Properties

Label 889.2.a.c.1.6
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.24549\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.24549 q^{2} +3.30309 q^{3} -0.448744 q^{4} -2.43368 q^{5} -4.11399 q^{6} -1.00000 q^{7} +3.04990 q^{8} +7.91044 q^{9} +3.03114 q^{10} -4.22568 q^{11} -1.48224 q^{12} -5.67912 q^{13} +1.24549 q^{14} -8.03869 q^{15} -2.90114 q^{16} -1.72874 q^{17} -9.85240 q^{18} -2.50366 q^{19} +1.09210 q^{20} -3.30309 q^{21} +5.26306 q^{22} -3.83361 q^{23} +10.0741 q^{24} +0.922820 q^{25} +7.07331 q^{26} +16.2196 q^{27} +0.448744 q^{28} +5.96884 q^{29} +10.0121 q^{30} -5.47757 q^{31} -2.48644 q^{32} -13.9578 q^{33} +2.15314 q^{34} +2.43368 q^{35} -3.54976 q^{36} +6.12052 q^{37} +3.11830 q^{38} -18.7587 q^{39} -7.42249 q^{40} -4.31444 q^{41} +4.11399 q^{42} +4.93422 q^{43} +1.89625 q^{44} -19.2515 q^{45} +4.77474 q^{46} -10.9899 q^{47} -9.58275 q^{48} +1.00000 q^{49} -1.14937 q^{50} -5.71020 q^{51} +2.54847 q^{52} -4.00048 q^{53} -20.2015 q^{54} +10.2840 q^{55} -3.04990 q^{56} -8.26984 q^{57} -7.43416 q^{58} -14.3016 q^{59} +3.60731 q^{60} +3.21888 q^{61} +6.82229 q^{62} -7.91044 q^{63} +8.89913 q^{64} +13.8212 q^{65} +17.3844 q^{66} +7.39502 q^{67} +0.775763 q^{68} -12.6628 q^{69} -3.03114 q^{70} +7.63071 q^{71} +24.1260 q^{72} +7.53588 q^{73} -7.62307 q^{74} +3.04816 q^{75} +1.12350 q^{76} +4.22568 q^{77} +23.3638 q^{78} -15.4421 q^{79} +7.06046 q^{80} +29.8437 q^{81} +5.37361 q^{82} -12.7925 q^{83} +1.48224 q^{84} +4.20722 q^{85} -6.14555 q^{86} +19.7157 q^{87} -12.8879 q^{88} +3.88584 q^{89} +23.9776 q^{90} +5.67912 q^{91} +1.72031 q^{92} -18.0929 q^{93} +13.6879 q^{94} +6.09313 q^{95} -8.21294 q^{96} +4.24345 q^{97} -1.24549 q^{98} -33.4270 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 9 q^{5} - 12 q^{6} - 16 q^{7} - 6 q^{8} + 14 q^{9} - 2 q^{10} - 22 q^{11} - 10 q^{12} - 4 q^{13} + 2 q^{14} - 14 q^{15} + 12 q^{16} - 18 q^{17} - 5 q^{18} - 15 q^{19}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24549 −0.880698 −0.440349 0.897827i \(-0.645145\pi\)
−0.440349 + 0.897827i \(0.645145\pi\)
\(3\) 3.30309 1.90704 0.953521 0.301325i \(-0.0974291\pi\)
0.953521 + 0.301325i \(0.0974291\pi\)
\(4\) −0.448744 −0.224372
\(5\) −2.43368 −1.08838 −0.544188 0.838963i \(-0.683162\pi\)
−0.544188 + 0.838963i \(0.683162\pi\)
\(6\) −4.11399 −1.67953
\(7\) −1.00000 −0.377964
\(8\) 3.04990 1.07830
\(9\) 7.91044 2.63681
\(10\) 3.03114 0.958531
\(11\) −4.22568 −1.27409 −0.637046 0.770826i \(-0.719844\pi\)
−0.637046 + 0.770826i \(0.719844\pi\)
\(12\) −1.48224 −0.427887
\(13\) −5.67912 −1.57510 −0.787552 0.616248i \(-0.788652\pi\)
−0.787552 + 0.616248i \(0.788652\pi\)
\(14\) 1.24549 0.332872
\(15\) −8.03869 −2.07558
\(16\) −2.90114 −0.725285
\(17\) −1.72874 −0.419282 −0.209641 0.977778i \(-0.567229\pi\)
−0.209641 + 0.977778i \(0.567229\pi\)
\(18\) −9.85240 −2.32223
\(19\) −2.50366 −0.574380 −0.287190 0.957874i \(-0.592721\pi\)
−0.287190 + 0.957874i \(0.592721\pi\)
\(20\) 1.09210 0.244201
\(21\) −3.30309 −0.720794
\(22\) 5.26306 1.12209
\(23\) −3.83361 −0.799364 −0.399682 0.916654i \(-0.630879\pi\)
−0.399682 + 0.916654i \(0.630879\pi\)
\(24\) 10.0741 2.05637
\(25\) 0.922820 0.184564
\(26\) 7.07331 1.38719
\(27\) 16.2196 3.12147
\(28\) 0.448744 0.0848046
\(29\) 5.96884 1.10839 0.554193 0.832388i \(-0.313027\pi\)
0.554193 + 0.832388i \(0.313027\pi\)
\(30\) 10.0121 1.82796
\(31\) −5.47757 −0.983801 −0.491901 0.870651i \(-0.663698\pi\)
−0.491901 + 0.870651i \(0.663698\pi\)
\(32\) −2.48644 −0.439544
\(33\) −13.9578 −2.42975
\(34\) 2.15314 0.369260
\(35\) 2.43368 0.411368
\(36\) −3.54976 −0.591626
\(37\) 6.12052 1.00621 0.503103 0.864226i \(-0.332191\pi\)
0.503103 + 0.864226i \(0.332191\pi\)
\(38\) 3.11830 0.505855
\(39\) −18.7587 −3.00379
\(40\) −7.42249 −1.17360
\(41\) −4.31444 −0.673802 −0.336901 0.941540i \(-0.609379\pi\)
−0.336901 + 0.941540i \(0.609379\pi\)
\(42\) 4.11399 0.634802
\(43\) 4.93422 0.752462 0.376231 0.926526i \(-0.377220\pi\)
0.376231 + 0.926526i \(0.377220\pi\)
\(44\) 1.89625 0.285870
\(45\) −19.2515 −2.86984
\(46\) 4.77474 0.703998
\(47\) −10.9899 −1.60304 −0.801521 0.597966i \(-0.795976\pi\)
−0.801521 + 0.597966i \(0.795976\pi\)
\(48\) −9.58275 −1.38315
\(49\) 1.00000 0.142857
\(50\) −1.14937 −0.162545
\(51\) −5.71020 −0.799588
\(52\) 2.54847 0.353409
\(53\) −4.00048 −0.549508 −0.274754 0.961514i \(-0.588596\pi\)
−0.274754 + 0.961514i \(0.588596\pi\)
\(54\) −20.2015 −2.74907
\(55\) 10.2840 1.38669
\(56\) −3.04990 −0.407560
\(57\) −8.26984 −1.09537
\(58\) −7.43416 −0.976153
\(59\) −14.3016 −1.86191 −0.930955 0.365133i \(-0.881023\pi\)
−0.930955 + 0.365133i \(0.881023\pi\)
\(60\) 3.60731 0.465702
\(61\) 3.21888 0.412136 0.206068 0.978538i \(-0.433933\pi\)
0.206068 + 0.978538i \(0.433933\pi\)
\(62\) 6.82229 0.866431
\(63\) −7.91044 −0.996621
\(64\) 8.89913 1.11239
\(65\) 13.8212 1.71431
\(66\) 17.3844 2.13987
\(67\) 7.39502 0.903445 0.451723 0.892158i \(-0.350810\pi\)
0.451723 + 0.892158i \(0.350810\pi\)
\(68\) 0.775763 0.0940750
\(69\) −12.6628 −1.52442
\(70\) −3.03114 −0.362291
