −0.377306 0.926089i \(-0.623149\pi\)
−0.377306 + 0.926089i \(0.623149\pi\)
\(180\) 0 0
\(181\) −22.2609 −1.65464 −0.827319 0.561732i \(-0.810135\pi\)
−0.827319 + 0.561732i \(0.810135\pi\)
\(182\) −1.02709 −0.0761331
\(183\) 0 0
\(184\) −5.33293 −0.393149
\(185\) −1.87058 −0.137528
\(186\) 0 0
\(187\) −19.1216 −1.39831
\(188\) −6.58711 −0.480414
\(189\) 0 0
\(190\) 0.193617 0.0140464
\(191\) 8.20390 0.593613 0.296807 0.954938i \(-0.404078\pi\)
0.296807 + 0.954938i \(0.404078\pi\)
\(192\) 0 0
\(193\) 7.11018 0.511802 0.255901 0.966703i \(-0.417628\pi\)
0.255901 + 0.966703i \(0.417628\pi\)
\(194\) 2.53058 0.181685
\(195\) 0 0
\(196\) −1.97090 −0.140778
\(197\) 12.9689 0.923994 0.461997 0.886882i \(-0.347133\pi\)
0.461997 + 0.886882i \(0.347133\pi\)
\(198\) 0 0
\(199\) 20.6661 1.46498 0.732491 0.680777i \(-0.238358\pi\)
0.732491 + 0.680777i \(0.238358\pi\)
\(200\) −3.35835 −0.237471
\(201\) 0 0
\(202\) 2.62988 0.185038
\(203\) 3.67353 0.257831
\(204\) 0 0
\(205\) 0.148119 0.0103451
\(206\) −2.15226 −0.149955
\(207\) 0 0
\(208\) −23.0355 −1.59722
\(209\) 16.2350 1.12300
\(210\) 0 0
\(211\) 2.16808 0.149257 0.0746283 0.997211i \(-0.476223\pi\)
0.0746283 + 0.997211i \(0.476223\pi\)
\(212\) −13.0512 −0.896360
\(213\) 0 0
\(214\) 3.08012 0.210552
\(215\) 0.910425 0.0620905
\(216\) 0 0
\(217\) −0.182599 −0.0123956
\(218\) −0.968289 −0.0655808
\(219\) 0 0
\(220\) 1.20054 0.0809407
\(221\) −38.9986 −2.62333
\(222\) 0 0
\(223\) −1.10332 −0.0738836 −0.0369418 0.999317i \(-0.511762\pi\)
−0.0369418 + 0.999317i \(0.511762\pi\)
\(224\) 2.00764 0.134141
\(225\) 0 0
\(226\) −0.0565346 −0.00376062
\(227\) 8.00286 0.531169 0.265584 0.964088i \(-0.414435\pi\)
0.265584 + 0.964088i \(0.414435\pi\)
\(228\) 0 0
\(229\) 0.363896 0.0240469 0.0120235 0.999928i \(-0.496173\pi\)
0.0120235 + 0.999928i \(0.496173\pi\)
\(230\) 0.277134 0.0182736
\(231\) 0 0
\(232\) −2.48859 −0.163384
\(233\) 28.6092 1.87425 0.937125 0.348994i \(-0.113477\pi\)
0.937125 + 0.348994i \(0.113477\pi\)
\(234\) 0 0
\(235\) 0.689672 0.0449893
\(236\) 14.4961 0.943619
\(237\) 0 0
\(238\) 1.10510 0.0716332
\(239\) 28.4902 1.84288 0.921438 0.388525i \(-0.127015\pi\)
0.921438 + 0.388525i \(0.127015\pi\)
\(240\) 0 0
\(241\) −2.12643 −0.136975 −0.0684877 0.997652i \(-0.521817\pi\)
−0.0684877 + 0.997652i \(0.521817\pi\)
\(242\) 0.390031 0.0250721
\(243\) 0 0
\(244\) 30.2342 1.93554
\(245\) 0.206353 0.0131834
\(246\) 0 0
\(247\) 33.1113 2.10682
\(248\) 0.123700 0.00785493
\(249\) 0 0
\(250\) 0.350542 0.0221702
\(251\) −12.3182 −0.777519 −0.388759 0.921339i \(-0.627096\pi\)
−0.388759 + 0.921339i \(0.627096\pi\)
\(252\) 0 0
\(253\) 23.2380 1.46096
\(254\) 0.170601 0.0107045
\(255\) 0 0
\(256\) 13.7221 0.857631
\(257\) 4.35584 0.271710 0.135855 0.990729i \(-0.456622\pi\)
0.135855 + 0.990729i \(0.456622\pi\)
\(258\) 0 0
\(259\) 9.06492 0.563267
\(260\) 2.44851 0.151850
\(261\) 0 0
\(262\) −1.63056 −0.100736
\(263\) 7.24987 0.447046 0.223523 0.974699i \(-0.428244\pi\)
0.223523 + 0.974699i \(0.428244\pi\)
\(264\) 0 0
\(265\) 1.36646 0.0839413
\(266\) −0.938277 −0.0575295
\(267\) 0 0
\(268\) −12.5210 −0.764842
\(269\) 1.81003 0.110360 0.0551798 0.998476i \(-0.482427\pi\)
0.0551798 + 0.998476i \(0.482427\pi\)
\(270\) 0 0
\(271\) 15.9554 0.969219 0.484609 0.874731i \(-0.338962\pi\)
0.484609 + 0.874731i \(0.338962\pi\)
\(272\) 24.7851 1.50282
\(273\) 0 0
\(274\) 3.26218 0.197075
\(275\) 14.6339 0.882455
\(276\) 0 0
