Properties

Label 6223.2.a.k.1.6
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.24549\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.24549 q^{2} -3.30309 q^{3} -0.448744 q^{4} +2.43368 q^{5} +4.11399 q^{6} +3.04990 q^{8} +7.91044 q^{9} -3.03114 q^{10} -4.22568 q^{11} +1.48224 q^{12} +5.67912 q^{13} -8.03869 q^{15} -2.90114 q^{16} +1.72874 q^{17} -9.85240 q^{18} +2.50366 q^{19} -1.09210 q^{20} +5.26306 q^{22} -3.83361 q^{23} -10.0741 q^{24} +0.922820 q^{25} -7.07331 q^{26} -16.2196 q^{27} +5.96884 q^{29} +10.0121 q^{30} +5.47757 q^{31} -2.48644 q^{32} +13.9578 q^{33} -2.15314 q^{34} -3.54976 q^{36} +6.12052 q^{37} -3.11830 q^{38} -18.7587 q^{39} +7.42249 q^{40} +4.31444 q^{41} +4.93422 q^{43} +1.89625 q^{44} +19.2515 q^{45} +4.77474 q^{46} +10.9899 q^{47} +9.58275 q^{48} -1.14937 q^{50} -5.71020 q^{51} -2.54847 q^{52} -4.00048 q^{53} +20.2015 q^{54} -10.2840 q^{55} -8.26984 q^{57} -7.43416 q^{58} +14.3016 q^{59} +3.60731 q^{60} -3.21888 q^{61} -6.82229 q^{62} +8.89913 q^{64} +13.8212 q^{65} -17.3844 q^{66} +7.39502 q^{67} -0.775763 q^{68} +12.6628 q^{69} +7.63071 q^{71} +24.1260 q^{72} -7.53588 q^{73} -7.62307 q^{74} -3.04816 q^{75} -1.12350 q^{76} +23.3638 q^{78} -15.4421 q^{79} -7.06046 q^{80} +29.8437 q^{81} -5.37361 q^{82} +12.7925 q^{83} +4.20722 q^{85} -6.14555 q^{86} -19.7157 q^{87} -12.8879 q^{88} -3.88584 q^{89} -23.9776 q^{90} +1.72031 q^{92} -18.0929 q^{93} -13.6879 q^{94} +6.09313 q^{95} +8.21294 q^{96} -4.24345 q^{97} -33.4270 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24549 −0.880698 −0.440349 0.897827i \(-0.645145\pi\)
−0.440349 + 0.897827i \(0.645145\pi\)
\(3\) −3.30309 −1.90704 −0.953521 0.301325i \(-0.902571\pi\)
−0.953521 + 0.301325i \(0.902571\pi\)
\(4\) −0.448744 −0.224372
\(5\) 2.43368 1.08838 0.544188 0.838963i \(-0.316838\pi\)
0.544188 + 0.838963i \(0.316838\pi\)
\(6\) 4.11399 1.67953
\(7\) 0 0
\(8\) 3.04990 1.07830
\(9\) 7.91044 2.63681
\(10\) −3.03114 −0.958531
\(11\) −4.22568 −1.27409 −0.637046 0.770826i \(-0.719844\pi\)
−0.637046 + 0.770826i \(0.719844\pi\)
\(12\) 1.48224 0.427887
\(13\) 5.67912 1.57510 0.787552 0.616248i \(-0.211348\pi\)
0.787552 + 0.616248i \(0.211348\pi\)
\(14\) 0 0
\(15\) −8.03869 −2.07558
\(16\) −2.90114 −0.725285
\(17\) 1.72874 0.419282 0.209641 0.977778i \(-0.432771\pi\)
0.209641 + 0.977778i \(0.432771\pi\)
\(18\) −9.85240 −2.32223
\(19\) 2.50366 0.574380 0.287190 0.957874i \(-0.407279\pi\)
0.287190 + 0.957874i \(0.407279\pi\)
\(20\) −1.09210 −0.244201
\(21\) 0 0
\(22\) 5.26306 1.12209
\(23\) −3.83361 −0.799364 −0.399682 0.916654i \(-0.630879\pi\)
−0.399682 + 0.916654i \(0.630879\pi\)
\(24\) −10.0741 −2.05637
\(25\) 0.922820 0.184564
\(26\) −7.07331 −1.38719
\(27\) −16.2196 −3.12147
\(28\) 0 0
\(29\) 5.96884 1.10839 0.554193 0.832388i \(-0.313027\pi\)
0.554193 + 0.832388i \(0.313027\pi\)
\(30\) 10.0121 1.82796
\(31\) 5.47757 0.983801 0.491901 0.870651i \(-0.336302\pi\)
0.491901 + 0.870651i \(0.336302\pi\)
\(32\) −2.48644 −0.439544
\(33\) 13.9578 2.42975
\(34\) −2.15314 −0.369260
\(35\) 0 0
\(36\) −3.54976 −0.591626
\(37\) 6.12052 1.00621 0.503103 0.864226i \(-0.332191\pi\)
0.503103 + 0.864226i \(0.332191\pi\)
\(38\) −3.11830 −0.505855
\(39\) −18.7587 −3.00379
\(40\) 7.42249 1.17360
\(41\) 4.31444 0.673802 0.336901 0.941540i \(-0.390621\pi\)
0.336901 + 0.941540i \(0.390621\pi\)
\(42\) 0 0
\(43\) 4.93422 0.752462 0.376231 0.926526i \(-0.377220\pi\)
0.376231 + 0.926526i \(0.377220\pi\)
\(44\) 1.89625 0.285870
\(45\) 19.2515 2.86984
\(46\) 4.77474 0.703998
\(47\) 10.9899 1.60304 0.801521 0.597966i \(-0.204024\pi\)
0.801521 + 0.597966i \(0.204024\pi\)
\(48\) 9.58275 1.38315
\(49\) 0 0
\(50\) −1.14937 −0.162545
\(51\) −5.71020 −0.799588
\(52\) −2.54847 −0.353409
\(53\) −4.00048 −0.549508 −0.274754 0.961514i \(-0.588596\pi\)
−0.274754 + 0.961514i \(0.588596\pi\)
\(54\) 20.2015 2.74907
\(55\) −10.2840 −1.38669
\(56\) 0 0
\(57\) −8.26984 −1.09537
\(58\) −7.43416 −0.976153
\(59\) 14.3016 1.86191 0.930955 0.365133i \(-0.118977\pi\)
0.930955 + 0.365133i \(0.118977\pi\)
\(60\) 3.60731 0.465702
\(61\) −3.21888 −0.412136 −0.206068 0.978538i \(-0.566067\pi\)
−0.206068 + 0.978538i \(0.566067\pi\)
\(62\) −6.82229 −0.866431
\(63\) 0 0
\(64\) 8.89913 1.11239
\(65\) 13.8212 1.71431
\(66\) −17.3844 −2.13987
\(67\) 7.39502 0.903445 0.451723 0.892158i \(-0.350810\pi\)
0.451723 + 0.892158i \(0.350810\pi\)
\(68\) −0.775763 −0.0940750
\(69\) 12.6628 1.52442
\(70\) 0 0
\(71\) 7.63071 0.905598 0.452799 0.891612i \(-0.350425\pi\)
0.452799 + 0.891612i \(0.350425\pi\)
\(72\) 24.1260 2.84328
\(73\) −7.53588 −0.882008 −0.441004 0.897505i \(-0.645378\pi\)
−0.441004 + 0.897505i \(0.645378\pi\)
\(74\) −7.62307 −0.886164
\(75\) −3.04816 −0.351972
\(76\) −1.12350 −0.128875
