gp: [N,k,chi] = [62,8,Mod(33,62)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(62, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("62.33");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [40,-80]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{40} - 28 T_{3}^{39} + 14409 T_{3}^{38} - 732825 T_{3}^{37} + 163121057 T_{3}^{36} + \cdots + 43\!\cdots\!61 \)
T3^40 - 28*T3^39 + 14409*T3^38 - 732825*T3^37 + 163121057*T3^36 - 5684079749*T3^35 + 1521342269021*T3^34 - 53601784088948*T3^33 + 11884123604339967*T3^32 - 420683649189570398*T3^31 + 76274074308721042757*T3^30 - 2508039584519630840245*T3^29 + 417984000361500831544218*T3^28 - 11562997099707718612641317*T3^27 + 1964382022800012761875367626*T3^26 - 56038877979851904564054362289*T3^25 + 7729854830547835083608750291866*T3^24 - 204950382382569523007311829747625*T3^23 + 23346527495106606069330768213193374*T3^22 - 456170629163280924497633562370393053*T3^21 + 51776766525281269573779785065836424890*T3^20 - 458634914823453306550402248921057702417*T3^19 + 85740927575039025476135171844369308816322*T3^18 - 615762795561606846776725313202616007582505*T3^17 + 123215975960383763368715027068129692754513038*T3^16 - 1471754923913348395896958543290977117386483293*T3^15 + 120206631080920075058438931412620652478380088418*T3^14 - 1982971991831646483355721506862916314039436052425*T3^13 + 101806494262854690597152150435914570335723632787354*T3^12 - 1825837675630467693001738053557680624770824664523833*T3^11 + 77961481129427321330742447670906427560741240025438745*T3^10 - 1620076449046780293145576902664503180784885330598844153*T3^9 + 56832184904305279954840235688893775804864250991969913333*T3^8 - 1058573989802139621378930542388874505049873031061963049084*T3^7 + 15725016315955074695076844234070792962718803316127389544537*T3^6 - 183119473485162620615184328178513663157856944825994866489768*T3^5 + 2344765813725071902409486945820254136165096098088009646144857*T3^4 - 17990852906503465547379725052652287107777063190850350593241093*T3^3 + 129738825184940759454469090787508178239239143489312593343933395*T3^2 - 809558889520572456023967684892932946580858244773526161972117967*T3 + 4368977594885140865477003141300434855719742417652961428969615361
acting on \(S_{8}^{\mathrm{new}}(62, [\chi])\).