\(277\) −10.5622 −0.634621 −0.317310 0.948322i \(-0.602780\pi\)
−0.317310 + 0.948322i \(0.602780\pi\)
\(278\) 3.33625 0.200095
\(279\) 0 0
\(280\) −0.139792 −0.00835416
\(281\) −8.87376 −0.529364 −0.264682 0.964336i \(-0.585267\pi\)
−0.264682 + 0.964336i \(0.585267\pi\)
\(282\) 0 0
\(283\) −13.8510 −0.823359 −0.411680 0.911329i \(-0.635058\pi\)
−0.411680 + 0.911329i \(0.635058\pi\)
\(284\) −13.9241 −0.826243
\(285\) 0 0
\(286\) −3.03189 −0.179279
\(287\) −0.717792 −0.0423699
\(288\) 0 0
\(289\) 24.9606 1.46827
\(290\) 0.129323 0.00759413
\(291\) 0 0
\(292\) −15.9788 −0.935091
\(293\) 9.28962 0.542705 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(294\) 0 0
\(295\) −1.51775 −0.0883669
\(296\) −6.14094 −0.356935
\(297\) 0 0
\(298\) −1.47717 −0.0855700
\(299\) 47.3940 2.74087
\(300\) 0 0
\(301\) −4.41197 −0.254302
\(302\) 2.55220 0.146863
\(303\) 0 0
\(304\) −21.0435 −1.20693
\(305\) −3.16553 −0.181258
\(306\) 0 0
\(307\) 28.5119 1.62726 0.813631 0.581382i \(-0.197488\pi\)
0.813631 + 0.581382i \(0.197488\pi\)
\(308\) −5.81791 −0.331506
\(309\) 0 0
\(310\) −0.00642822 −0.000365099 0
\(311\) −7.51913 −0.426371 −0.213185 0.977012i \(-0.568384\pi\)
−0.213185 + 0.977012i \(0.568384\pi\)
\(312\) 0 0
\(313\) 15.1262 0.854983 0.427492 0.904019i \(-0.359397\pi\)
0.427492 + 0.904019i \(0.359397\pi\)
\(314\) −2.31259 −0.130507
\(315\) 0 0
\(316\) −11.2977 −0.635548
\(317\) 10.3384 0.580661 0.290331 0.956926i \(-0.406235\pi\)
0.290331 + 0.956926i \(0.406235\pi\)
\(318\) 0 0
\(319\) 10.8439 0.607144
\(320\) −1.50843 −0.0843237
\(321\) 0 0
\(322\) −1.34301 −0.0748428
\(323\) −35.6263 −1.98230
\(324\) 0 0
\(325\) 29.8458 1.65555
\(326\) −2.27154 −0.125809
\(327\) 0 0
\(328\) 0.486260 0.0268492
\(329\) −3.34219 −0.184261
\(330\) 0 0
\(331\) 1.33558 0.0734100 0.0367050 0.999326i \(-0.488314\pi\)
0.0367050 + 0.999326i \(0.488314\pi\)
\(332\) 19.3112 1.05984
\(333\) 0 0
\(334\) 0.921339 0.0504135
\(335\) 1.31095 0.0716250
\(336\) 0 0
\(337\) −12.6188 −0.687388 −0.343694 0.939082i \(-0.611678\pi\)
−0.343694 + 0.939082i \(0.611678\pi\)
\(338\) −3.96572 −0.215707
\(339\) 0 0
\(340\) −2.63449 −0.142875
\(341\) −0.539015 −0.0291893
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 2.98884 0.161148
\(345\) 0 0
\(346\) 0.0795655 0.00427747
\(347\) 2.34794 0.126044 0.0630221 0.998012i \(-0.479926\pi\)
0.0630221 + 0.998012i \(0.479926\pi\)
\(348\) 0 0
\(349\) −14.3453 −0.767885 −0.383943 0.923357i \(-0.625434\pi\)
−0.383943 + 0.923357i \(0.625434\pi\)
\(350\) −0.845741 −0.0452068
\(351\) 0 0
\(352\) 5.92637 0.315876
\(353\) −18.7887 −1.00002 −0.500011 0.866019i \(-0.666671\pi\)
−0.500011 + 0.866019i \(0.666671\pi\)
\(354\) 0 0
\(355\) 1.45786 0.0773750
\(356\) −29.3476 −1.55542
\(357\) 0 0
\(358\) 1.72239 0.0910312
\(359\) 11.5788 0.611107 0.305553 0.952175i \(-0.401159\pi\)
0.305553 + 0.952175i \(0.401159\pi\)
\(360\) 0 0
\(361\) 11.2481 0.592006
\(362\) 3.79773 0.199604
\(363\) 0 0
\(364\) −11.8656 −0.621928
\(365\) 1.67299 0.0875683
\(366\) 0 0
\(367\) 5.31371 0.277373 0.138687 0.990336i \(-0.455712\pi\)
0.138687 + 0.990336i \(0.455712\pi\)
\(368\) −30.1207 −1.57015
\(369\) 0 0
\(370\) 0.319123 0.0165904
\(371\) −6.62197 −0.343795
\(372\) 0 0
\(373\) −36.9922 −1.91539 −0.957693 0.287792i \(-0.907079\pi\)
−0.957693 + 0.287792i \(0.907079\pi\)
\(374\) 3.26217 0.168683
\(375\) 0 0
\(376\) 2.26413 0.116764
\(377\) 22.1162 1.13904
\(378\) 0 0
\(379\) −14.5568 −0.747730 −0.373865 0.927483i \(-0.621968\pi\)