\(77\) 0 0
\(78\) 23.3638 2.64543
\(79\) −15.4421 −1.73737 −0.868685 0.495365i \(-0.835034\pi\)
−0.868685 + 0.495365i \(0.835034\pi\)
\(80\) −7.06046 −0.789384
\(81\) 29.8437 3.31597
\(82\) −5.37361 −0.593416
\(83\) 12.7925 1.40415 0.702077 0.712101i \(-0.252256\pi\)
0.702077 + 0.712101i \(0.252256\pi\)
\(84\) 0 0
\(85\) 4.20722 0.456337
\(86\) −6.14555 −0.662691
\(87\) −19.7157 −2.11374
\(88\) −12.8879 −1.37385
\(89\) −3.88584 −0.411898 −0.205949 0.978563i \(-0.566028\pi\)
−0.205949 + 0.978563i \(0.566028\pi\)
\(90\) −23.9776 −2.52747
\(91\) 0 0
\(92\) 1.72031 0.179355
\(93\) −18.0929 −1.87615
\(94\) −13.6879 −1.41180
\(95\) 6.09313 0.625142
\(96\) 8.21294 0.838229
\(97\) −4.24345 −0.430857 −0.215429 0.976520i \(-0.569115\pi\)
−0.215429 + 0.976520i \(0.569115\pi\)
\(98\) 0 0
\(99\) −33.4270 −3.35954
\(100\) −0.414110 −0.0414110
\(101\) 17.4200 1.73335 0.866677 0.498870i \(-0.166251\pi\)
0.866677 + 0.498870i \(0.166251\pi\)
\(102\) 7.11203 0.704196
\(103\) 4.42750 0.436254 0.218127 0.975920i \(-0.430005\pi\)
0.218127 + 0.975920i \(0.430005\pi\)
\(104\) 17.3207 1.69844
\(105\) 0 0
\(106\) 4.98258 0.483951
\(107\) −5.71893 −0.552869 −0.276435 0.961033i \(-0.589153\pi\)
−0.276435 + 0.961033i \(0.589153\pi\)
\(108\) 7.27846 0.700370
\(109\) 14.5703 1.39558 0.697790 0.716302i \(-0.254167\pi\)
0.697790 + 0.716302i \(0.254167\pi\)
\(110\) 12.8086 1.22126
\(111\) −20.2167 −1.91888
\(112\) 0 0
\(113\) 5.91261 0.556212 0.278106 0.960550i \(-0.410293\pi\)
0.278106 + 0.960550i \(0.410293\pi\)
\(114\) 10.3000 0.964687
\(115\) −9.32981 −0.870009
\(116\) −2.67848 −0.248691
\(117\) 44.9243 4.15325
\(118\) −17.8126 −1.63978
\(119\) 0 0
\(120\) −24.5172 −2.23810
\(121\) 6.85640 0.623309
\(122\) 4.00910 0.362967
\(123\) −14.2510 −1.28497
\(124\) −2.45803 −0.220737
\(125\) −9.92257 −0.887502
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −6.11094 −0.540136
\(129\) −16.2982 −1.43498
\(130\) −17.2142 −1.50979
\(131\) −19.7982 −1.72978 −0.864890 0.501962i \(-0.832612\pi\)
−0.864890 + 0.501962i \(0.832612\pi\)
\(132\) −6.26349 −0.545167
\(133\) 0 0
\(134\) −9.21045 −0.795662
\(135\) −39.4735 −3.39734
\(136\) 5.27249 0.452112
\(137\) 8.97609 0.766879 0.383439 0.923566i \(-0.374739\pi\)
0.383439 + 0.923566i \(0.374739\pi\)
\(138\) −15.7714 −1.34255
\(139\) −5.86647 −0.497587 −0.248794 0.968557i \(-0.580034\pi\)
−0.248794 + 0.968557i \(0.580034\pi\)
\(140\) 0 0
\(141\) −36.3007 −3.05707
\(142\) −9.50400 −0.797558
\(143\) −23.9982 −2.00683
\(144\) −22.9493 −1.91244
\(145\) 14.5263 1.20634
\(146\) 9.38590 0.776782
\(147\) 0 0
\(148\) −2.74654 −0.225764
\(149\) −21.5978 −1.76936 −0.884679 0.466201i \(-0.845622\pi\)
−0.884679 + 0.466201i \(0.845622\pi\)
\(150\) 3.79647 0.309981
\(151\) −10.8490 −0.882877 −0.441439 0.897291i \(-0.645532\pi\)
−0.441439 + 0.897291i \(0.645532\pi\)
\(152\) 7.63591 0.619354
\(153\) 13.6751 1.10557
\(154\) 0 0
\(155\) 13.3307 1.07075
\(156\) 8.41783 0.673966
\(157\) 3.59825 0.287171 0.143586 0.989638i \(-0.454137\pi\)
0.143586 + 0.989638i \(0.454137\pi\)
\(158\) 19.2330 1.53010
\(159\) 13.2140 1.04794
\(160\) −6.05120 −0.478390
\(161\) 0 0
\(162\) −37.1701 −2.92036
\(163\) −5.95370 −0.466330 −0.233165 0.972437i \(-0.574908\pi\)
−0.233165 + 0.972437i \(0.574908\pi\)
\(164\) −1.93608 −0.151182
\(165\) 33.9690 2.64448
\(166\) −15.9329 −1.23663
\(167\) −15.7608 −1.21961 −0.609805 0.792552i \(-0.708752\pi\)
−0.609805 + 0.792552i \(0.708752\pi\)
\(168\) 0 0
\(169\) 19.2524 1.48095
\(170\) −5.24006 −0.401895
\(171\) 19.8051 1.51453
\(172\) −2.21420 −0.168831
\(173\) 17.0465 1.29602 0.648010 0.761632i \(-0.275602\pi\)
0.648010 + 0.761632i \(0.275602\pi\)
\(174\) 24.5557 1.86157
\(175\) 0 0
\(176\) 12.2593 0.924080
\(177\) −47.2396 −3.55074
\(178\) 4.83979 0.362758
\(179\) 6.68379 0.499570 0.249785 0.968301i \(-0.419640\pi\)
0.249785 + 0.968301i \(0.419640\pi\)
\(180\) −8.63899 −0.643912
\(181\) −13.1820 −0.979813 −0.489906 0.871775i \(-0.662969\pi\)
−0.489906 + 0.871775i \(0.662969\pi\)
\(182\) 0 0
\(183\) 10.6323 0.785961
\(184\) −11.6921 −0.861955
\(185\) 14.8954 1.09513
\(186\) 22.5347 1.65232
\(187\) −7.30512 −0.534203
\(188\) −4.93165 −0.359678
\(189\) 0 0
\(190\) −7.58896 −0.550561
\(191\) 17.4273 1.26100 0.630498 0.776191i \(-0.282851\pi\)
0.630498 + 0.776191i \(0.282851\pi\)
\(192\) −29.3947 −2.12138
\(193\) 8.81879 0.634790 0.317395 0.948293i \(-0.397192\pi\)
0.317395 + 0.948293i \(0.397192\pi\)
\(194\) 5.28520 0.379455
\(195\) −45.6527 −3.26926
\(196\) 0 0
\(197\) −22.4395 −1.59874 −0.799372 0.600836i \(-0.794834\pi\)
−0.799372 + 0.600836i \(0.794834\pi\)
\(198\) 41.6331 2.95874
\(199\) −6.40127 −0.453774 −0.226887 0.973921i \(-0.572855\pi\)
−0.226887 + 0.973921i \(0.572855\pi\)
\(200\) 2.81451 0.199016