\(71\) 7.63071 0.905598 0.452799 0.891612i \(-0.350425\pi\)
0.452799 + 0.891612i \(0.350425\pi\)
\(72\) 24.1260 2.84328
\(73\) 7.53588 0.882008 0.441004 0.897505i \(-0.354622\pi\)
0.441004 + 0.897505i \(0.354622\pi\)
\(74\) −7.62307 −0.886164
\(75\) 3.04816 0.351972
\(76\) 1.12350 0.128875
\(77\) 4.22568 0.481561
\(78\) 23.3638 2.64543
\(79\) −15.4421 −1.73737 −0.868685 0.495365i \(-0.835034\pi\)
−0.868685 + 0.495365i \(0.835034\pi\)
\(80\) 7.06046 0.789384
\(81\) 29.8437 3.31597
\(82\) 5.37361 0.593416
\(83\) −12.7925 −1.40415 −0.702077 0.712101i \(-0.747744\pi\)
−0.702077 + 0.712101i \(0.747744\pi\)
\(84\) 1.48224 0.161726
\(85\) 4.20722 0.456337
\(86\) −6.14555 −0.662691
\(87\) 19.7157 2.11374
\(88\) −12.8879 −1.37385
\(89\) 3.88584 0.411898 0.205949 0.978563i \(-0.433972\pi\)
0.205949 + 0.978563i \(0.433972\pi\)
\(90\) 23.9776 2.52747
\(91\) 5.67912 0.595333
\(92\) 1.72031 0.179355
\(93\) −18.0929 −1.87615
\(94\) 13.6879 1.41180
\(95\) 6.09313 0.625142
\(96\) −8.21294 −0.838229
\(97\) 4.24345 0.430857 0.215429 0.976520i \(-0.430885\pi\)
0.215429 + 0.976520i \(0.430885\pi\)
\(98\) −1.24549 −0.125814
\(99\) −33.4270 −3.35954
\(100\) −0.414110 −0.0414110
\(101\) −17.4200 −1.73335 −0.866677 0.498870i \(-0.833749\pi\)
−0.866677 + 0.498870i \(0.833749\pi\)
\(102\) 7.11203 0.704196
\(103\) −4.42750 −0.436254 −0.218127 0.975920i \(-0.569995\pi\)
−0.218127 + 0.975920i \(0.569995\pi\)
\(104\) −17.3207 −1.69844
\(105\) 8.03869 0.784496
\(106\) 4.98258 0.483951
\(107\) −5.71893 −0.552869 −0.276435 0.961033i \(-0.589153\pi\)
−0.276435 + 0.961033i \(0.589153\pi\)
\(108\) −7.27846 −0.700370
\(109\) 14.5703 1.39558 0.697790 0.716302i \(-0.254167\pi\)
0.697790 + 0.716302i \(0.254167\pi\)
\(110\) −12.8086 −1.22126
\(111\) 20.2167 1.91888
\(112\) 2.90114 0.274132
\(113\) 5.91261 0.556212 0.278106 0.960550i \(-0.410293\pi\)
0.278106 + 0.960550i \(0.410293\pi\)
\(114\) 10.3000 0.964687
\(115\) 9.32981 0.870009
\(116\) −2.67848 −0.248691
\(117\) −44.9243 −4.15325
\(118\) 17.8126 1.63978
\(119\) 1.72874 0.158474
\(120\) −24.5172 −2.23810
\(121\) 6.85640 0.623309
\(122\) −4.00910 −0.362967
\(123\) −14.2510 −1.28497
\(124\) 2.45803 0.220737
\(125\) 9.92257 0.887502
\(126\) 9.85240 0.877722
\(127\) −1.00000 −0.0887357
\(128\) −6.11094 −0.540136
\(129\) 16.2982 1.43498
\(130\) −17.2142 −1.50979
\(131\) 19.7982 1.72978 0.864890 0.501962i \(-0.167388\pi\)
0.864890 + 0.501962i \(0.167388\pi\)
\(132\) 6.26349 0.545167
\(133\) 2.50366 0.217095
\(134\) −9.21045 −0.795662
\(135\) −39.4735 −3.39734
\(136\) −5.27249 −0.452112
\(137\) 8.97609 0.766879 0.383439 0.923566i \(-0.374739\pi\)
0.383439 + 0.923566i \(0.374739\pi\)
\(138\) 15.7714 1.34255
\(139\) 5.86647 0.497587 0.248794 0.968557i \(-0.419966\pi\)
0.248794 + 0.968557i \(0.419966\pi\)
\(140\) −1.09210 −0.0922993
\(141\) −36.3007 −3.05707
\(142\) −9.50400 −0.797558
\(143\) 23.9982 2.00683
\(144\) −22.9493 −1.91244
\(145\) −14.5263 −1.20634
\(146\) −9.38590 −0.776782
\(147\) 3.30309 0.272435
\(148\) −2.74654 −0.225764
\(149\) −21.5978 −1.76936 −0.884679 0.466201i \(-0.845622\pi\)
−0.884679 + 0.466201i \(0.845622\pi\)
\(150\) −3.79647 −0.309981
\(151\) −10.8490 −0.882877 −0.441439 0.897291i \(-0.645532\pi\)
−0.441439 + 0.897291i \(0.645532\pi\)
\(152\) −7.63591 −0.619354
\(153\) −13.6751 −1.10557
\(154\) −5.26306 −0.424110
\(155\) 13.3307 1.07075
\(156\) 8.41783 0.673966
\(157\) −3.59825 −0.287171 −0.143586 0.989638i \(-0.545863\pi\)
−0.143586 + 0.989638i \(0.545863\pi\)
\(158\) 19.2330 1.53010
\(159\) −13.2140 −1.04794
\(160\) 6.05120 0.478390
\(161\) 3.83361 0.302131
\(162\) −37.1701 −2.92036
\(163\) −5.95370 −0.466330 −0.233165 0.972437i \(-0.574908\pi\)
−0.233165 + 0.972437i \(0.574908\pi\)
\(164\) 1.93608 0.151182
\(165\) 33.9690 2.64448
\(166\) 15.9329 1.23663
\(167\) 15.7608 1.21961 0.609805 0.792552i \(-0.291248\pi\)
0.609805 + 0.792552i \(0.291248\pi\)
\(168\) −10.0741 −0.777234
\(169\) 19.2524 1.48095
\(170\) −5.24006 −0.401895
\(171\) −19.8051 −1.51453
\(172\) −2.21420 −0.168831
\(173\) −17.0465 −1.29602 −0.648010 0.761632i \(-0.724398\pi\)
−0.648010 + 0.761632i \(0.724398\pi\)
\(174\) −24.5557 −1.86157
\(175\) −0.922820 −0.0697587
\(176\) 12.2593 0.924080
\(177\) −47.2396 −3.55074
\(178\) −4.83979 −0.362758
\(179\) 6.68379 0.499570 0.249785 0.968301i \(-0.419640\pi\)
0.249785 + 0.968301i \(0.419640\pi\)
\(180\) 8.63899 0.643912
\(181\) 13.1820 0.979813 0.489906 0.871775i \(-0.337031\pi\)
0.489906 + 0.871775i \(0.337031\pi\)
\(182\) −7.07331 −0.524309
\(183\) 10.6323 0.785961
\(184\) −11.6921 −0.861955
\(185\) −14.8954 −1.09513
\(186\) 22.5347 1.65232
\(187\) 7.30512 0.534203
\(188\) 4.93165 0.359678
\(189\) −16.2196 −1.17980
\(190\) −7.58896 −0.550561
\(191\) 17.4273 1.26100 0.630498 0.776191i \(-0.282851\pi\)
0.630498 + 0.776191i \(0.282851\pi\)
\(192\) 29.3947 2.12138
\(193\) 8.81879 0.634790 0.317395 0.948293i \(-0.397192\pi\)
0.317395 + 0.948293i \(0.397192\pi\)
\(194\) −5.28520 −0.379455
\(195\) 45.6527 3.26926
\(196\) −0.448744 −0.0320531
\(197\) −22.4395 −1.59874 −0.799372 0.600836i \(-0.794834\pi\)