−0.373865 + 0.927483i \(0.621968\pi\)
\(380\) 2.23678 0.114745
\(381\) 0 0
\(382\) −1.39959 −0.0716095
\(383\) 16.5337 0.844833 0.422416 0.906402i \(-0.361182\pi\)
0.422416 + 0.906402i \(0.361182\pi\)
\(384\) 0 0
\(385\) 0.609137 0.0310445
\(386\) −1.21301 −0.0617403
\(387\) 0 0
\(388\) 29.2349 1.48418
\(389\) −0.903542 −0.0458114 −0.0229057 0.999738i \(-0.507292\pi\)
−0.0229057 + 0.999738i \(0.507292\pi\)
\(390\) 0 0
\(391\) −50.9937 −2.57886
\(392\) 0.677439 0.0342159
\(393\) 0 0
\(394\) −2.21250 −0.111464
\(395\) 1.18288 0.0595170
\(396\) 0 0
\(397\) −19.6722 −0.987318 −0.493659 0.869656i \(-0.664341\pi\)
−0.493659 + 0.869656i \(0.664341\pi\)
\(398\) −3.52566 −0.176725
\(399\) 0 0
\(400\) −18.9682 −0.948408
\(401\) −19.5957 −0.978562 −0.489281 0.872126i \(-0.662741\pi\)
−0.489281 + 0.872126i \(0.662741\pi\)
\(402\) 0 0
\(403\) −1.09932 −0.0547612
\(404\) 30.3821 1.51156
\(405\) 0 0
\(406\) −0.626708 −0.0311030
\(407\) 26.7589 1.32639
\(408\) 0 0
\(409\) −16.0598 −0.794106 −0.397053 0.917796i \(-0.629967\pi\)
−0.397053 + 0.917796i \(0.629967\pi\)
\(410\) −0.0252692 −0.00124796
\(411\) 0 0
\(412\) −24.8643 −1.22498
\(413\) 7.35511 0.361921
\(414\) 0 0
\(415\) −2.02189 −0.0992506
\(416\) 12.0868 0.592606
\(417\) 0 0
\(418\) −2.76971 −0.135471
\(419\) 12.9330 0.631818 0.315909 0.948790i \(-0.397691\pi\)
0.315909 + 0.948790i \(0.397691\pi\)
\(420\) 0 0
\(421\) −24.9490 −1.21594 −0.607970 0.793960i \(-0.708016\pi\)
−0.607970 + 0.793960i \(0.708016\pi\)
\(422\) −0.369876 −0.0180053
\(423\) 0 0
\(424\) 4.48598 0.217859
\(425\) −32.1127 −1.55769
\(426\) 0 0
\(427\) 15.3403 0.742370
\(428\) 35.5835 1.71999
\(429\) 0 0
\(430\) −0.155320 −0.00749017
\(431\) 7.50132 0.361326 0.180663 0.983545i \(-0.442176\pi\)
0.180663 + 0.983545i \(0.442176\pi\)
\(432\) 0 0
\(433\) −14.1428 −0.679661 −0.339831 0.940487i \(-0.610370\pi\)
−0.339831 + 0.940487i \(0.610370\pi\)
\(434\) 0.0311515 0.00149532
\(435\) 0 0
\(436\) −11.1863 −0.535726
\(437\) 43.2957 2.07112
\(438\) 0 0
\(439\) 9.05446 0.432146 0.216073 0.976377i \(-0.430675\pi\)
0.216073 + 0.976377i \(0.430675\pi\)
\(440\) −0.412653 −0.0196725
\(441\) 0 0
\(442\) 6.65320 0.316460
\(443\) 29.2026 1.38746 0.693729 0.720236i \(-0.255967\pi\)
0.693729 + 0.720236i \(0.255967\pi\)
\(444\) 0 0
\(445\) 3.07270 0.145660
\(446\) 0.188227 0.00891282
\(447\) 0 0
\(448\) 7.30993 0.345362
\(449\) −1.14072 −0.0538341 −0.0269170 0.999638i \(-0.508569\pi\)
−0.0269170 + 0.999638i \(0.508569\pi\)
\(450\) 0 0
\(451\) −2.11886 −0.0997732
\(452\) −0.653124 −0.0307204
\(453\) 0 0
\(454\) −1.36530 −0.0640766
\(455\) 1.24234 0.0582416
\(456\) 0 0
\(457\) −21.9756 −1.02798 −0.513988 0.857797i \(-0.671832\pi\)
−0.513988 + 0.857797i \(0.671832\pi\)
\(458\) −0.0620810 −0.00290086
\(459\) 0 0
\(460\) 3.20163 0.149277
\(461\) 22.1987 1.03390 0.516948 0.856017i \(-0.327068\pi\)
0.516948 + 0.856017i \(0.327068\pi\)
\(462\) 0 0
\(463\) 3.57602 0.166192 0.0830958 0.996542i \(-0.473519\pi\)
0.0830958 + 0.996542i \(0.473519\pi\)
\(464\) −14.0557 −0.652521
\(465\) 0 0
\(466\) −4.88076 −0.226097
\(467\) 5.02468 0.232514 0.116257 0.993219i \(-0.462910\pi\)
0.116257 + 0.993219i \(0.462910\pi\)
\(468\) 0 0
\(469\) −6.35295 −0.293352
\(470\) −0.117659 −0.00542720
\(471\) 0 0
\(472\) −4.98264 −0.229345
\(473\) −13.0238 −0.598833
\(474\) 0 0
\(475\) 27.2649 1.25100
\(476\) 12.7669 0.585169
\(477\) 0 0
\(478\) −4.86046 −0.222312
\(479\) 39.0051 1.78219 0.891094 0.453818i \(-0.149938\pi\)