\(201\) −24.4264 −1.72291
\(202\) −21.6965 −1.52656
\(203\) 0 0
\(204\) 2.56242 0.179405
\(205\) 10.5000 0.733351
\(206\) −5.51443 −0.384208
\(207\) −30.3256 −2.10777
\(208\) −16.4759 −1.14240
\(209\) −10.5797 −0.731812
\(210\) 0 0
\(211\) 17.0999 1.17721 0.588604 0.808422i \(-0.299678\pi\)
0.588604 + 0.808422i \(0.299678\pi\)
\(212\) 1.79519 0.123294
\(213\) −25.2050 −1.72702
\(214\) 7.12289 0.486911
\(215\) 12.0083 0.818962
\(216\) −49.4682 −3.36589
\(217\) 0 0
\(218\) −18.1472 −1.22908
\(219\) 24.8917 1.68203
\(220\) 4.61487 0.311135
\(221\) 9.81774 0.660413
\(222\) 25.1797 1.68995
\(223\) 3.55249 0.237892 0.118946 0.992901i \(-0.462048\pi\)
0.118946 + 0.992901i \(0.462048\pi\)
\(224\) 0 0
\(225\) 7.29991 0.486661
\(226\) −7.36413 −0.489854
\(227\) 0.461961 0.0306614 0.0153307 0.999882i \(-0.495120\pi\)
0.0153307 + 0.999882i \(0.495120\pi\)
\(228\) 3.71104 0.245769
\(229\) −22.8631 −1.51084 −0.755418 0.655244i \(-0.772566\pi\)
−0.755418 + 0.655244i \(0.772566\pi\)
\(230\) 11.6202 0.766215
\(231\) 0 0
\(232\) 18.2044 1.19517
\(233\) 2.25856 0.147963 0.0739816 0.997260i \(-0.476429\pi\)
0.0739816 + 0.997260i \(0.476429\pi\)
\(234\) −55.9530 −3.65776
\(235\) 26.7460 1.74471
\(236\) −6.41776 −0.417760
\(237\) 51.0066 3.31324
\(238\) 0 0
\(239\) −28.5593 −1.84735 −0.923673 0.383182i \(-0.874828\pi\)
−0.923673 + 0.383182i \(0.874828\pi\)
\(240\) 23.3214 1.50539
\(241\) 13.6906 0.881888 0.440944 0.897535i \(-0.354644\pi\)
0.440944 + 0.897535i \(0.354644\pi\)
\(242\) −8.53960 −0.548947
\(243\) −49.9176 −3.20222
\(244\) 1.44445 0.0924717
\(245\) 0 0
\(246\) 17.7495 1.13167
\(247\) 14.2186 0.904708
\(248\) 16.7060 1.06083
\(249\) −42.2547 −2.67778
\(250\) 12.3585 0.781620
\(251\) −7.41487 −0.468022 −0.234011 0.972234i \(-0.575185\pi\)
−0.234011 + 0.972234i \(0.575185\pi\)
\(252\) 0 0
\(253\) 16.1996 1.01846
\(254\) 1.24549 0.0781493
\(255\) −13.8968 −0.870253
\(256\) −10.1871 −0.636695
\(257\) −16.3544 −1.02016 −0.510080 0.860127i \(-0.670384\pi\)
−0.510080 + 0.860127i \(0.670384\pi\)
\(258\) 20.2993 1.26378
\(259\) 0 0
\(260\) −6.20217 −0.384642
\(261\) 47.2161 2.92261
\(262\) 24.6586 1.52341
\(263\) 4.68637 0.288974 0.144487 0.989507i \(-0.453847\pi\)
0.144487 + 0.989507i \(0.453847\pi\)
\(264\) 42.5699 2.62000
\(265\) −9.73591 −0.598072
\(266\) 0 0
\(267\) 12.8353 0.785508
\(268\) −3.31847 −0.202708
\(269\) 14.6818 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(270\) 49.1640 2.99203
\(271\) 10.7458 0.652764 0.326382 0.945238i \(-0.394170\pi\)
0.326382 + 0.945238i \(0.394170\pi\)
\(272\) −5.01533 −0.304099
\(273\) 0 0
\(274\) −11.1797 −0.675388
\(275\) −3.89955 −0.235152
\(276\) −5.68235 −0.342037
\(277\) 0.856063 0.0514358 0.0257179 0.999669i \(-0.491813\pi\)
0.0257179 + 0.999669i \(0.491813\pi\)
\(278\) 7.30665 0.438224
\(279\) 43.3300 2.59410
\(280\) 0 0
\(281\) 14.3744 0.857504 0.428752 0.903422i \(-0.358953\pi\)
0.428752 + 0.903422i \(0.358953\pi\)
\(282\) 45.2123 2.69235
\(283\) −18.7855 −1.11668 −0.558341 0.829612i \(-0.688562\pi\)
−0.558341 + 0.829612i \(0.688562\pi\)
\(284\) −3.42423 −0.203191
\(285\) −20.1262 −1.19217
\(286\) 29.8896 1.76741
\(287\) 0 0
\(288\) −19.6688 −1.15900
\(289\) −14.0114 −0.824203
\(290\) −18.0924 −1.06242
\(291\) 14.0165 0.821663
\(292\) 3.38168 0.197898
\(293\) 14.6548 0.856145 0.428072 0.903744i \(-0.359193\pi\)
0.428072 + 0.903744i \(0.359193\pi\)
\(294\) 0 0
\(295\) 34.8056 2.02646
\(296\) 18.6669 1.08499
\(297\) 68.5390 3.97704
\(298\) 26.8999 1.55827
\(299\) −21.7715 −1.25908
\(300\) 1.36784 0.0789725
\(301\) 0 0
\(302\) 13.5123 0.777548
\(303\) −57.5399 −3.30558
\(304\) −7.26348 −0.416589
\(305\) −7.83375 −0.448559
\(306\) −17.0323 −0.973670
\(307\) 11.1328 0.635385 0.317692 0.948194i \(-0.397092\pi\)
0.317692 + 0.948194i \(0.397092\pi\)
\(308\) 0 0
\(309\) −14.6245 −0.831956
\(310\) −16.6033 −0.943004
\(311\) 16.8169 0.953602 0.476801 0.879011i \(-0.341796\pi\)
0.476801 + 0.879011i \(0.341796\pi\)
\(312\) −57.2120 −3.23899
\(313\) 13.4057 0.757732 0.378866 0.925451i \(-0.376314\pi\)
0.378866 + 0.925451i \(0.376314\pi\)
\(314\) −4.48160 −0.252911
\(315\) 0 0
\(316\) 6.92953 0.389817
\(317\) −18.6801 −1.04918 −0.524588 0.851356i \(-0.675781\pi\)
−0.524588 + 0.851356i \(0.675781\pi\)
\(318\) −16.4579 −0.922915
\(319\) −25.2224 −1.41219
\(320\) 21.6577 1.21070
\(321\) 18.8902 1.05435
\(322\) 0 0
\(323\) 4.32819 0.240827
\(324\) −13.3922 −0.744009
\(325\) 5.24081 0.290708
\(326\) 7.41530 0.410696
\(327\) −48.1270 −2.66143
\(328\) 13.1586 0.726562
\(329\) 0 0
\(330\) −42.3082 −2.32899
\(331\) 2.41940 0.132982 0.0664910 0.997787i \(-0.478820\pi\)
0.0664910 + 0.997787i \(0.478820\pi\)
\(332\) −5.74053 −0.315053
\(333\) 48.4160 2.65318
\(334\) 19.6300 1.07411
\(335\) 17.9971 0.983289