−0.799372 + 0.600836i \(0.794834\pi\)
\(198\) 41.6331 2.95874
\(199\) 6.40127 0.453774 0.226887 0.973921i \(-0.427145\pi\)
0.226887 + 0.973921i \(0.427145\pi\)
\(200\) 2.81451 0.199016
\(201\) 24.4264 1.72291
\(202\) 21.6965 1.52656
\(203\) −5.96884 −0.418931
\(204\) 2.56242 0.179405
\(205\) 10.5000 0.733351
\(206\) 5.51443 0.384208
\(207\) −30.3256 −2.10777
\(208\) 16.4759 1.14240
\(209\) 10.5797 0.731812
\(210\) −10.0121 −0.690904
\(211\) 17.0999 1.17721 0.588604 0.808422i \(-0.299678\pi\)
0.588604 + 0.808422i \(0.299678\pi\)
\(212\) 1.79519 0.123294
\(213\) 25.2050 1.72702
\(214\) 7.12289 0.486911
\(215\) −12.0083 −0.818962
\(216\) 49.4682 3.36589
\(217\) 5.47757 0.371842
\(218\) −18.1472 −1.22908
\(219\) 24.8917 1.68203
\(220\) −4.61487 −0.311135
\(221\) 9.81774 0.660413
\(222\) −25.1797 −1.68995
\(223\) −3.55249 −0.237892 −0.118946 0.992901i \(-0.537952\pi\)
−0.118946 + 0.992901i \(0.537952\pi\)
\(224\) 2.48644 0.166132
\(225\) 7.29991 0.486661
\(226\) −7.36413 −0.489854
\(227\) −0.461961 −0.0306614 −0.0153307 0.999882i \(-0.504880\pi\)
−0.0153307 + 0.999882i \(0.504880\pi\)
\(228\) 3.71104 0.245769
\(229\) 22.8631 1.51084 0.755418 0.655244i \(-0.227434\pi\)
0.755418 + 0.655244i \(0.227434\pi\)
\(230\) −11.6202 −0.766215
\(231\) 13.9578 0.918358
\(232\) 18.2044 1.19517
\(233\) 2.25856 0.147963 0.0739816 0.997260i \(-0.476429\pi\)
0.0739816 + 0.997260i \(0.476429\pi\)
\(234\) 55.9530 3.65776
\(235\) 26.7460 1.74471
\(236\) 6.41776 0.417760
\(237\) −51.0066 −3.31324
\(238\) −2.15314 −0.139567
\(239\) −28.5593 −1.84735 −0.923673 0.383182i \(-0.874828\pi\)
−0.923673 + 0.383182i \(0.874828\pi\)
\(240\) 23.3214 1.50539
\(241\) −13.6906 −0.881888 −0.440944 0.897535i \(-0.645356\pi\)
−0.440944 + 0.897535i \(0.645356\pi\)
\(242\) −8.53960 −0.548947
\(243\) 49.9176 3.20222
\(244\) −1.44445 −0.0924717
\(245\) −2.43368 −0.155482
\(246\) 17.7495 1.13167
\(247\) 14.2186 0.904708
\(248\) −16.7060 −1.06083
\(249\) −42.2547 −2.67778
\(250\) −12.3585 −0.781620
\(251\) 7.41487 0.468022 0.234011 0.972234i \(-0.424815\pi\)
0.234011 + 0.972234i \(0.424815\pi\)
\(252\) 3.54976 0.223614
\(253\) 16.1996 1.01846
\(254\) 1.24549 0.0781493
\(255\) 13.8968 0.870253
\(256\) −10.1871 −0.636695
\(257\) 16.3544 1.02016 0.510080 0.860127i \(-0.329616\pi\)
0.510080 + 0.860127i \(0.329616\pi\)
\(258\) −20.2993 −1.26378
\(259\) −6.12052 −0.380310
\(260\) −6.20217 −0.384642
\(261\) 47.2161 2.92261
\(262\) −24.6586 −1.52341
\(263\) 4.68637 0.288974 0.144487 0.989507i \(-0.453847\pi\)
0.144487 + 0.989507i \(0.453847\pi\)
\(264\) −42.5699 −2.62000
\(265\) 9.73591 0.598072
\(266\) −3.11830 −0.191195
\(267\) 12.8353 0.785508
\(268\) −3.31847 −0.202708
\(269\) −14.6818 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(270\) 49.1640 2.99203
\(271\) −10.7458 −0.652764 −0.326382 0.945238i \(-0.605830\pi\)
−0.326382 + 0.945238i \(0.605830\pi\)
\(272\) 5.01533 0.304099
\(273\) 18.7587 1.13533
\(274\) −11.1797 −0.675388
\(275\) −3.89955 −0.235152
\(276\) 5.68235 0.342037
\(277\) 0.856063 0.0514358 0.0257179 0.999669i \(-0.491813\pi\)
0.0257179 + 0.999669i \(0.491813\pi\)
\(278\) −7.30665 −0.438224
\(279\) −43.3300 −2.59410
\(280\) 7.42249 0.443578
\(281\) 14.3744 0.857504 0.428752 0.903422i \(-0.358953\pi\)
0.428752 + 0.903422i \(0.358953\pi\)
\(282\) 45.2123 2.69235
\(283\) 18.7855 1.11668 0.558341 0.829612i \(-0.311438\pi\)
0.558341 + 0.829612i \(0.311438\pi\)
\(284\) −3.42423 −0.203191
\(285\) 20.1262 1.19217
\(286\) −29.8896 −1.76741
\(287\) 4.31444 0.254673
\(288\) −19.6688 −1.15900
\(289\) −14.0114 −0.824203
\(290\) 18.0924 1.06242
\(291\) 14.0165 0.821663
\(292\) −3.38168 −0.197898
\(293\) −14.6548 −0.856145 −0.428072 0.903744i \(-0.640807\pi\)
−0.428072 + 0.903744i \(0.640807\pi\)
\(294\) −4.11399 −0.239933
\(295\) 34.8056 2.02646
\(296\) 18.6669 1.08499
\(297\) −68.5390 −3.97704
\(298\) 26.8999 1.55827
\(299\) 21.7715 1.25908
\(300\) −1.36784 −0.0789725
\(301\) −4.93422 −0.284404
\(302\) 13.5123 0.777548
\(303\) −57.5399 −3.30558
\(304\) 7.26348 0.416589
\(305\) −7.83375 −0.448559
\(306\) 17.0323 0.973670
\(307\) −11.1328 −0.635385 −0.317692 0.948194i \(-0.602908\pi\)
−0.317692 + 0.948194i \(0.602908\pi\)
\(308\) −1.89625 −0.108049
\(309\) −14.6245 −0.831956
\(310\) −16.6033 −0.943004
\(311\) −16.8169 −0.953602 −0.476801 0.879011i \(-0.658204\pi\)
−0.476801 + 0.879011i \(0.658204\pi\)
\(312\) −57.2120 −3.23899
\(313\) −13.4057 −0.757732 −0.378866 0.925451i \(-0.623686\pi\)
−0.378866 + 0.925451i \(0.623686\pi\)
\(314\) 4.48160 0.252911
\(315\) 19.2515 1.08470
\(316\) 6.92953 0.389817
\(317\) −18.6801 −1.04918 −0.524588 0.851356i \(-0.675781\pi\)
−0.524588 + 0.851356i \(0.675781\pi\)
\(318\) 16.4579 0.922915
\(319\) −25.2224 −1.41219
\(320\) −21.6577 −1.21070
\(321\) −18.8902 −1.05435
\(322\) −4.77474 −0.266086
\(323\) 4.32819 0.240827
\(324\) −13.3922 −0.744009
\(325\) −5.24081 −0.290708
\(326\) 7.41530 0.410696
\(327\) 48.1270 2.66143
\(328\) −13.1586 −0.726562
\(329\) 10.9899 0.605893
\(330\) −42.3082 −2.32899