0.891094 + 0.453818i \(0.149938\pi\)
\(480\) 0 0
\(481\) 54.5747 2.48839
\(482\) 0.362771 0.0165238
\(483\) 0 0
\(484\) 4.50589 0.204813
\(485\) −3.06090 −0.138988
\(486\) 0 0
\(487\) −1.09342 −0.0495476 −0.0247738 0.999693i \(-0.507887\pi\)
−0.0247738 + 0.999693i \(0.507887\pi\)
\(488\) −10.3921 −0.470430
\(489\) 0 0
\(490\) −0.0352041 −0.00159036
\(491\) 26.2655 1.18535 0.592673 0.805443i \(-0.298073\pi\)
0.592673 + 0.805443i \(0.298073\pi\)
\(492\) 0 0
\(493\) −23.7960 −1.07172
\(494\) −5.64883 −0.254153
\(495\) 0 0
\(496\) 0.698663 0.0313709
\(497\) −7.06485 −0.316902
\(498\) 0 0
\(499\) −29.5452 −1.32262 −0.661311 0.750111i \(-0.730000\pi\)
−0.661311 + 0.750111i \(0.730000\pi\)
\(500\) 4.04969 0.181108
\(501\) 0 0
\(502\) 2.10150 0.0937946
\(503\) 42.8080 1.90871 0.954357 0.298670i \(-0.0965429\pi\)
0.954357 + 0.298670i \(0.0965429\pi\)
\(504\) 0 0
\(505\) −3.18101 −0.141553
\(506\) −3.96443 −0.176241
\(507\) 0 0
\(508\) 1.97090 0.0874443
\(509\) 36.8649 1.63401 0.817004 0.576632i \(-0.195633\pi\)
0.817004 + 0.576632i \(0.195633\pi\)
\(510\) 0 0
\(511\) −8.10741 −0.358651
\(512\) −12.8657 −0.568590
\(513\) 0 0
\(514\) −0.743112 −0.0327773
\(515\) 2.60330 0.114715
\(516\) 0 0
\(517\) −9.86586 −0.433900
\(518\) −1.54649 −0.0679487
\(519\) 0 0
\(520\) −0.841607 −0.0369069
\(521\) 2.49859 0.109465 0.0547327 0.998501i \(-0.482569\pi\)
0.0547327 + 0.998501i \(0.482569\pi\)
\(522\) 0 0
\(523\) 17.7123 0.774506 0.387253 0.921974i \(-0.373424\pi\)
0.387253 + 0.921974i \(0.373424\pi\)
\(524\) −18.8372 −0.822908
\(525\) 0 0
\(526\) −1.23684 −0.0539286
\(527\) 1.18282 0.0515245
\(528\) 0 0
\(529\) 38.9714 1.69441
\(530\) −0.233120 −0.0101261
\(531\) 0 0
\(532\) −10.8396 −0.469956
\(533\) −4.32142 −0.187181
\(534\) 0 0
\(535\) −3.72560 −0.161072
\(536\) 4.30374 0.185893
\(537\) 0 0
\(538\) −0.308794 −0.0133130
\(539\) −2.95191 −0.127148
\(540\) 0 0
\(541\) 36.2962 1.56050 0.780248 0.625470i \(-0.215093\pi\)
0.780248 + 0.625470i \(0.215093\pi\)
\(542\) −2.72200 −0.116920
\(543\) 0 0
\(544\) −13.0049 −0.557579
\(545\) 1.17121 0.0501691
\(546\) 0 0
\(547\) 1.05534 0.0451231 0.0225615 0.999745i \(-0.492818\pi\)
0.0225615 + 0.999745i \(0.492818\pi\)
\(548\) 37.6868 1.60990
\(549\) 0 0
\(550\) −2.49655 −0.106453
\(551\) 20.2038 0.860710
\(552\) 0 0
\(553\) −5.73229 −0.243762
\(554\) 1.80192 0.0765564
\(555\) 0 0
\(556\) 38.5426 1.63457
\(557\) −4.73085 −0.200453 −0.100226 0.994965i \(-0.531957\pi\)
−0.100226 + 0.994965i \(0.531957\pi\)
\(558\) 0 0
\(559\) −26.5620 −1.12345
\(560\) −0.789553 −0.0333647
\(561\) 0 0
\(562\) 1.51387 0.0638589
\(563\) −29.8718 −1.25894 −0.629472 0.777023i \(-0.716729\pi\)
−0.629472 + 0.777023i \(0.716729\pi\)
\(564\) 0 0
\(565\) 0.0683823 0.00287686
\(566\) 2.36300 0.0993245
\(567\) 0 0
\(568\) 4.78601 0.200817
\(569\) 40.9556 1.71695 0.858473 0.512859i \(-0.171413\pi\)
0.858473 + 0.512859i \(0.171413\pi\)
\(570\) 0 0
\(571\) 28.0854 1.17534 0.587668 0.809102i \(-0.300046\pi\)
0.587668 + 0.809102i \(0.300046\pi\)
\(572\) −35.0263 −1.46452
\(573\) 0 0
\(574\) 0.122456 0.00511122
\(575\) 39.0258 1.62749
\(576\) 0 0
\(577\) −24.4957 −1.01977 −0.509884 0.860243i \(-0.670312\pi\)
−0.509884 + 0.860243i \(0.670312\pi\)
\(578\) −4.25832 −0.177123
\(579\) 0 0
\(580\) 1.49403 0.0620361
\(581\) 9.79819 0.406497
\(582\) 0 0
\(583\) −19.5475 −0.809573
\(584\) 5.49228 0.227272
\(585\) 0 0
\(586\) −1.58482 −0.0654683
\(587\) −26.5944 −1.09767 −0.548834 0.835931i \(-0.684928\pi\)