\(336\) 0 0
\(337\) −17.2871 −0.941687 −0.470844 0.882217i \(-0.656050\pi\)
−0.470844 + 0.882217i \(0.656050\pi\)
\(338\) −23.9788 −1.30427
\(339\) −19.5299 −1.06072
\(340\) −1.88796 −0.102389
\(341\) −23.1465 −1.25345
\(342\) −24.6671 −1.33384
\(343\) 0 0
\(344\) 15.0489 0.811380
\(345\) 30.8172 1.65914
\(346\) −21.2313 −1.14140
\(347\) −20.7673 −1.11485 −0.557424 0.830228i \(-0.688210\pi\)
−0.557424 + 0.830228i \(0.688210\pi\)
\(348\) 8.84727 0.474264
\(349\) −23.6254 −1.26464 −0.632318 0.774709i \(-0.717897\pi\)
−0.632318 + 0.774709i \(0.717897\pi\)
\(350\) 0 0
\(351\) −92.1132 −4.91664
\(352\) 10.5069 0.560019
\(353\) 15.5597 0.828161 0.414080 0.910240i \(-0.364103\pi\)
0.414080 + 0.910240i \(0.364103\pi\)
\(354\) 58.8366 3.12713
\(355\) 18.5707 0.985632
\(356\) 1.74375 0.0924184
\(357\) 0 0
\(358\) −8.32462 −0.439970
\(359\) −7.03515 −0.371301 −0.185651 0.982616i \(-0.559439\pi\)
−0.185651 + 0.982616i \(0.559439\pi\)
\(360\) 58.7151 3.09456
\(361\) −12.7317 −0.670088
\(362\) 16.4181 0.862919
\(363\) −22.6473 −1.18868
\(364\) 0 0
\(365\) −18.3400 −0.959957
\(366\) −13.2424 −0.692194
\(367\) −28.6265 −1.49429 −0.747145 0.664661i \(-0.768576\pi\)
−0.747145 + 0.664661i \(0.768576\pi\)
\(368\) 11.1219 0.579767
\(369\) 34.1291 1.77669
\(370\) −18.5521 −0.964480
\(371\) 0 0
\(372\) 8.11909 0.420955
\(373\) 3.75654 0.194506 0.0972531 0.995260i \(-0.468994\pi\)
0.0972531 + 0.995260i \(0.468994\pi\)
\(374\) 9.09849 0.470472
\(375\) 32.7752 1.69250
\(376\) 33.5181 1.72856
\(377\) 33.8978 1.74582
\(378\) 0 0
\(379\) 20.7800 1.06740 0.533699 0.845675i \(-0.320802\pi\)
0.533699 + 0.845675i \(0.320802\pi\)
\(380\) −2.73425 −0.140264
\(381\) 3.30309 0.169223
\(382\) −21.7056 −1.11056
\(383\) −17.6927 −0.904054 −0.452027 0.892004i \(-0.649299\pi\)
−0.452027 + 0.892004i \(0.649299\pi\)
\(384\) 20.1850 1.03006
\(385\) 0 0
\(386\) −10.9838 −0.559058
\(387\) 39.0318 1.98410
\(388\) 1.90422 0.0966722
\(389\) 27.3076 1.38455 0.692275 0.721634i \(-0.256609\pi\)
0.692275 + 0.721634i \(0.256609\pi\)
\(390\) 56.8602 2.87923
\(391\) −6.62733 −0.335159
\(392\) 0 0
\(393\) 65.3954 3.29876
\(394\) 27.9482 1.40801
\(395\) −37.5811 −1.89091
\(396\) 15.0002 0.753786
\(397\) 12.7728 0.641046 0.320523 0.947241i \(-0.396141\pi\)
0.320523 + 0.947241i \(0.396141\pi\)
\(398\) 7.97275 0.399638
\(399\) 0 0
\(400\) −2.67723 −0.133862
\(401\) 10.4514 0.521919 0.260960 0.965350i \(-0.415961\pi\)
0.260960 + 0.965350i \(0.415961\pi\)
\(402\) 30.4230 1.51736
\(403\) 31.1078 1.54959
\(404\) −7.81711 −0.388916
\(405\) 72.6301 3.60902
\(406\) 0 0
\(407\) −25.8634 −1.28200
\(408\) −17.4155 −0.862197
\(409\) 10.0572 0.497297 0.248648 0.968594i \(-0.420014\pi\)
0.248648 + 0.968594i \(0.420014\pi\)
\(410\) −13.0777 −0.645860
\(411\) −29.6489 −1.46247
\(412\) −1.98681 −0.0978832
\(413\) 0 0
\(414\) 37.7703 1.85631
\(415\) 31.1328 1.52825
\(416\) −14.1208 −0.692328
\(417\) 19.3775 0.948920
\(418\) 13.1769 0.644505
\(419\) 4.78230 0.233631 0.116815 0.993154i \(-0.462731\pi\)
0.116815 + 0.993154i \(0.462731\pi\)
\(420\) 0 0
\(421\) −13.2705 −0.646766 −0.323383 0.946268i \(-0.604820\pi\)
−0.323383 + 0.946268i \(0.604820\pi\)
\(422\) −21.2979 −1.03676
\(423\) 86.9350 4.22692
\(424\) −12.2011 −0.592536
\(425\) 1.59532 0.0773844
\(426\) 31.3926 1.52098
\(427\) 0 0
\(428\) 2.56633 0.124048
\(429\) 79.2682 3.82710
\(430\) −14.9563 −0.721258
\(431\) −21.8535 −1.05264 −0.526322 0.850285i \(-0.676429\pi\)
−0.526322 + 0.850285i \(0.676429\pi\)
\(432\) 47.0555 2.26396
\(433\) 28.0481 1.34791 0.673953 0.738774i \(-0.264595\pi\)
0.673953 + 0.738774i \(0.264595\pi\)
\(434\) 0 0
\(435\) −47.9817 −2.30055
\(436\) −6.53832 −0.313129
\(437\) −9.59808 −0.459138
\(438\) −31.0025 −1.48136
\(439\) 0.864598 0.0412650 0.0206325 0.999787i \(-0.493432\pi\)
0.0206325 + 0.999787i \(0.493432\pi\)
\(440\) −31.3651 −1.49527
\(441\) 0 0
\(442\) −12.2279 −0.581624
\(443\) 17.3136 0.822592 0.411296 0.911502i \(-0.365076\pi\)
0.411296 + 0.911502i \(0.365076\pi\)
\(444\) 9.07209 0.430543
\(445\) −9.45691 −0.448301
\(446\) −4.42460 −0.209511
\(447\) 71.3395 3.37424
\(448\) 0 0
\(449\) 8.34805 0.393969 0.196985 0.980407i \(-0.436885\pi\)
0.196985 + 0.980407i \(0.436885\pi\)
\(450\) −9.09200 −0.428601
\(451\) −18.2315 −0.858486
\(452\) −2.65325 −0.124798
\(453\) 35.8352 1.68368
\(454\) −0.575369 −0.0270034
\(455\) 0 0
\(456\) −25.2222 −1.18114
\(457\) 31.6135 1.47882 0.739408 0.673258i \(-0.235106\pi\)
0.739408 + 0.673258i \(0.235106\pi\)
\(458\) 28.4759 1.33059
\(459\) −28.0396 −1.30878
\(460\) 4.18669 0.195205
\(461\) −14.9040 −0.694148 −0.347074 0.937838i \(-0.612825\pi\)
−0.347074 + 0.937838i \(0.612825\pi\)
\(462\) 0 0
\(463\) −6.32576 −0.293983 −0.146992 0.989138i \(-0.546959\pi\)