\(331\) 2.41940 0.132982 0.0664910 0.997787i \(-0.478820\pi\)
0.0664910 + 0.997787i \(0.478820\pi\)
\(332\) 5.74053 0.315053
\(333\) 48.4160 2.65318
\(334\) −19.6300 −1.07411
\(335\) −17.9971 −0.983289
\(336\) 9.58275 0.522782
\(337\) −17.2871 −0.941687 −0.470844 0.882217i \(-0.656050\pi\)
−0.470844 + 0.882217i \(0.656050\pi\)
\(338\) −23.9788 −1.30427
\(339\) 19.5299 1.06072
\(340\) −1.88796 −0.102389
\(341\) 23.1465 1.25345
\(342\) 24.6671 1.33384
\(343\) −1.00000 −0.0539949
\(344\) 15.0489 0.811380
\(345\) 30.8172 1.65914
\(346\) 21.2313 1.14140
\(347\) −20.7673 −1.11485 −0.557424 0.830228i \(-0.688210\pi\)
−0.557424 + 0.830228i \(0.688210\pi\)
\(348\) −8.84727 −0.474264
\(349\) 23.6254 1.26464 0.632318 0.774709i \(-0.282103\pi\)
0.632318 + 0.774709i \(0.282103\pi\)
\(350\) 1.14937 0.0614363
\(351\) −92.1132 −4.91664
\(352\) 10.5069 0.560019
\(353\) −15.5597 −0.828161 −0.414080 0.910240i \(-0.635897\pi\)
−0.414080 + 0.910240i \(0.635897\pi\)
\(354\) 58.8366 3.12713
\(355\) −18.5707 −0.985632
\(356\) −1.74375 −0.0924184
\(357\) 5.71020 0.302216
\(358\) −8.32462 −0.439970
\(359\) −7.03515 −0.371301 −0.185651 0.982616i \(-0.559439\pi\)
−0.185651 + 0.982616i \(0.559439\pi\)
\(360\) −58.7151 −3.09456
\(361\) −12.7317 −0.670088
\(362\) −16.4181 −0.862919
\(363\) 22.6473 1.18868
\(364\) −2.54847 −0.133576
\(365\) −18.3400 −0.959957
\(366\) −13.2424 −0.692194
\(367\) 28.6265 1.49429 0.747145 0.664661i \(-0.231424\pi\)
0.747145 + 0.664661i \(0.231424\pi\)
\(368\) 11.1219 0.579767
\(369\) −34.1291 −1.77669
\(370\) 18.5521 0.964480
\(371\) 4.00048 0.207695
\(372\) 8.11909 0.420955
\(373\) 3.75654 0.194506 0.0972531 0.995260i \(-0.468994\pi\)
0.0972531 + 0.995260i \(0.468994\pi\)
\(374\) −9.09849 −0.470472
\(375\) 32.7752 1.69250
\(376\) −33.5181 −1.72856
\(377\) −33.8978 −1.74582
\(378\) 20.2015 1.03905
\(379\) 20.7800 1.06740 0.533699 0.845675i \(-0.320802\pi\)
0.533699 + 0.845675i \(0.320802\pi\)
\(380\) −2.73425 −0.140264
\(381\) −3.30309 −0.169223
\(382\) −21.7056 −1.11056
\(383\) 17.6927 0.904054 0.452027 0.892004i \(-0.350701\pi\)
0.452027 + 0.892004i \(0.350701\pi\)
\(384\) −20.1850 −1.03006
\(385\) −10.2840 −0.524120
\(386\) −10.9838 −0.559058
\(387\) 39.0318 1.98410
\(388\) −1.90422 −0.0966722
\(389\) 27.3076 1.38455 0.692275 0.721634i \(-0.256609\pi\)
0.692275 + 0.721634i \(0.256609\pi\)
\(390\) −56.8602 −2.87923
\(391\) 6.62733 0.335159
\(392\) 3.04990 0.154043
\(393\) 65.3954 3.29876
\(394\) 27.9482 1.40801
\(395\) 37.5811 1.89091
\(396\) 15.0002 0.753786
\(397\) −12.7728 −0.641046 −0.320523 0.947241i \(-0.603859\pi\)
−0.320523 + 0.947241i \(0.603859\pi\)
\(398\) −7.97275 −0.399638
\(399\) 8.26984 0.414010
\(400\) −2.67723 −0.133862
\(401\) 10.4514 0.521919 0.260960 0.965350i \(-0.415961\pi\)
0.260960 + 0.965350i \(0.415961\pi\)
\(402\) −30.4230 −1.51736
\(403\) 31.1078 1.54959
\(404\) 7.81711 0.388916
\(405\) −72.6301 −3.60902
\(406\) 7.43416 0.368951
\(407\) −25.8634 −1.28200
\(408\) −17.4155 −0.862197
\(409\) −10.0572 −0.497297 −0.248648 0.968594i \(-0.579986\pi\)
−0.248648 + 0.968594i \(0.579986\pi\)
\(410\) −13.0777 −0.645860
\(411\) 29.6489 1.46247
\(412\) 1.98681 0.0978832
\(413\) 14.3016 0.703736
\(414\) 37.7703 1.85631
\(415\) 31.1328 1.52825
\(416\) 14.1208 0.692328
\(417\) 19.3775 0.948920
\(418\) −13.1769 −0.644505
\(419\) −4.78230 −0.233631 −0.116815 0.993154i \(-0.537269\pi\)
−0.116815 + 0.993154i \(0.537269\pi\)
\(420\) −3.60731 −0.176019
\(421\) −13.2705 −0.646766 −0.323383 0.946268i \(-0.604820\pi\)
−0.323383 + 0.946268i \(0.604820\pi\)
\(422\) −21.2979 −1.03676
\(423\) −86.9350 −4.22692
\(424\) −12.2011 −0.592536
\(425\) −1.59532 −0.0773844
\(426\) −31.3926 −1.52098
\(427\) −3.21888 −0.155773
\(428\) 2.56633 0.124048
\(429\) 79.2682 3.82710
\(430\) 14.9563 0.721258
\(431\) −21.8535 −1.05264 −0.526322 0.850285i \(-0.676429\pi\)
−0.526322 + 0.850285i \(0.676429\pi\)
\(432\) −47.0555 −2.26396
\(433\) −28.0481 −1.34791 −0.673953 0.738774i \(-0.735405\pi\)
−0.673953 + 0.738774i \(0.735405\pi\)
\(434\) −6.82229 −0.327480
\(435\) −47.9817 −2.30055
\(436\) −6.53832 −0.313129
\(437\) 9.59808 0.459138
\(438\) −31.0025 −1.48136
\(439\) −0.864598 −0.0412650 −0.0206325 0.999787i \(-0.506568\pi\)
−0.0206325 + 0.999787i \(0.506568\pi\)
\(440\) 31.3651 1.49527
\(441\) 7.91044 0.376687
\(442\) −12.2279 −0.581624
\(443\) 17.3136 0.822592 0.411296 0.911502i \(-0.365076\pi\)
0.411296 + 0.911502i \(0.365076\pi\)
\(444\) −9.07209 −0.430543
\(445\) −9.45691 −0.448301
\(446\) 4.42460 0.209511
\(447\) −71.3395 −3.37424
\(448\) −8.89913 −0.420444
\(449\) 8.34805 0.393969 0.196985 0.980407i \(-0.436885\pi\)
0.196985 + 0.980407i \(0.436885\pi\)
\(450\) −9.09200 −0.428601
\(451\) 18.2315 0.858486
\(452\) −2.65325 −0.124798
\(453\) −35.8352 −1.68368
\(454\) 0.575369 0.0270034
\(455\) −13.8212 −0.647947
\(456\) −25.2222 −1.18114
\(457\) 31.6135 1.47882 0.739408 0.673258i \(-0.235106\pi\)
0.739408 + 0.673258i \(0.235106\pi\)
\(458\) −28.4759 −1.33059
\(459\) −28.0396 −1.30878
\(460\) −4.18669 −0.195205
\(461\) 14.9040 0.694148 0.347074 0.937838i \(-0.387175\pi\)