−0.548834 + 0.835931i \(0.684928\pi\)
\(588\) 0 0
\(589\) −1.00426 −0.0413799
\(590\) 0.258930 0.0106600
\(591\) 0 0
\(592\) −34.6844 −1.42552
\(593\) −1.49143 −0.0612459 −0.0306229 0.999531i \(-0.509749\pi\)
−0.0306229 + 0.999531i \(0.509749\pi\)
\(594\) 0 0
\(595\) −1.33670 −0.0547992
\(596\) −17.0652 −0.699017
\(597\) 0 0
\(598\) −8.08547 −0.330639
\(599\) 28.5590 1.16689 0.583445 0.812153i \(-0.301704\pi\)
0.583445 + 0.812153i \(0.301704\pi\)
\(600\) 0 0
\(601\) −7.45416 −0.304062 −0.152031 0.988376i \(-0.548581\pi\)
−0.152031 + 0.988376i \(0.548581\pi\)
\(602\) 0.752687 0.0306773
\(603\) 0 0
\(604\) 29.4847 1.19971
\(605\) −0.471768 −0.0191801
\(606\) 0 0
\(607\) 6.18969 0.251232 0.125616 0.992079i \(-0.459909\pi\)
0.125616 + 0.992079i \(0.459909\pi\)
\(608\) 11.0417 0.447798
\(609\) 0 0
\(610\) 0.540042 0.0218657
\(611\) −20.1214 −0.814026
\(612\) 0 0
\(613\) 37.3292 1.50771 0.753857 0.657039i \(-0.228191\pi\)
0.753857 + 0.657039i \(0.228191\pi\)
\(614\) −4.86417 −0.196302
\(615\) 0 0
\(616\) 1.99974 0.0805719
\(617\) −45.8234 −1.84478 −0.922391 0.386257i \(-0.873768\pi\)
−0.922391 + 0.386257i \(0.873768\pi\)
\(618\) 0 0
\(619\) −19.5672 −0.786473 −0.393236 0.919437i \(-0.628645\pi\)
−0.393236 + 0.919437i \(0.628645\pi\)
\(620\) −0.0742630 −0.00298247
\(621\) 0 0
\(622\) 1.28277 0.0514345
\(623\) −14.8905 −0.596574
\(624\) 0 0
\(625\) 24.3631 0.974524
\(626\) −2.58055 −0.103139
\(627\) 0 0
\(628\) −26.7166 −1.06611
\(629\) −58.7199 −2.34132
\(630\) 0 0
\(631\) −2.98989 −0.119026 −0.0595129 0.998228i \(-0.518955\pi\)
−0.0595129 + 0.998228i \(0.518955\pi\)
\(632\) 3.88328 0.154469
\(633\) 0 0
\(634\) −1.76374 −0.0700470
\(635\) −0.206353 −0.00818888
\(636\) 0 0
\(637\) −6.02043 −0.238538
\(638\) −1.84999 −0.0732417
\(639\) 0 0
\(640\) 1.08590 0.0429241
\(641\) −45.0880 −1.78087 −0.890434 0.455112i \(-0.849599\pi\)
−0.890434 + 0.455112i \(0.849599\pi\)
\(642\) 0 0
\(643\) 43.4923 1.71517 0.857585 0.514342i \(-0.171964\pi\)
0.857585 + 0.514342i \(0.171964\pi\)
\(644\) −15.5153 −0.611387
\(645\) 0 0
\(646\) 6.07788 0.239131
\(647\) 11.9165 0.468485 0.234242 0.972178i \(-0.424739\pi\)
0.234242 + 0.972178i \(0.424739\pi\)
\(648\) 0 0
\(649\) 21.7116 0.852256
\(650\) −5.09173 −0.199714
\(651\) 0 0
\(652\) −26.2424 −1.02773
\(653\) 0.522585 0.0204503 0.0102252 0.999948i \(-0.496745\pi\)
0.0102252 + 0.999948i \(0.496745\pi\)
\(654\) 0 0
\(655\) 1.97226 0.0770627
\(656\) 2.74643 0.107230
\(657\) 0 0
\(658\) 0.570182 0.0222280
\(659\) −18.0786 −0.704243 −0.352121 0.935954i \(-0.614540\pi\)
−0.352121 + 0.935954i \(0.614540\pi\)
\(660\) 0 0
\(661\) −10.6760 −0.415249 −0.207625 0.978209i \(-0.566573\pi\)
−0.207625 + 0.978209i \(0.566573\pi\)
\(662\) −0.227851 −0.00885569
\(663\) 0 0
\(664\) −6.63768 −0.257592
\(665\) 1.13491 0.0440098
\(666\) 0 0
\(667\) 28.9187 1.11974
\(668\) 10.6439 0.411825
\(669\) 0 0
\(670\) −0.223650 −0.00864036
\(671\) 45.2833 1.74814
\(672\) 0 0
\(673\) 44.6274 1.72026 0.860130 0.510074i \(-0.170382\pi\)
0.860130 + 0.510074i \(0.170382\pi\)
\(674\) 2.15278 0.0829219
\(675\) 0 0
\(676\) −45.8146 −1.76210
\(677\) 45.2122 1.73765 0.868823 0.495123i \(-0.164877\pi\)
0.868823 + 0.495123i \(0.164877\pi\)
\(678\) 0 0
\(679\) 14.8333 0.569250
\(680\) 0.905530 0.0347255
\(681\) 0 0
\(682\) 0.0919566 0.00352120
\(683\) −6.72334 −0.257261 −0.128631 0.991693i \(-0.541058\pi\)
−0.128631 + 0.991693i \(0.541058\pi\)
\(684\) 0 0
\(685\) −3.94582 −0.150762