−0.146992 + 0.989138i \(0.546959\pi\)
\(464\) −17.3165 −0.803896
\(465\) −44.0325 −2.04196
\(466\) −2.81303 −0.130311
\(467\) 25.5517 1.18239 0.591196 0.806528i \(-0.298656\pi\)
0.591196 + 0.806528i \(0.298656\pi\)
\(468\) −20.1595 −0.931873
\(469\) 0 0
\(470\) −33.3120 −1.53657
\(471\) −11.8854 −0.547648
\(472\) 43.6184 2.00770
\(473\) −20.8505 −0.958705
\(474\) −63.5285 −2.91796
\(475\) 2.31043 0.106010
\(476\) 0 0
\(477\) −31.6456 −1.44895
\(478\) 35.5704 1.62695
\(479\) 5.61743 0.256667 0.128333 0.991731i \(-0.459037\pi\)
0.128333 + 0.991731i \(0.459037\pi\)
\(480\) 19.9877 0.912309
\(481\) 34.7592 1.58488
\(482\) −17.0516 −0.776677
\(483\) 0 0
\(484\) −3.07676 −0.139853
\(485\) −10.3272 −0.468935
\(486\) 62.1721 2.82018
\(487\) 25.1524 1.13976 0.569881 0.821727i \(-0.306989\pi\)
0.569881 + 0.821727i \(0.306989\pi\)
\(488\) −9.81726 −0.444407
\(489\) 19.6656 0.889311
\(490\) 0 0
\(491\) −30.3800 −1.37103 −0.685515 0.728058i \(-0.740423\pi\)
−0.685515 + 0.728058i \(0.740423\pi\)
\(492\) 6.39505 0.288311
\(493\) 10.3186 0.464726
\(494\) −17.7092 −0.796774
\(495\) −81.3508 −3.65644
\(496\) −15.8912 −0.713537
\(497\) 0 0
\(498\) 52.6280 2.35832
\(499\) −28.6191 −1.28116 −0.640582 0.767889i \(-0.721307\pi\)
−0.640582 + 0.767889i \(0.721307\pi\)
\(500\) 4.45269 0.199130
\(501\) 52.0595 2.32585
\(502\) 9.23518 0.412186
\(503\) −13.1761 −0.587493 −0.293746 0.955883i \(-0.594902\pi\)
−0.293746 + 0.955883i \(0.594902\pi\)
\(504\) 0 0
\(505\) 42.3948 1.88654
\(506\) −20.1766 −0.896957
\(507\) −63.5925 −2.82424
\(508\) 0.448744 0.0199098
\(509\) 31.0674 1.37704 0.688518 0.725219i \(-0.258262\pi\)
0.688518 + 0.725219i \(0.258262\pi\)
\(510\) 17.3084 0.766430
\(511\) 0 0
\(512\) 24.9099 1.10087
\(513\) −40.6085 −1.79291
\(514\) 20.3693 0.898452
\(515\) 10.7751 0.474809
\(516\) 7.31371 0.321968
\(517\) −46.4399 −2.04242
\(518\) 0 0
\(519\) −56.3061 −2.47157
\(520\) 42.1532 1.84854
\(521\) −21.6092 −0.946714 −0.473357 0.880871i \(-0.656958\pi\)
−0.473357 + 0.880871i \(0.656958\pi\)
\(522\) −58.8074 −2.57393
\(523\) 11.8477 0.518063 0.259032 0.965869i \(-0.416597\pi\)
0.259032 + 0.965869i \(0.416597\pi\)
\(524\) 8.88433 0.388114
\(525\) 0 0
\(526\) −5.83685 −0.254499
\(527\) 9.46932 0.412490
\(528\) −40.4937 −1.76226
\(529\) −8.30341 −0.361018
\(530\) 12.1260 0.526721
\(531\) 113.132 4.90951
\(532\) 0 0
\(533\) 24.5022 1.06131
\(534\) −15.9863 −0.691795
\(535\) −13.9181 −0.601730
\(536\) 22.5540 0.974186
\(537\) −22.0772 −0.952701
\(538\) −18.2861 −0.788372
\(539\) 0 0
\(540\) 17.7135 0.762266
\(541\) −13.3103 −0.572253 −0.286126 0.958192i \(-0.592368\pi\)
−0.286126 + 0.958192i \(0.592368\pi\)
\(542\) −13.3839 −0.574887
\(543\) 43.5415 1.86854
\(544\) −4.29841 −0.184293
\(545\) 35.4595 1.51892
\(546\) 0 0
\(547\) 0.103601 0.00442966 0.00221483 0.999998i \(-0.499295\pi\)
0.00221483 + 0.999998i \(0.499295\pi\)
\(548\) −4.02796 −0.172066
\(549\) −25.4628 −1.08672
\(550\) 4.85686 0.207097
\(551\) 14.9440 0.636635
\(552\) 38.6202 1.64378
\(553\) 0 0
\(554\) −1.06622 −0.0452994
\(555\) −49.2010 −2.08846
\(556\) 2.63254 0.111645
\(557\) 3.49486 0.148082 0.0740410 0.997255i \(-0.476410\pi\)
0.0740410 + 0.997255i \(0.476410\pi\)
\(558\) −53.9673 −2.28462
\(559\) 28.0220 1.18521
\(560\) 0 0
\(561\) 24.1295 1.01875
\(562\) −17.9032 −0.755202
\(563\) 35.0406 1.47679 0.738393 0.674370i \(-0.235585\pi\)
0.738393 + 0.674370i \(0.235585\pi\)
\(564\) 16.2897 0.685921
\(565\) 14.3894 0.605368
\(566\) 23.3972 0.983459
\(567\) 0 0
\(568\) 23.2729 0.976508
\(569\) 9.51641 0.398949 0.199474 0.979903i \(-0.436077\pi\)
0.199474 + 0.979903i \(0.436077\pi\)
\(570\) 25.0670 1.04994
\(571\) −41.7756 −1.74825 −0.874127 0.485697i \(-0.838566\pi\)
−0.874127 + 0.485697i \(0.838566\pi\)
\(572\) 10.7690 0.450275
\(573\) −57.5641 −2.40477
\(574\) 0 0
\(575\) −3.53774 −0.147534
\(576\) 70.3960 2.93317
\(577\) 18.2875 0.761320 0.380660 0.924715i \(-0.375697\pi\)
0.380660 + 0.924715i \(0.375697\pi\)
\(578\) 17.4512 0.725873
\(579\) −29.1293 −1.21057
\(580\) −6.51858 −0.270669
\(581\) 0 0
\(582\) −17.4575 −0.723637
\(583\) 16.9048 0.700124
\(584\) −22.9837 −0.951070
\(585\) 109.332 4.52031
\(586\) −18.2525 −0.754005
\(587\) −2.18408 −0.0901465 −0.0450732 0.998984i \(-0.514352\pi\)
−0.0450732 + 0.998984i \(0.514352\pi\)
\(588\) 0 0
\(589\) 13.7140 0.565076
\(590\) −43.3502 −1.78470
\(591\) 74.1196 3.04887
\(592\) −17.7565 −0.729787
\(593\) 31.5402 1.29520 0.647600 0.761981i \(-0.275773\pi\)
0.647600 + 0.761981i \(0.275773\pi\)
\(594\) −85.3650 −3.50257
\(595\) 0 0
\(596\) 9.69186 0.396994
\(597\) 21.1440 0.865367
\(598\) 27.1163 1.10887
\(599\) −42.0406 −1.71773 −0.858866 0.512200i \(-0.828831\pi\)
−0.858866 + 0.512200i \(0.828831\pi\)
\(600\) −9.29658 −0.379531