0.347074 + 0.937838i \(0.387175\pi\)
\(462\) −17.3844 −0.808796
\(463\) −6.32576 −0.293983 −0.146992 0.989138i \(-0.546959\pi\)
−0.146992 + 0.989138i \(0.546959\pi\)
\(464\) −17.3165 −0.803896
\(465\) 44.0325 2.04196
\(466\) −2.81303 −0.130311
\(467\) −25.5517 −1.18239 −0.591196 0.806528i \(-0.701344\pi\)
−0.591196 + 0.806528i \(0.701344\pi\)
\(468\) 20.1595 0.931873
\(469\) −7.39502 −0.341470
\(470\) −33.3120 −1.53657
\(471\) −11.8854 −0.547648
\(472\) −43.6184 −2.00770
\(473\) −20.8505 −0.958705
\(474\) 63.5285 2.91796
\(475\) −2.31043 −0.106010
\(476\) −0.775763 −0.0355570
\(477\) −31.6456 −1.44895
\(478\) 35.5704 1.62695
\(479\) −5.61743 −0.256667 −0.128333 0.991731i \(-0.540963\pi\)
−0.128333 + 0.991731i \(0.540963\pi\)
\(480\) 19.9877 0.912309
\(481\) −34.7592 −1.58488
\(482\) 17.0516 0.776677
\(483\) 12.6628 0.576177
\(484\) −3.07676 −0.139853
\(485\) −10.3272 −0.468935
\(486\) −62.1721 −2.82018
\(487\) 25.1524 1.13976 0.569881 0.821727i \(-0.306989\pi\)
0.569881 + 0.821727i \(0.306989\pi\)
\(488\) 9.81726 0.444407
\(489\) −19.6656 −0.889311
\(490\) 3.03114 0.136933
\(491\) −30.3800 −1.37103 −0.685515 0.728058i \(-0.740423\pi\)
−0.685515 + 0.728058i \(0.740423\pi\)
\(492\) 6.39505 0.288311
\(493\) −10.3186 −0.464726
\(494\) −17.7092 −0.796774
\(495\) 81.3508 3.65644
\(496\) 15.8912 0.713537
\(497\) −7.63071 −0.342284
\(498\) 52.6280 2.35832
\(499\) −28.6191 −1.28116 −0.640582 0.767889i \(-0.721307\pi\)
−0.640582 + 0.767889i \(0.721307\pi\)
\(500\) −4.45269 −0.199130
\(501\) 52.0595 2.32585
\(502\) −9.23518 −0.412186
\(503\) 13.1761 0.587493 0.293746 0.955883i \(-0.405098\pi\)
0.293746 + 0.955883i \(0.405098\pi\)
\(504\) −24.1260 −1.07466
\(505\) 42.3948 1.88654
\(506\) −20.1766 −0.896957
\(507\) 63.5925 2.82424
\(508\) 0.448744 0.0199098
\(509\) −31.0674 −1.37704 −0.688518 0.725219i \(-0.741738\pi\)
−0.688518 + 0.725219i \(0.741738\pi\)
\(510\) −17.3084 −0.766430
\(511\) −7.53588 −0.333368
\(512\) 24.9099 1.10087
\(513\) −40.6085 −1.79291
\(514\) −20.3693 −0.898452
\(515\) 10.7751 0.474809
\(516\) −7.31371 −0.321968
\(517\) 46.4399 2.04242
\(518\) 7.62307 0.334939
\(519\) −56.3061 −2.47157
\(520\) 42.1532 1.84854
\(521\) 21.6092 0.946714 0.473357 0.880871i \(-0.343042\pi\)
0.473357 + 0.880871i \(0.343042\pi\)
\(522\) −58.8074 −2.57393
\(523\) −11.8477 −0.518063 −0.259032 0.965869i \(-0.583403\pi\)
−0.259032 + 0.965869i \(0.583403\pi\)
\(524\) −8.88433 −0.388114
\(525\) −3.04816 −0.133033
\(526\) −5.83685 −0.254499
\(527\) 9.46932 0.412490
\(528\) 40.4937 1.76226
\(529\) −8.30341 −0.361018
\(530\) −12.1260 −0.526721
\(531\) −113.132 −4.90951
\(532\) −1.12350 −0.0487100
\(533\) 24.5022 1.06131
\(534\) −15.9863 −0.691795
\(535\) 13.9181 0.601730
\(536\) 22.5540 0.974186
\(537\) 22.0772 0.952701
\(538\) 18.2861 0.788372
\(539\) −4.22568 −0.182013
\(540\) 17.7135 0.762266
\(541\) −13.3103 −0.572253 −0.286126 0.958192i \(-0.592368\pi\)
−0.286126 + 0.958192i \(0.592368\pi\)
\(542\) 13.3839 0.574887
\(543\) 43.5415 1.86854
\(544\) 4.29841 0.184293
\(545\) −35.4595 −1.51892
\(546\) −23.3638 −0.999879
\(547\) 0.103601 0.00442966 0.00221483 0.999998i \(-0.499295\pi\)
0.00221483 + 0.999998i \(0.499295\pi\)
\(548\) −4.02796 −0.172066
\(549\) 25.4628 1.08672
\(550\) 4.85686 0.207097
\(551\) −14.9440 −0.636635
\(552\) −38.6202 −1.64378
\(553\) 15.4421 0.656664
\(554\) −1.06622 −0.0452994
\(555\) −49.2010 −2.08846
\(556\) −2.63254 −0.111645
\(557\) 3.49486 0.148082 0.0740410 0.997255i \(-0.476410\pi\)
0.0740410 + 0.997255i \(0.476410\pi\)
\(558\) 53.9673 2.28462
\(559\) −28.0220 −1.18521
\(560\) −7.06046 −0.298359
\(561\) 24.1295 1.01875
\(562\) −17.9032 −0.755202
\(563\) −35.0406 −1.47679 −0.738393 0.674370i \(-0.764415\pi\)
−0.738393 + 0.674370i \(0.764415\pi\)
\(564\) 16.2897 0.685921
\(565\) −14.3894 −0.605368
\(566\) −23.3972 −0.983459
\(567\) −29.8437 −1.25332
\(568\) 23.2729 0.976508
\(569\) 9.51641 0.398949 0.199474 0.979903i \(-0.436077\pi\)
0.199474 + 0.979903i \(0.436077\pi\)
\(570\) −25.0670 −1.04994
\(571\) −41.7756 −1.74825 −0.874127 0.485697i \(-0.838566\pi\)
−0.874127 + 0.485697i \(0.838566\pi\)
\(572\) −10.7690 −0.450275
\(573\) 57.5641 2.40477
\(574\) −5.37361 −0.224290
\(575\) −3.53774 −0.147534
\(576\) 70.3960 2.93317
\(577\) −18.2875 −0.761320 −0.380660 0.924715i \(-0.624303\pi\)
−0.380660 + 0.924715i \(0.624303\pi\)
\(578\) 17.4512 0.725873
\(579\) 29.1293 1.21057
\(580\) 6.51858 0.270669
\(581\) 12.7925 0.530720
\(582\) −17.4575 −0.723637
\(583\) 16.9048 0.700124
\(584\) 22.9837 0.951070
\(585\) 109.332 4.52031
\(586\) 18.2525 0.754005
\(587\) 2.18408 0.0901465 0.0450732 0.998984i \(-0.485648\pi\)
0.0450732 + 0.998984i \(0.485648\pi\)
\(588\) −1.48224 −0.0611267
\(589\) 13.7140 0.565076
\(590\) −43.3502 −1.78470
\(591\) −74.1196 −3.04887
\(592\) −17.7565 −0.729787
\(593\) −31.5402 −1.29520 −0.647600 0.761981i \(-0.724227\pi\)
−0.647600 + 0.761981i \(0.724227\pi\)
\(594\) 85.3650 3.50257
\(595\) −4.20722 −0.172479
\(596\) 9.69186 0.396994
\(597\) 21.1440 0.865367