\(686\) 0.170601 0.00651358
\(687\) 0 0
\(688\) 16.8812 0.643589
\(689\) −39.8671 −1.51882
\(690\) 0 0
\(691\) −9.59035 −0.364834 −0.182417 0.983221i \(-0.558392\pi\)
−0.182417 + 0.983221i \(0.558392\pi\)
\(692\) 0.919192 0.0349424
\(693\) 0 0
\(694\) −0.400562 −0.0152051
\(695\) −4.03542 −0.153072
\(696\) 0 0
\(697\) 4.64964 0.176118
\(698\) 2.44732 0.0926325
\(699\) 0 0
\(700\) −9.77055 −0.369292
\(701\) −18.0322 −0.681066 −0.340533 0.940233i \(-0.610607\pi\)
−0.340533 + 0.940233i \(0.610607\pi\)
\(702\) 0 0
\(703\) 49.8555 1.88034
\(704\) 21.5783 0.813262
\(705\) 0 0
\(706\) 3.20538 0.120636
\(707\) 15.4154 0.579754
\(708\) 0 0
\(709\) 29.8573 1.12131 0.560657 0.828048i \(-0.310549\pi\)
0.560657 + 0.828048i \(0.310549\pi\)
\(710\) −0.248712 −0.00933399
\(711\) 0 0
\(712\) 10.0874 0.378041
\(713\) −1.43745 −0.0538330
\(714\) 0 0
\(715\) 3.66726 0.137148
\(716\) 19.8982 0.743630
\(717\) 0 0
\(718\) −1.97536 −0.0737198
\(719\) −25.0473 −0.934108 −0.467054 0.884229i \(-0.654685\pi\)
−0.467054 + 0.884229i \(0.654685\pi\)
\(720\) 0 0
\(721\) −12.6158 −0.469836
\(722\) −1.91894 −0.0714156
\(723\) 0 0
\(724\) 43.8739 1.63056
\(725\) 18.2112 0.676348
\(726\) 0 0
\(727\) 43.1090 1.59882 0.799412 0.600784i \(-0.205145\pi\)
0.799412 + 0.600784i \(0.205145\pi\)
\(728\) 4.07848 0.151158
\(729\) 0 0
\(730\) −0.285414 −0.0105636
\(731\) 28.5794 1.05705
\(732\) 0 0
\(733\) 5.25092 0.193947 0.0969736 0.995287i \(-0.469084\pi\)
0.0969736 + 0.995287i \(0.469084\pi\)
\(734\) −0.906525 −0.0334605
\(735\) 0 0
\(736\) 15.8045 0.582562
\(737\) −18.7534 −0.690789
\(738\) 0 0
\(739\) 5.24635 0.192990 0.0964950 0.995333i \(-0.469237\pi\)
0.0964950 + 0.995333i \(0.469237\pi\)
\(740\) 3.68671 0.135526
\(741\) 0 0
\(742\) 1.12972 0.0414732
\(743\) −11.7455 −0.430899 −0.215449 0.976515i \(-0.569122\pi\)
−0.215449 + 0.976515i \(0.569122\pi\)
\(744\) 0 0
\(745\) 1.78673 0.0654607
\(746\) 6.31092 0.231059
\(747\) 0 0
\(748\) 37.6867 1.37796
\(749\) 18.0545 0.659697
\(750\) 0 0
\(751\) 24.2930 0.886463 0.443231 0.896407i \(-0.353832\pi\)
0.443231 + 0.896407i \(0.353832\pi\)
\(752\) 12.7880 0.466329
\(753\) 0 0
\(754\) −3.77305 −0.137407
\(755\) −3.08705 −0.112349
\(756\) 0 0
\(757\) −28.3351 −1.02986 −0.514929 0.857233i \(-0.672182\pi\)
−0.514929 + 0.857233i \(0.672182\pi\)
\(758\) 2.48340 0.0902011
\(759\) 0 0
\(760\) −0.768831 −0.0278884
\(761\) 0.521485 0.0189038 0.00945190 0.999955i \(-0.496991\pi\)
0.00945190 + 0.999955i \(0.496991\pi\)
\(762\) 0 0
\(763\) −5.67574 −0.205476
\(764\) −16.1690 −0.584975
\(765\) 0 0
\(766\) −2.82067 −0.101915
\(767\) 44.2809 1.59889
\(768\) 0 0
\(769\) −42.0950 −1.51798 −0.758992 0.651100i \(-0.774308\pi\)
−0.758992 + 0.651100i \(0.774308\pi\)
\(770\) −0.103919 −0.00374500
\(771\) 0 0
\(772\) −14.0134 −0.504354
\(773\) −44.2658 −1.59213 −0.796066 0.605210i \(-0.793089\pi\)
−0.796066 + 0.605210i \(0.793089\pi\)
\(774\) 0 0
\(775\) −0.905218 −0.0325164
\(776\) −10.0487 −0.360726
\(777\) 0 0
\(778\) 0.154145 0.00552638
\(779\) −3.94773 −0.141442
\(780\) 0 0
\(781\) −20.8548 −0.746244
\(782\) 8.69959 0.311097
\(783\) 0 0
\(784\) 3.82622 0.136651
\(785\) 2.79723 0.0998376
\(786\) 0 0
\(787\) −30.4455 −1.08526 −0.542632 0.839971i \(-0.682572\pi\)
−0.542632 + 0.839971i \(0.682572\pi\)
\(788\) −25.5603 −0.910547
\(789\) 0 0
\(790\) −0.201800 −0.00717973
\(791\) −0.331384 −0.0117827
\(792\) 0 0
\(793\) 92.3554 3.27963
\(794\) 3.35610 0.119103
\(795\) 0 0
\(796\) −40.7307 −1.44366