\(601\) 13.4807 0.549891 0.274945 0.961460i \(-0.411340\pi\)
0.274945 + 0.961460i \(0.411340\pi\)
\(602\) 0 0
\(603\) 58.4978 2.38222
\(604\) 4.86841 0.198093
\(605\) 16.6863 0.678395
\(606\) 71.6656 2.91122
\(607\) 6.69701 0.271823 0.135912 0.990721i \(-0.456604\pi\)
0.135912 + 0.990721i \(0.456604\pi\)
\(608\) −6.22520 −0.252465
\(609\) 0 0
\(610\) 9.75689 0.395045
\(611\) 62.4130 2.52496
\(612\) −6.13662 −0.248058
\(613\) −36.2623 −1.46462 −0.732311 0.680970i \(-0.761558\pi\)
−0.732311 + 0.680970i \(0.761558\pi\)
\(614\) −13.8659 −0.559582
\(615\) −34.6824 −1.39853
\(616\) 0 0
\(617\) 38.6679 1.55671 0.778356 0.627823i \(-0.216054\pi\)
0.778356 + 0.627823i \(0.216054\pi\)
\(618\) 18.2147 0.732702
\(619\) 8.11816 0.326296 0.163148 0.986602i \(-0.447835\pi\)
0.163148 + 0.986602i \(0.447835\pi\)
\(620\) −5.98206 −0.240245
\(621\) 62.1798 2.49519
\(622\) −20.9454 −0.839835
\(623\) 0 0
\(624\) 54.4216 2.17861
\(625\) −28.7625 −1.15050
\(626\) −16.6967 −0.667333
\(627\) 34.9457 1.39560
\(628\) −1.61469 −0.0644332
\(629\) 10.5808 0.421884
\(630\) 0 0
\(631\) −19.4072 −0.772587 −0.386293 0.922376i \(-0.626245\pi\)
−0.386293 + 0.922376i \(0.626245\pi\)
\(632\) −47.0967 −1.87341
\(633\) −56.4827 −2.24499
\(634\) 23.2659 0.924007
\(635\) −2.43368 −0.0965778
\(636\) −5.92969 −0.235127
\(637\) 0 0
\(638\) 31.4144 1.24371
\(639\) 60.3622 2.38789
\(640\) −14.8721 −0.587871
\(641\) 11.5636 0.456736 0.228368 0.973575i \(-0.426661\pi\)
0.228368 + 0.973575i \(0.426661\pi\)
\(642\) −23.5276 −0.928560
\(643\) 5.96147 0.235098 0.117549 0.993067i \(-0.462496\pi\)
0.117549 + 0.993067i \(0.462496\pi\)
\(644\) 0 0
\(645\) −39.6647 −1.56180
\(646\) −5.39074 −0.212096
\(647\) 50.1845 1.97296 0.986478 0.163892i \(-0.0524050\pi\)
0.986478 + 0.163892i \(0.0524050\pi\)
\(648\) 91.0202 3.57561
\(649\) −60.4341 −2.37224
\(650\) −6.52740 −0.256026
\(651\) 0 0
\(652\) 2.67169 0.104631
\(653\) 7.04866 0.275835 0.137918 0.990444i \(-0.455959\pi\)
0.137918 + 0.990444i \(0.455959\pi\)
\(654\) 59.9420 2.34392
\(655\) −48.1826 −1.88265
\(656\) −12.5168 −0.488699
\(657\) −59.6121 −2.32569
\(658\) 0 0
\(659\) −48.8016 −1.90104 −0.950521 0.310660i \(-0.899450\pi\)
−0.950521 + 0.310660i \(0.899450\pi\)
\(660\) −15.2434 −0.593347
\(661\) 7.03546 0.273648 0.136824 0.990595i \(-0.456311\pi\)
0.136824 + 0.990595i \(0.456311\pi\)
\(662\) −3.01334 −0.117117
\(663\) −32.4289 −1.25944
\(664\) 39.0156 1.51410
\(665\) 0 0
\(666\) −60.3018 −2.33665
\(667\) −22.8822 −0.886004
\(668\) 7.07257 0.273646
\(669\) −11.7342 −0.453670
\(670\) −22.4153 −0.865980
\(671\) 13.6020 0.525099
\(672\) 0 0
\(673\) −48.0452 −1.85201 −0.926004 0.377514i \(-0.876779\pi\)
−0.926004 + 0.377514i \(0.876779\pi\)
\(674\) 21.5310 0.829342
\(675\) −14.9678 −0.576111
\(676\) −8.63939 −0.332284
\(677\) −8.31499 −0.319571 −0.159786 0.987152i \(-0.551080\pi\)
−0.159786 + 0.987152i \(0.551080\pi\)
\(678\) 24.3244 0.934173
\(679\) 0 0
\(680\) 12.8316 0.492068
\(681\) −1.52590 −0.0584726
\(682\) 28.8288 1.10391
\(683\) 5.68344 0.217471 0.108735 0.994071i \(-0.465320\pi\)
0.108735 + 0.994071i \(0.465320\pi\)
\(684\) −8.88740 −0.339818
\(685\) 21.8450 0.834653
\(686\) 0 0
\(687\) 75.5190 2.88123
\(688\) −14.3149 −0.545750
\(689\) −22.7192 −0.865533
\(690\) −38.3827 −1.46120
\(691\) −6.26192 −0.238215 −0.119107 0.992881i \(-0.538003\pi\)
−0.119107 + 0.992881i \(0.538003\pi\)
\(692\) −7.64950 −0.290790
\(693\) 0 0
\(694\) 25.8656 0.981844
\(695\) −14.2771 −0.541562
\(696\) −60.1307 −2.27925
\(697\) 7.45856 0.282513
\(698\) 29.4253 1.11376
\(699\) −7.46024 −0.282172
\(700\) 0 0
\(701\) 9.37500 0.354089 0.177044 0.984203i \(-0.443346\pi\)
0.177044 + 0.984203i \(0.443346\pi\)
\(702\) 114.727 4.33007
\(703\) 15.3237 0.577945
\(704\) −37.6049 −1.41729
\(705\) −88.3445 −3.32725
\(706\) −19.3796 −0.729359
\(707\) 0 0
\(708\) 21.1985 0.796687
\(709\) −34.9615 −1.31301 −0.656504 0.754323i \(-0.727965\pi\)
−0.656504 + 0.754323i \(0.727965\pi\)
\(710\) −23.1297 −0.868044
\(711\) −122.154 −4.58112
\(712\) −11.8514 −0.444151
\(713\) −20.9989 −0.786415
\(714\) 0 0
\(715\) −58.4039 −2.18418
\(716\) −2.99931 −0.112089
\(717\) 94.3340 3.52297
\(718\) 8.76224 0.327004
\(719\) 36.7725 1.37138 0.685691 0.727893i \(-0.259500\pi\)
0.685691 + 0.727893i \(0.259500\pi\)
\(720\) −55.8513 −2.08146
\(721\) 0 0
\(722\) 15.8572 0.590145
\(723\) −45.2213 −1.68180
\(724\) 5.91535 0.219842
\(725\) 5.50817 0.204568
\(726\) 28.2071 1.04686
\(727\) 9.14372 0.339122 0.169561 0.985520i \(-0.445765\pi\)
0.169561 + 0.985520i \(0.445765\pi\)
\(728\) 0 0
\(729\) 75.3516 2.79080
\(730\) 22.8423 0.845432
\(731\) 8.53000 0.315494
\(732\) −4.77117 −0.176347
\(733\) −29.1847 −1.07796 −0.538981 0.842318i \(-0.681191\pi\)
−0.538981 + 0.842318i \(0.681191\pi\)