\(598\) −27.1163 −1.10887
\(599\) −42.0406 −1.71773 −0.858866 0.512200i \(-0.828831\pi\)
−0.858866 + 0.512200i \(0.828831\pi\)
\(600\) 9.29658 0.379531
\(601\) −13.4807 −0.549891 −0.274945 0.961460i \(-0.588660\pi\)
−0.274945 + 0.961460i \(0.588660\pi\)
\(602\) 6.14555 0.250474
\(603\) 58.4978 2.38222
\(604\) 4.86841 0.198093
\(605\) −16.6863 −0.678395
\(606\) 71.6656 2.91122
\(607\) −6.69701 −0.271823 −0.135912 0.990721i \(-0.543396\pi\)
−0.135912 + 0.990721i \(0.543396\pi\)
\(608\) 6.22520 0.252465
\(609\) −19.7157 −0.798919
\(610\) 9.75689 0.395045
\(611\) 62.4130 2.52496
\(612\) 6.13662 0.248058
\(613\) −36.2623 −1.46462 −0.732311 0.680970i \(-0.761558\pi\)
−0.732311 + 0.680970i \(0.761558\pi\)
\(614\) 13.8659 0.559582
\(615\) 34.6824 1.39853
\(616\) 12.8879 0.519268
\(617\) 38.6679 1.55671 0.778356 0.627823i \(-0.216054\pi\)
0.778356 + 0.627823i \(0.216054\pi\)
\(618\) 18.2147 0.732702
\(619\) −8.11816 −0.326296 −0.163148 0.986602i \(-0.552165\pi\)
−0.163148 + 0.986602i \(0.552165\pi\)
\(620\) −5.98206 −0.240245
\(621\) −62.1798 −2.49519
\(622\) 20.9454 0.839835
\(623\) −3.88584 −0.155683
\(624\) 54.4216 2.17861
\(625\) −28.7625 −1.15050
\(626\) 16.6967 0.667333
\(627\) 34.9457 1.39560
\(628\) 1.61469 0.0644332
\(629\) −10.5808 −0.421884
\(630\) −23.9776 −0.955292
\(631\) −19.4072 −0.772587 −0.386293 0.922376i \(-0.626245\pi\)
−0.386293 + 0.922376i \(0.626245\pi\)
\(632\) −47.0967 −1.87341
\(633\) 56.4827 2.24499
\(634\) 23.2659 0.924007
\(635\) 2.43368 0.0965778
\(636\) 5.92969 0.235127
\(637\) −5.67912 −0.225015
\(638\) 31.4144 1.24371
\(639\) 60.3622 2.38789
\(640\) 14.8721 0.587871
\(641\) 11.5636 0.456736 0.228368 0.973575i \(-0.426661\pi\)
0.228368 + 0.973575i \(0.426661\pi\)
\(642\) 23.5276 0.928560
\(643\) −5.96147 −0.235098 −0.117549 0.993067i \(-0.537504\pi\)
−0.117549 + 0.993067i \(0.537504\pi\)
\(644\) −1.72031 −0.0677897
\(645\) −39.6647 −1.56180
\(646\) −5.39074 −0.212096
\(647\) −50.1845 −1.97296 −0.986478 0.163892i \(-0.947595\pi\)
−0.986478 + 0.163892i \(0.947595\pi\)
\(648\) 91.0202 3.57561
\(649\) 60.4341 2.37224
\(650\) 6.52740 0.256026
\(651\) 18.0929 0.709118
\(652\) 2.67169 0.104631
\(653\) 7.04866 0.275835 0.137918 0.990444i \(-0.455959\pi\)
0.137918 + 0.990444i \(0.455959\pi\)
\(654\) −59.9420 −2.34392
\(655\) −48.1826 −1.88265
\(656\) 12.5168 0.488699
\(657\) 59.6121 2.32569
\(658\) −13.6879 −0.533609
\(659\) −48.8016 −1.90104 −0.950521 0.310660i \(-0.899450\pi\)
−0.950521 + 0.310660i \(0.899450\pi\)
\(660\) −15.2434 −0.593347
\(661\) −7.03546 −0.273648 −0.136824 0.990595i \(-0.543689\pi\)
−0.136824 + 0.990595i \(0.543689\pi\)
\(662\) −3.01334 −0.117117
\(663\) 32.4289 1.25944
\(664\) −39.0156 −1.51410
\(665\) −6.09313 −0.236281
\(666\) −60.3018 −2.33665
\(667\) −22.8822 −0.886004
\(668\) −7.07257 −0.273646
\(669\) −11.7342 −0.453670
\(670\) 22.4153 0.865980
\(671\) −13.6020 −0.525099
\(672\) 8.21294 0.316821
\(673\) −48.0452 −1.85201 −0.926004 0.377514i \(-0.876779\pi\)
−0.926004 + 0.377514i \(0.876779\pi\)
\(674\) 21.5310 0.829342
\(675\) 14.9678 0.576111
\(676\) −8.63939 −0.332284
\(677\) 8.31499 0.319571 0.159786 0.987152i \(-0.448920\pi\)
0.159786 + 0.987152i \(0.448920\pi\)
\(678\) −24.3244 −0.934173
\(679\) −4.24345 −0.162849
\(680\) 12.8316 0.492068
\(681\) −1.52590 −0.0584726
\(682\) −28.8288 −1.10391
\(683\) 5.68344 0.217471 0.108735 0.994071i \(-0.465320\pi\)
0.108735 + 0.994071i \(0.465320\pi\)
\(684\) 8.88740 0.339818
\(685\) −21.8450 −0.834653
\(686\) 1.24549 0.0475532
\(687\) 75.5190 2.88123
\(688\) −14.3149 −0.545750
\(689\) 22.7192 0.865533
\(690\) −38.3827 −1.46120
\(691\) 6.26192 0.238215 0.119107 0.992881i \(-0.461997\pi\)
0.119107 + 0.992881i \(0.461997\pi\)
\(692\) 7.64950 0.290790
\(693\) 33.4270 1.26979
\(694\) 25.8656 0.981844
\(695\) −14.2771 −0.541562
\(696\) 60.1307 2.27925
\(697\) 7.45856 0.282513
\(698\) −29.4253 −1.11376
\(699\) 7.46024 0.282172
\(700\) 0.414110 0.0156519
\(701\) 9.37500 0.354089 0.177044 0.984203i \(-0.443346\pi\)
0.177044 + 0.984203i \(0.443346\pi\)
\(702\) 114.727 4.33007
\(703\) −15.3237 −0.577945
\(704\) −37.6049 −1.41729
\(705\) 88.3445 3.32725
\(706\) 19.3796 0.729359
\(707\) 17.4200 0.655146
\(708\) 21.1985 0.796687
\(709\) −34.9615 −1.31301 −0.656504 0.754323i \(-0.727965\pi\)
−0.656504 + 0.754323i \(0.727965\pi\)
\(710\) 23.1297 0.868044
\(711\) −122.154 −4.58112
\(712\) 11.8514 0.444151
\(713\) 20.9989 0.786415
\(714\) −7.11203 −0.266161
\(715\) −58.4039 −2.18418
\(716\) −2.99931 −0.112089
\(717\) −94.3340 −3.52297
\(718\) 8.76224 0.327004
\(719\) −36.7725 −1.37138 −0.685691 0.727893i \(-0.740500\pi\)
−0.685691 + 0.727893i \(0.740500\pi\)
\(720\) 55.8513 2.08146
\(721\) 4.42750 0.164889
\(722\) 15.8572 0.590145
\(723\) −45.2213 −1.68180
\(724\) −5.91535 −0.219842
\(725\) 5.50817 0.204568
\(726\) −28.2071 −1.04686
\(727\) −9.14372 −0.339122 −0.169561 0.985520i \(-0.554235\pi\)
−0.169561 + 0.985520i \(0.554235\pi\)
\(728\) 17.3207 0.641949
\(729\) 75.3516 2.79080
\(730\) 22.8423 0.845432
\(731\) −8.53000 −0.315494
\(732\) −4.77117 −0.176347