\(797\) 31.4005 1.11226 0.556131 0.831095i \(-0.312285\pi\)
0.556131 + 0.831095i \(0.312285\pi\)
\(798\) 0 0
\(799\) 21.6497 0.765912
\(800\) 9.95269 0.351881
\(801\) 0 0
\(802\) 3.34305 0.118047
\(803\) −23.9324 −0.844554
\(804\) 0 0
\(805\) 1.62445 0.0572545
\(806\) 0.187546 0.00660602
\(807\) 0 0
\(808\) −10.4430 −0.367382
\(809\) 35.4110 1.24499 0.622493 0.782626i \(-0.286120\pi\)
0.622493 + 0.782626i \(0.286120\pi\)
\(810\) 0 0
\(811\) −33.1853 −1.16529 −0.582647 0.812725i \(-0.697983\pi\)
−0.582647 + 0.812725i \(0.697983\pi\)
\(812\) −7.24014 −0.254079
\(813\) 0 0
\(814\) −4.56509 −0.160006
\(815\) 2.74758 0.0962436
\(816\) 0 0
\(817\) −24.2651 −0.848928
\(818\) 2.73982 0.0957956
\(819\) 0 0
\(820\) −0.291926 −0.0101945
\(821\) 40.6379 1.41827 0.709136 0.705072i \(-0.249085\pi\)
0.709136 + 0.705072i \(0.249085\pi\)
\(822\) 0 0
\(823\) −47.6335 −1.66040 −0.830200 0.557465i \(-0.811774\pi\)
−0.830200 + 0.557465i \(0.811774\pi\)
\(824\) 8.54641 0.297728
\(825\) 0 0
\(826\) −1.25479 −0.0436597
\(827\) −33.7637 −1.17408 −0.587039 0.809559i \(-0.699706\pi\)
−0.587039 + 0.809559i \(0.699706\pi\)
\(828\) 0 0
\(829\) 27.3714 0.950649 0.475325 0.879811i \(-0.342331\pi\)
0.475325 + 0.879811i \(0.342331\pi\)
\(830\) 0.344937 0.0119729
\(831\) 0 0
\(832\) 44.0089 1.52574
\(833\) 6.47770 0.224439
\(834\) 0 0
\(835\) −1.11442 −0.0385661
\(836\) −31.9975 −1.10666
\(837\) 0 0
\(838\) −2.20638 −0.0762182
\(839\) −19.6027 −0.676761 −0.338380 0.941009i \(-0.609879\pi\)
−0.338380 + 0.941009i \(0.609879\pi\)
\(840\) 0 0
\(841\) −15.5052 −0.534661
\(842\) 4.25633 0.146683
\(843\) 0 0
\(844\) −4.27305 −0.147085
\(845\) 4.79680 0.165015
\(846\) 0 0
\(847\) 2.28621 0.0785553
\(848\) 25.3371 0.870080
\(849\) 0 0
\(850\) 5.47846 0.187910
\(851\) 71.3609 2.44622
\(852\) 0 0
\(853\) 16.1746 0.553809 0.276905 0.960897i \(-0.410691\pi\)
0.276905 + 0.960897i \(0.410691\pi\)
\(854\) −2.61708 −0.0895545
\(855\) 0 0
\(856\) −12.2308 −0.418041
\(857\) −21.3510 −0.729335 −0.364668 0.931138i \(-0.618817\pi\)
−0.364668 + 0.931138i \(0.618817\pi\)
\(858\) 0 0
\(859\) 0.615958 0.0210162 0.0105081 0.999945i \(-0.496655\pi\)
0.0105081 + 0.999945i \(0.496655\pi\)
\(860\) −1.79435 −0.0611869
\(861\) 0 0
\(862\) −1.27973 −0.0435879
\(863\) 50.4704 1.71803 0.859016 0.511949i \(-0.171076\pi\)
0.859016 + 0.511949i \(0.171076\pi\)
\(864\) 0 0
\(865\) −0.0962396 −0.00327225
\(866\) 2.41278 0.0819897
\(867\) 0 0
\(868\) 0.359883 0.0122152
\(869\) −16.9212 −0.574013
\(870\) 0 0
\(871\) −38.2475 −1.29597
\(872\) 3.84497 0.130207
\(873\) 0 0
\(874\) −7.38630 −0.249845
\(875\) 2.05475 0.0694631
\(876\) 0 0
\(877\) 40.6889 1.37397 0.686983 0.726673i \(-0.258935\pi\)
0.686983 + 0.726673i \(0.258935\pi\)
\(878\) −1.54470 −0.0521312
\(879\) 0 0
\(880\) −2.33069 −0.0785676
\(881\) −34.1963 −1.15210 −0.576052 0.817413i \(-0.695407\pi\)
−0.576052 + 0.817413i \(0.695407\pi\)
\(882\) 0 0
\(883\) −20.2286 −0.680745 −0.340373 0.940291i \(-0.610553\pi\)
−0.340373 + 0.940291i \(0.610553\pi\)
\(884\) 76.8621 2.58515
\(885\) 0 0
\(886\) −4.98200 −0.167374
\(887\) −43.6034 −1.46406 −0.732030 0.681273i \(-0.761427\pi\)
−0.732030 + 0.681273i \(0.761427\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) −0.524206 −0.0175714
\(891\) 0 0
\(892\) 2.17452 0.0728084
\(893\) −18.3815 −0.615113
\(894\) 0 0
\(895\) −2.08334 −0.0696385
\(896\) −5.26235 −0.175803
\(897\) 0 0
\(898\) 0.194609 0.00649418
\(899\) −0.670782 −0.0223718
\(900\) 0 0