\(734\) 35.6541 1.31602
\(735\) 0 0
\(736\) 9.53204 0.351356
\(737\) −31.2490 −1.15107
\(738\) −42.5076 −1.56473
\(739\) −0.392476 −0.0144375 −0.00721873 0.999974i \(-0.502298\pi\)
−0.00721873 + 0.999974i \(0.502298\pi\)
\(740\) −6.68422 −0.245717
\(741\) −46.9654 −1.72532
\(742\) 0 0
\(743\) −1.15399 −0.0423359 −0.0211680 0.999776i \(-0.506738\pi\)
−0.0211680 + 0.999776i \(0.506738\pi\)
\(744\) −55.1816 −2.02306
\(745\) −52.5622 −1.92573
\(746\) −4.67875 −0.171301
\(747\) 101.194 3.70249
\(748\) 3.27813 0.119860
\(749\) 0 0
\(750\) −40.8213 −1.49058
\(751\) 48.0457 1.75321 0.876607 0.481208i \(-0.159802\pi\)
0.876607 + 0.481208i \(0.159802\pi\)
\(752\) −31.8833 −1.16266
\(753\) 24.4920 0.892538
\(754\) −42.2195 −1.53754
\(755\) −26.4030 −0.960903
\(756\) 0 0
\(757\) 40.4145 1.46889 0.734445 0.678668i \(-0.237443\pi\)
0.734445 + 0.678668i \(0.237443\pi\)
\(758\) −25.8814 −0.940054
\(759\) −53.5089 −1.94225
\(760\) 18.5834 0.674091
\(761\) 26.8626 0.973769 0.486884 0.873466i \(-0.338133\pi\)
0.486884 + 0.873466i \(0.338133\pi\)
\(762\) −4.11399 −0.149034
\(763\) 0 0
\(764\) −7.82040 −0.282932
\(765\) 33.2809 1.20327
\(766\) 22.0362 0.796199
\(767\) 81.2205 2.93270
\(768\) 33.6490 1.21420
\(769\) 36.9143 1.33117 0.665583 0.746324i \(-0.268183\pi\)
0.665583 + 0.746324i \(0.268183\pi\)
\(770\) 0 0
\(771\) 54.0201 1.94549
\(772\) −3.95737 −0.142429
\(773\) −35.0570 −1.26091 −0.630457 0.776224i \(-0.717132\pi\)
−0.630457 + 0.776224i \(0.717132\pi\)
\(774\) −48.6139 −1.74739
\(775\) 5.05482 0.181574
\(776\) −12.9421 −0.464594
\(777\) 0 0
\(778\) −34.0114 −1.21937
\(779\) 10.8019 0.387018
\(780\) 20.4864 0.733529
\(781\) −32.2450 −1.15382
\(782\) 8.25431 0.295173
\(783\) −96.8124 −3.45979
\(784\) 0 0
\(785\) 8.75700 0.312551
\(786\) −81.4496 −2.90521
\(787\) −4.03988 −0.144006 −0.0720031 0.997404i \(-0.522939\pi\)
−0.0720031 + 0.997404i \(0.522939\pi\)
\(788\) 10.0696 0.358713
\(789\) −15.4795 −0.551086
\(790\) 46.8071 1.66532
\(791\) 0 0
\(792\) −101.949 −3.62260
\(793\) −18.2804 −0.649157
\(794\) −15.9084 −0.564568
\(795\) 32.1586 1.14055
\(796\) 2.87253 0.101814
\(797\) −21.3487 −0.756208 −0.378104 0.925763i \(-0.623424\pi\)
−0.378104 + 0.925763i \(0.623424\pi\)
\(798\) 0 0
\(799\) 18.9987 0.672127
\(800\) −2.29454 −0.0811241
\(801\) −30.7387 −1.08610
\(802\) −13.0172 −0.459653
\(803\) 31.8442 1.12376
\(804\) 10.9612 0.386572
\(805\) 0 0
\(806\) −38.7446 −1.36472
\(807\) −48.4955 −1.70712
\(808\) 53.1292 1.86908
\(809\) −26.7700 −0.941182 −0.470591 0.882352i \(-0.655959\pi\)
−0.470591 + 0.882352i \(0.655959\pi\)
\(810\) −90.4604 −3.17845
\(811\) −22.1435 −0.777563 −0.388781 0.921330i \(-0.627104\pi\)
−0.388781 + 0.921330i \(0.627104\pi\)
\(812\) 0 0
\(813\) −35.4946 −1.24485
\(814\) 32.2127 1.12905
\(815\) −14.4894 −0.507543
\(816\) 16.5661 0.579930
\(817\) 12.3536 0.432199
\(818\) −12.5262 −0.437968
\(819\) 0 0
\(820\) −4.71180 −0.164543
\(821\) 9.39267 0.327806 0.163903 0.986476i \(-0.447592\pi\)
0.163903 + 0.986476i \(0.447592\pi\)
\(822\) 36.9275 1.28799
\(823\) −0.914372 −0.0318730 −0.0159365 0.999873i \(-0.505073\pi\)
−0.0159365 + 0.999873i \(0.505073\pi\)
\(824\) 13.5034 0.470414
\(825\) 12.8806 0.448444
\(826\) 0 0
\(827\) 39.0657 1.35845 0.679224 0.733931i \(-0.262317\pi\)
0.679224 + 0.733931i \(0.262317\pi\)
\(828\) 13.6084 0.472925
\(829\) −35.1117 −1.21948 −0.609741 0.792601i \(-0.708726\pi\)
−0.609741 + 0.792601i \(0.708726\pi\)
\(830\) −38.7757 −1.34592
\(831\) −2.82766 −0.0980903
\(832\) 50.5392 1.75213
\(833\) 0 0
\(834\) −24.1346 −0.835712
\(835\) −38.3569 −1.32740
\(836\) 4.74757 0.164198
\(837\) −88.8442 −3.07091
\(838\) −5.95632 −0.205758
\(839\) 38.3771 1.32492 0.662462 0.749096i \(-0.269512\pi\)
0.662462 + 0.749096i \(0.269512\pi\)
\(840\) 0 0
\(841\) 6.62708 0.228520
\(842\) 16.5284 0.569605
\(843\) −47.4800 −1.63530
\(844\) −7.67348 −0.264132
\(845\) 46.8543 1.61184
\(846\) −108.277 −3.72264
\(847\) 0 0
\(848\) 11.6060 0.398550
\(849\) 62.0503 2.12956
\(850\) −1.98696 −0.0681522
\(851\) −23.4637 −0.804325
\(852\) 11.3106 0.387494
\(853\) −46.6670 −1.59785 −0.798924 0.601432i \(-0.794597\pi\)
−0.798924 + 0.601432i \(0.794597\pi\)
\(854\) 0 0
\(855\) 48.1993 1.64838
\(856\) −17.4421 −0.596160
\(857\) −13.5444 −0.462670 −0.231335 0.972874i \(-0.574309\pi\)
−0.231335 + 0.972874i \(0.574309\pi\)
\(858\) −98.7281 −3.37052
\(859\) 12.2410 0.417658 0.208829 0.977952i \(-0.433035\pi\)
0.208829 + 0.977952i \(0.433035\pi\)
\(860\) −5.38867 −0.183752
\(861\) 0 0
\(862\) 27.2184 0.927061
\(863\) 31.6870 1.07864 0.539318 0.842102i \(-0.318682\pi\)
0.539318 + 0.842102i \(0.318682\pi\)
\(864\) 40.3291 1.37202
\(865\) 41.4858 1.41056
\(866\) −34.9338 −1.18710
\(867\) 46.2811 1.57179
\(868\) 0 0
\(869\) 65.2533 2.21357