\(733\) 29.1847 1.07796 0.538981 0.842318i \(-0.318809\pi\)
0.538981 + 0.842318i \(0.318809\pi\)
\(734\) −35.6541 −1.31602
\(735\) −8.03869 −0.296512
\(736\) 9.53204 0.351356
\(737\) −31.2490 −1.15107
\(738\) 42.5076 1.56473
\(739\) −0.392476 −0.0144375 −0.00721873 0.999974i \(-0.502298\pi\)
−0.00721873 + 0.999974i \(0.502298\pi\)
\(740\) 6.68422 0.245717
\(741\) 46.9654 1.72532
\(742\) −4.98258 −0.182916
\(743\) −1.15399 −0.0423359 −0.0211680 0.999776i \(-0.506738\pi\)
−0.0211680 + 0.999776i \(0.506738\pi\)
\(744\) −55.1816 −2.02306
\(745\) 52.5622 1.92573
\(746\) −4.67875 −0.171301
\(747\) −101.194 −3.70249
\(748\) −3.27813 −0.119860
\(749\) 5.71893 0.208965
\(750\) −40.8213 −1.49058
\(751\) 48.0457 1.75321 0.876607 0.481208i \(-0.159802\pi\)
0.876607 + 0.481208i \(0.159802\pi\)
\(752\) 31.8833 1.16266
\(753\) 24.4920 0.892538
\(754\) 42.2195 1.53754
\(755\) 26.4030 0.960903
\(756\) 7.27846 0.264715
\(757\) 40.4145 1.46889 0.734445 0.678668i \(-0.237443\pi\)
0.734445 + 0.678668i \(0.237443\pi\)
\(758\) −25.8814 −0.940054
\(759\) 53.5089 1.94225
\(760\) 18.5834 0.674091
\(761\) −26.8626 −0.973769 −0.486884 0.873466i \(-0.661867\pi\)
−0.486884 + 0.873466i \(0.661867\pi\)
\(762\) 4.11399 0.149034
\(763\) −14.5703 −0.527480
\(764\) −7.82040 −0.282932
\(765\) 33.2809 1.20327
\(766\) −22.0362 −0.796199
\(767\) 81.2205 2.93270
\(768\) −33.6490 −1.21420
\(769\) −36.9143 −1.33117 −0.665583 0.746324i \(-0.731817\pi\)
−0.665583 + 0.746324i \(0.731817\pi\)
\(770\) 12.8086 0.461591
\(771\) 54.0201 1.94549
\(772\) −3.95737 −0.142429
\(773\) 35.0570 1.26091 0.630457 0.776224i \(-0.282868\pi\)
0.630457 + 0.776224i \(0.282868\pi\)
\(774\) −48.6139 −1.74739
\(775\) −5.05482 −0.181574
\(776\) 12.9421 0.464594
\(777\) −20.2167 −0.725268
\(778\) −34.0114 −1.21937
\(779\) 10.8019 0.387018
\(780\) −20.4864 −0.733529
\(781\) −32.2450 −1.15382
\(782\) −8.25431 −0.295173
\(783\) 96.8124 3.45979
\(784\) −2.90114 −0.103612
\(785\) 8.75700 0.312551
\(786\) −81.4496 −2.90521
\(787\) 4.03988 0.144006 0.0720031 0.997404i \(-0.477061\pi\)
0.0720031 + 0.997404i \(0.477061\pi\)
\(788\) 10.0696 0.358713
\(789\) 15.4795 0.551086
\(790\) −46.8071 −1.66532
\(791\) −5.91261 −0.210228
\(792\) −101.949 −3.62260
\(793\) −18.2804 −0.649157
\(794\) 15.9084 0.564568
\(795\) 32.1586 1.14055
\(796\) −2.87253 −0.101814
\(797\) 21.3487 0.756208 0.378104 0.925763i \(-0.376576\pi\)
0.378104 + 0.925763i \(0.376576\pi\)
\(798\) −10.3000 −0.364617
\(799\) 18.9987 0.672127
\(800\) −2.29454 −0.0811241
\(801\) 30.7387 1.08610
\(802\) −13.0172 −0.459653
\(803\) −31.8442 −1.12376
\(804\) −10.9612 −0.386572
\(805\) −9.32981 −0.328832
\(806\) −38.7446 −1.36472
\(807\) −48.4955 −1.70712
\(808\) −53.1292 −1.86908
\(809\) −26.7700 −0.941182 −0.470591 0.882352i \(-0.655959\pi\)
−0.470591 + 0.882352i \(0.655959\pi\)
\(810\) 90.4604 3.17845
\(811\) 22.1435 0.777563 0.388781 0.921330i \(-0.372896\pi\)
0.388781 + 0.921330i \(0.372896\pi\)
\(812\) 2.67848 0.0939962
\(813\) −35.4946 −1.24485
\(814\) 32.2127 1.12905
\(815\) 14.4894 0.507543
\(816\) 16.5661 0.579930
\(817\) −12.3536 −0.432199
\(818\) 12.5262 0.437968
\(819\) 44.9243 1.56978
\(820\) −4.71180 −0.164543
\(821\) 9.39267 0.327806 0.163903 0.986476i \(-0.447592\pi\)
0.163903 + 0.986476i \(0.447592\pi\)
\(822\) −36.9275 −1.28799
\(823\) −0.914372 −0.0318730 −0.0159365 0.999873i \(-0.505073\pi\)
−0.0159365 + 0.999873i \(0.505073\pi\)
\(824\) −13.5034 −0.470414
\(825\) −12.8806 −0.448444
\(826\) −17.8126 −0.619779
\(827\) 39.0657 1.35845 0.679224 0.733931i \(-0.262317\pi\)
0.679224 + 0.733931i \(0.262317\pi\)
\(828\) 13.6084 0.472925
\(829\) 35.1117 1.21948 0.609741 0.792601i \(-0.291274\pi\)
0.609741 + 0.792601i \(0.291274\pi\)
\(830\) −38.7757 −1.34592
\(831\) 2.82766 0.0980903
\(832\) −50.5392 −1.75213
\(833\) −1.72874 −0.0598974
\(834\) −24.1346 −0.835712
\(835\) −38.3569 −1.32740
\(836\) −4.74757 −0.164198
\(837\) −88.8442 −3.07091
\(838\) 5.95632 0.205758
\(839\) −38.3771 −1.32492 −0.662462 0.749096i \(-0.730488\pi\)
−0.662462 + 0.749096i \(0.730488\pi\)
\(840\) 24.5172 0.845923
\(841\) 6.62708 0.228520
\(842\) 16.5284 0.569605
\(843\) 47.4800 1.63530
\(844\) −7.67348 −0.264132
\(845\) −46.8543 −1.61184
\(846\) 108.277 3.72264
\(847\) −6.85640 −0.235589
\(848\) 11.6060 0.398550
\(849\) 62.0503 2.12956
\(850\) 1.98696 0.0681522
\(851\) −23.4637 −0.804325
\(852\) −11.3106 −0.387494
\(853\) 46.6670 1.59785 0.798924 0.601432i \(-0.205403\pi\)
0.798924 + 0.601432i \(0.205403\pi\)
\(854\) 4.00910 0.137189
\(855\) 48.1993 1.64838
\(856\) −17.4421 −0.596160
\(857\) 13.5444 0.462670 0.231335 0.972874i \(-0.425691\pi\)
0.231335 + 0.972874i \(0.425691\pi\)
\(858\) −98.7281 −3.37052
\(859\) −12.2410 −0.417658 −0.208829 0.977952i \(-0.566965\pi\)
−0.208829 + 0.977952i \(0.566965\pi\)
\(860\) 5.38867 0.183752
\(861\) 14.2510 0.485673
\(862\) 27.2184 0.927061
\(863\) 31.6870 1.07864 0.539318 0.842102i \(-0.318682\pi\)
0.539318 + 0.842102i \(0.318682\pi\)
\(864\) −40.3291 −1.37202
\(865\) 41.4858 1.41056
\(866\) 34.9338 1.18710