\(901\) 42.8952 1.42904
\(902\) 0.361480 0.0120360
\(903\) 0 0
\(904\) 0.224493 0.00746652
\(905\) −4.59361 −0.152697
\(906\) 0 0
\(907\) 24.4877 0.813102 0.406551 0.913628i \(-0.366731\pi\)
0.406551 + 0.913628i \(0.366731\pi\)
\(908\) −15.7728 −0.523439
\(909\) 0 0
\(910\) −0.211944 −0.00702587
\(911\) −30.1286 −0.998206 −0.499103 0.866543i \(-0.666337\pi\)
−0.499103 + 0.866543i \(0.666337\pi\)
\(912\) 0 0
\(913\) 28.9234 0.957225
\(914\) 3.74906 0.124008
\(915\) 0 0
\(916\) −0.717200 −0.0236970
\(917\) −9.55770 −0.315623
\(918\) 0 0
\(919\) −37.4612 −1.23573 −0.617865 0.786284i \(-0.712002\pi\)
−0.617865 + 0.786284i \(0.712002\pi\)
\(920\) −1.10047 −0.0362814
\(921\) 0 0
\(922\) −3.78713 −0.124722
\(923\) −42.5335 −1.40001
\(924\) 0 0
\(925\) 44.9386 1.47757
\(926\) −0.610073 −0.0200482
\(927\) 0 0
\(928\) 7.37511 0.242100
\(929\) 10.3163 0.338468 0.169234 0.985576i \(-0.445871\pi\)
0.169234 + 0.985576i \(0.445871\pi\)
\(930\) 0 0
\(931\) −5.49983 −0.180250
\(932\) −56.3857 −1.84698
\(933\) 0 0
\(934\) −0.857216 −0.0280490
\(935\) −3.94581 −0.129042
\(936\) 0 0
\(937\) 24.4343 0.798235 0.399117 0.916900i \(-0.369317\pi\)
0.399117 + 0.916900i \(0.369317\pi\)
\(938\) 1.08382 0.0353880
\(939\) 0 0
\(940\) −1.35927 −0.0443346
\(941\) −10.3783 −0.338324 −0.169162 0.985588i \(-0.554106\pi\)
−0.169162 + 0.985588i \(0.554106\pi\)
\(942\) 0 0
\(943\) −5.65060 −0.184009
\(944\) −28.1422 −0.915952
\(945\) 0 0
\(946\) 2.22187 0.0722391
\(947\) −20.3460 −0.661157 −0.330579 0.943778i \(-0.607244\pi\)
−0.330579 + 0.943778i \(0.607244\pi\)
\(948\) 0 0
\(949\) −48.8101 −1.58444
\(950\) −4.65143 −0.150912
\(951\) 0 0
\(952\) −4.38825 −0.142224
\(953\) −25.1505 −0.814704 −0.407352 0.913271i \(-0.633548\pi\)
−0.407352 + 0.913271i \(0.633548\pi\)
\(954\) 0 0
\(955\) 1.69290 0.0547810
\(956\) −56.1511 −1.81606
\(957\) 0 0
\(958\) −6.65432 −0.214991
\(959\) 19.1217 0.617471
\(960\) 0 0
\(961\) −30.9667 −0.998924
\(962\) −9.31051 −0.300183
\(963\) 0 0
\(964\) 4.19097 0.134982
\(965\) 1.46721 0.0472311
\(966\) 0 0
\(967\) −27.8536 −0.895711 −0.447855 0.894106i \(-0.647812\pi\)
−0.447855 + 0.894106i \(0.647812\pi\)
\(968\) −1.54877 −0.0497794
\(969\) 0 0
\(970\) 0.522193 0.0167666
\(971\) 2.52631 0.0810732 0.0405366 0.999178i \(-0.487093\pi\)
0.0405366 + 0.999178i \(0.487093\pi\)
\(972\) 0 0
\(973\) 19.5559 0.626932
\(974\) 0.186539 0.00597708
\(975\) 0 0
\(976\) −58.6954 −1.87880
\(977\) −52.7486 −1.68758 −0.843789 0.536674i \(-0.819680\pi\)
−0.843789 + 0.536674i \(0.819680\pi\)
\(978\) 0 0
\(979\) −43.9554 −1.40482
\(980\) −0.406701 −0.0129916
\(981\) 0 0
\(982\) −4.48092 −0.142992
\(983\) 7.36372 0.234866 0.117433 0.993081i \(-0.462533\pi\)
0.117433 + 0.993081i \(0.462533\pi\)
\(984\) 0 0
\(985\) 2.67617 0.0852698
\(986\) 4.05963 0.129285
\(987\) 0 0
\(988\) −65.2590 −2.07616
\(989\) −34.7319 −1.10441
\(990\) 0 0
\(991\) 31.3967 0.997350 0.498675 0.866789i \(-0.333820\pi\)
0.498675 + 0.866789i \(0.333820\pi\)
\(992\) −0.366592 −0.0116393
\(993\) 0 0
\(994\) 1.20527 0.0382289
\(995\) 4.26452 0.135194
\(996\) 0 0
\(997\) −16.1969 −0.512960 −0.256480 0.966550i \(-0.582563\pi\)
−0.256480 + 0.966550i \(0.582563\pi\)
\(998\) 5.04044 0.159552
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.t.1.8 16
3.2 odd 2 889.2.a.c.1.9 16
21.20 even 2 6223.2.a.k.1.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.9 16 3.2 odd 2
6223.2.a.k.1.9 16 21.20 even 2
8001.2.a.t.1.8 16 1.1 even 1 trivial