\(870\) 59.7609 2.02608
\(871\) 41.9972 1.42302
\(872\) 44.4379 1.50486
\(873\) −33.5676 −1.13609
\(874\) 11.9544 0.404362
\(875\) 0 0
\(876\) −11.1700 −0.377399
\(877\) 34.1129 1.15191 0.575955 0.817481i \(-0.304630\pi\)
0.575955 + 0.817481i \(0.304630\pi\)
\(878\) −1.07685 −0.0363420
\(879\) −48.4063 −1.63270
\(880\) 29.8353 1.00575
\(881\) 23.3863 0.787905 0.393952 0.919131i \(-0.371107\pi\)
0.393952 + 0.919131i \(0.371107\pi\)
\(882\) 0 0
\(883\) 6.39758 0.215296 0.107648 0.994189i \(-0.465668\pi\)
0.107648 + 0.994189i \(0.465668\pi\)
\(884\) −4.40565 −0.148178
\(885\) −114.966 −3.86455
\(886\) −21.5640 −0.724455
\(887\) −16.3462 −0.548851 −0.274425 0.961608i \(-0.588488\pi\)
−0.274425 + 0.961608i \(0.588488\pi\)
\(888\) −61.6587 −2.06913
\(889\) 0 0
\(890\) 11.7785 0.394817
\(891\) −126.110 −4.22484
\(892\) −1.59416 −0.0533763
\(893\) 27.5150 0.920755
\(894\) −88.8529 −2.97169
\(895\) 16.2662 0.543720
\(896\) 0 0
\(897\) 71.9135 2.40112
\(898\) −10.3975 −0.346968
\(899\) 32.6948 1.09043
\(900\) −3.27579 −0.109193
\(901\) −6.91581 −0.230399
\(902\) 22.7072 0.756066
\(903\) 0 0
\(904\) 18.0329 0.599764
\(905\) −32.0809 −1.06641
\(906\) −44.6325 −1.48282
\(907\) −12.0928 −0.401534 −0.200767 0.979639i \(-0.564343\pi\)
−0.200767 + 0.979639i \(0.564343\pi\)
\(908\) −0.207302 −0.00687955
\(909\) 137.800 4.57053
\(910\) 0 0
\(911\) −6.38071 −0.211402 −0.105701 0.994398i \(-0.533709\pi\)
−0.105701 + 0.994398i \(0.533709\pi\)
\(912\) 23.9920 0.794454
\(913\) −54.0568 −1.78902
\(914\) −39.3744 −1.30239
\(915\) 25.8756 0.855421
\(916\) 10.2597 0.338989
\(917\) 0 0
\(918\) 34.9231 1.15264
\(919\) −10.8878 −0.359156 −0.179578 0.983744i \(-0.557473\pi\)
−0.179578 + 0.983744i \(0.557473\pi\)
\(920\) −28.4549 −0.938132
\(921\) −36.7728 −1.21171
\(922\) 18.5628 0.611334
\(923\) 43.3357 1.42641
\(924\) 0 0
\(925\) 5.64814 0.185710
\(926\) 7.87870 0.258910
\(927\) 35.0234 1.15032
\(928\) −14.8412 −0.487185
\(929\) 15.7838 0.517851 0.258925 0.965897i \(-0.416632\pi\)
0.258925 + 0.965897i \(0.416632\pi\)
\(930\) 54.8423 1.79835
\(931\) 0 0
\(932\) −1.01351 −0.0331988
\(933\) −55.5480 −1.81856
\(934\) −31.8245 −1.04133
\(935\) −17.7784 −0.581415
\(936\) 137.014 4.47846
\(937\) 28.4718 0.930134 0.465067 0.885275i \(-0.346030\pi\)
0.465067 + 0.885275i \(0.346030\pi\)
\(938\) 0 0
\(939\) −44.2801 −1.44503
\(940\) −12.0021 −0.391465
\(941\) −47.9062 −1.56170 −0.780849 0.624720i \(-0.785213\pi\)
−0.780849 + 0.624720i \(0.785213\pi\)
\(942\) 14.8031 0.482312
\(943\) −16.5399 −0.538613
\(944\) −41.4910 −1.35042
\(945\) 0 0
\(946\) 25.9691 0.844329
\(947\) 13.1474 0.427233 0.213617 0.976918i \(-0.431476\pi\)
0.213617 + 0.976918i \(0.431476\pi\)
\(948\) −22.8889 −0.743397
\(949\) −42.7972 −1.38925
\(950\) −2.87763 −0.0933626
\(951\) 61.7020 2.00082
\(952\) 0 0
\(953\) 4.75915 0.154164 0.0770820 0.997025i \(-0.475440\pi\)
0.0770820 + 0.997025i \(0.475440\pi\)
\(954\) 39.4144 1.27609
\(955\) 42.4126 1.37244
\(956\) 12.8158 0.414492
\(957\) 83.3121 2.69310
\(958\) −6.99648 −0.226046
\(959\) 0 0
\(960\) −71.5373 −2.30886
\(961\) −0.996189 −0.0321351
\(962\) −43.2923 −1.39580
\(963\) −45.2392 −1.45781
\(964\) −6.14356 −0.197871
\(965\) 21.4621 0.690891
\(966\) 0 0
\(967\) −14.6017 −0.469558 −0.234779 0.972049i \(-0.575437\pi\)
−0.234779 + 0.972049i \(0.575437\pi\)
\(968\) 20.9113 0.672115
\(969\) −14.2964 −0.459267
\(970\) 12.8625 0.412990
\(971\) −2.56019 −0.0821603 −0.0410801 0.999156i \(-0.513080\pi\)
−0.0410801 + 0.999156i \(0.513080\pi\)
\(972\) 22.4002 0.718487
\(973\) 0 0
\(974\) −31.3271 −1.00379
\(975\) −17.3109 −0.554392
\(976\) 9.33844 0.298916
\(977\) 20.9064 0.668856 0.334428 0.942421i \(-0.391457\pi\)
0.334428 + 0.942421i \(0.391457\pi\)
\(978\) −24.4934 −0.783214
\(979\) 16.4203 0.524796
\(980\) 0 0
\(981\) 115.257 3.67988
\(982\) 37.8381 1.20746
\(983\) 0.0609831 0.00194506 0.000972530 1.00000i \(-0.499690\pi\)
0.000972530 1.00000i \(0.499690\pi\)
\(984\) −43.4641 −1.38558
\(985\) −54.6105 −1.74004
\(986\) −12.8518 −0.409283
\(987\) 0 0
\(988\) −6.38051 −0.202991
\(989\) −18.9159 −0.601491
\(990\) 101.322 3.22022
\(991\) 6.39312 0.203084 0.101542 0.994831i \(-0.467622\pi\)
0.101542 + 0.994831i \(0.467622\pi\)
\(992\) −13.6196 −0.432424
\(993\) −7.99149 −0.253602
\(994\) 0 0
\(995\) −15.5787 −0.493877
\(996\) 18.9615 0.600819
\(997\) −33.1091 −1.04858 −0.524288 0.851541i \(-0.675668\pi\)
−0.524288 + 0.851541i \(0.675668\pi\)
\(998\) 35.6449 1.12832
\(999\) −99.2726 −3.14084
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.6 16
7.6 odd 2 889.2.a.c.1.6 16
21.20 even 2 8001.2.a.t.1.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.6 16 7.6 odd 2
6223.2.a.k.1.6 16 1.1 even 1 trivial
8001.2.a.t.1.11 16 21.20 even 2