\(867\) −46.2811 −1.57179
\(868\) −2.45803 −0.0834308
\(869\) 65.2533 2.21357
\(870\) 59.7609 2.02608
\(871\) −41.9972 −1.42302
\(872\) 44.4379 1.50486
\(873\) 33.5676 1.13609
\(874\) −11.9544 −0.404362
\(875\) −9.92257 −0.335444
\(876\) −11.1700 −0.377399
\(877\) 34.1129 1.15191 0.575955 0.817481i \(-0.304630\pi\)
0.575955 + 0.817481i \(0.304630\pi\)
\(878\) 1.07685 0.0363420
\(879\) −48.4063 −1.63270
\(880\) −29.8353 −1.00575
\(881\) −23.3863 −0.787905 −0.393952 0.919131i \(-0.628893\pi\)
−0.393952 + 0.919131i \(0.628893\pi\)
\(882\) −9.85240 −0.331748
\(883\) 6.39758 0.215296 0.107648 0.994189i \(-0.465668\pi\)
0.107648 + 0.994189i \(0.465668\pi\)
\(884\) −4.40565 −0.148178
\(885\) 114.966 3.86455
\(886\) −21.5640 −0.724455
\(887\) 16.3462 0.548851 0.274425 0.961608i \(-0.411512\pi\)
0.274425 + 0.961608i \(0.411512\pi\)
\(888\) 61.6587 2.06913
\(889\) 1.00000 0.0335389
\(890\) 11.7785 0.394817
\(891\) −126.110 −4.22484
\(892\) 1.59416 0.0533763
\(893\) 27.5150 0.920755
\(894\) 88.8529 2.97169
\(895\) −16.2662 −0.543720
\(896\) 6.11094 0.204152
\(897\) 71.9135 2.40112
\(898\) −10.3975 −0.346968
\(899\) −32.6948 −1.09043
\(900\) −3.27579 −0.109193
\(901\) 6.91581 0.230399
\(902\) −22.7072 −0.756066
\(903\) −16.2982 −0.542370
\(904\) 18.0329 0.599764
\(905\) −32.0809 −1.06641
\(906\) 44.6325 1.48282
\(907\) −12.0928 −0.401534 −0.200767 0.979639i \(-0.564343\pi\)
−0.200767 + 0.979639i \(0.564343\pi\)
\(908\) 0.207302 0.00687955
\(909\) −137.800 −4.57053
\(910\) 17.2142 0.570645
\(911\) −6.38071 −0.211402 −0.105701 0.994398i \(-0.533709\pi\)
−0.105701 + 0.994398i \(0.533709\pi\)
\(912\) 23.9920 0.794454
\(913\) 54.0568 1.78902
\(914\) −39.3744 −1.30239
\(915\) −25.8756 −0.855421
\(916\) −10.2597 −0.338989
\(917\) −19.7982 −0.653795
\(918\) 34.9231 1.15264
\(919\) −10.8878 −0.359156 −0.179578 0.983744i \(-0.557473\pi\)
−0.179578 + 0.983744i \(0.557473\pi\)
\(920\) 28.4549 0.938132
\(921\) −36.7728 −1.21171
\(922\) −18.5628 −0.611334
\(923\) −43.3357 −1.42641
\(924\) −6.26349 −0.206054
\(925\) 5.64814 0.185710
\(926\) 7.87870 0.258910
\(927\) −35.0234 −1.15032
\(928\) −14.8412 −0.487185
\(929\) −15.7838 −0.517851 −0.258925 0.965897i \(-0.583368\pi\)
−0.258925 + 0.965897i \(0.583368\pi\)
\(930\) −54.8423 −1.79835
\(931\) −2.50366 −0.0820543
\(932\) −1.01351 −0.0331988
\(933\) −55.5480 −1.81856
\(934\) 31.8245 1.04133
\(935\) −17.7784 −0.581415
\(936\) −137.014 −4.47846
\(937\) −28.4718 −0.930134 −0.465067 0.885275i \(-0.653970\pi\)
−0.465067 + 0.885275i \(0.653970\pi\)
\(938\) 9.21045 0.300732
\(939\) −44.2801 −1.44503
\(940\) −12.0021 −0.391465
\(941\) 47.9062 1.56170 0.780849 0.624720i \(-0.214787\pi\)
0.780849 + 0.624720i \(0.214787\pi\)
\(942\) 14.8031 0.482312
\(943\) 16.5399 0.538613
\(944\) 41.4910 1.35042
\(945\) 39.4735 1.28407
\(946\) 25.9691 0.844329
\(947\) 13.1474 0.427233 0.213617 0.976918i \(-0.431476\pi\)
0.213617 + 0.976918i \(0.431476\pi\)
\(948\) 22.8889 0.743397
\(949\) −42.7972 −1.38925
\(950\) 2.87763 0.0933626
\(951\) −61.7020 −2.00082
\(952\) 5.27249 0.170882
\(953\) 4.75915 0.154164 0.0770820 0.997025i \(-0.475440\pi\)
0.0770820 + 0.997025i \(0.475440\pi\)
\(954\) 39.4144 1.27609
\(955\) −42.4126 −1.37244
\(956\) 12.8158 0.414492
\(957\) −83.3121 −2.69310
\(958\) 6.99648 0.226046
\(959\) −8.97609 −0.289853
\(960\) −71.5373 −2.30886
\(961\) −0.996189 −0.0321351
\(962\) 43.2923 1.39580
\(963\) −45.2392 −1.45781
\(964\) 6.14356 0.197871
\(965\) −21.4621 −0.690891
\(966\) −15.7714 −0.507438
\(967\) −14.6017 −0.469558 −0.234779 0.972049i \(-0.575437\pi\)
−0.234779 + 0.972049i \(0.575437\pi\)
\(968\) 20.9113 0.672115
\(969\) 14.2964 0.459267
\(970\) 12.8625 0.412990
\(971\) 2.56019 0.0821603 0.0410801 0.999156i \(-0.486920\pi\)
0.0410801 + 0.999156i \(0.486920\pi\)
\(972\) −22.4002 −0.718487
\(973\) −5.86647 −0.188070
\(974\) −31.3271 −1.00379
\(975\) −17.3109 −0.554392
\(976\) −9.33844 −0.298916
\(977\) 20.9064 0.668856 0.334428 0.942421i \(-0.391457\pi\)
0.334428 + 0.942421i \(0.391457\pi\)
\(978\) 24.4934 0.783214
\(979\) −16.4203 −0.524796
\(980\) 1.09210 0.0348859
\(981\) 115.257 3.67988
\(982\) 37.8381 1.20746
\(983\) −0.0609831 −0.00194506 −0.000972530 1.00000i \(-0.500310\pi\)
−0.000972530 1.00000i \(0.500310\pi\)
\(984\) −43.4641 −1.38558
\(985\) 54.6105 1.74004
\(986\) 12.8518 0.409283
\(987\) 36.3007 1.15546
\(988\) −6.38051 −0.202991
\(989\) −18.9159 −0.601491
\(990\) −101.322 −3.22022
\(991\) 6.39312 0.203084 0.101542 0.994831i \(-0.467622\pi\)
0.101542 + 0.994831i \(0.467622\pi\)
\(992\) 13.6196 0.432424
\(993\) 7.99149 0.253602
\(994\) 9.50400 0.301449
\(995\) −15.5787 −0.493877
\(996\) 18.9615 0.600819
\(997\) 33.1091 1.04858 0.524288 0.851541i \(-0.324332\pi\)
0.524288 + 0.851541i \(0.324332\pi\)
\(998\) 35.6449 1.12832
\(999\) 99.2726 3.14084
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.c.1.6 16
3.2 odd 2 8001.2.a.t.1.11 16
7.6 odd 2 6223.2.a.k.1.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.6 16 1.1 even 1 trivial
6223.2.a.k.1.6 16 7.6 odd 2
8001.2.a.t.1.11 16 3.2 odd 2