Properties

Label 2-62-31.4-c7-0-5
Degree $2$
Conductor $62$
Sign $-0.476 + 0.878i$
Analytic cond. $19.3678$
Root an. cond. $4.40089$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.47 + 7.60i)2-s + (−23.1 + 71.2i)3-s + (−51.7 + 37.6i)4-s + 456.·5-s − 599.·6-s + (−1.20e3 + 873. i)7-s + (−414. − 300. i)8-s + (−2.77e3 − 2.01e3i)9-s + (1.12e3 + 3.47e3i)10-s + (−449. + 326. i)11-s + (−1.48e3 − 4.56e3i)12-s + (−2.53e3 + 7.80e3i)13-s + (−9.61e3 − 6.98e3i)14-s + (−1.05e4 + 3.25e4i)15-s + (1.26e3 − 3.89e3i)16-s + (2.47e4 + 1.79e4i)17-s + ⋯
L(s)  = 1  + (0.218 + 0.672i)2-s + (−0.495 + 1.52i)3-s + (−0.404 + 0.293i)4-s + 1.63·5-s − 1.13·6-s + (−1.32 + 0.962i)7-s + (−0.286 − 0.207i)8-s + (−1.26 − 0.921i)9-s + (0.356 + 1.09i)10-s + (−0.101 + 0.0740i)11-s + (−0.247 − 0.761i)12-s + (−0.320 + 0.985i)13-s + (−0.936 − 0.680i)14-s + (−0.808 + 2.48i)15-s + (0.0772 − 0.237i)16-s + (1.22 + 0.886i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.476 + 0.878i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.476 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-0.476 + 0.878i$
Analytic conductor: \(19.3678\)
Root analytic conductor: \(4.40089\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :7/2),\ -0.476 + 0.878i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.679058 - 1.14105i\)
\(L(\frac12)\) \(\approx\) \(0.679058 - 1.14105i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-2.47 - 7.60i)T \)
31 \( 1 + (-1.63e5 + 2.78e4i)T \)
good3 \( 1 + (23.1 - 71.2i)T + (-1.76e3 - 1.28e3i)T^{2} \)
5 \( 1 - 456.T + 7.81e4T^{2} \)
7 \( 1 + (1.20e3 - 873. i)T + (2.54e5 - 7.83e5i)T^{2} \)
11 \( 1 + (449. - 326. i)T + (6.02e6 - 1.85e7i)T^{2} \)
13 \( 1 + (2.53e3 - 7.80e3i)T + (-5.07e7 - 3.68e7i)T^{2} \)
17 \( 1 + (-2.47e4 - 1.79e4i)T + (1.26e8 + 3.90e8i)T^{2} \)
19 \( 1 + (1.41e4 + 4.35e4i)T + (-7.23e8 + 5.25e8i)T^{2} \)
23 \( 1 + (5.32e4 + 3.86e4i)T + (1.05e9 + 3.23e9i)T^{2} \)
29 \( 1 + (-110. - 340. i)T + (-1.39e10 + 1.01e10i)T^{2} \)
37 \( 1 - 2.71e5T + 9.49e10T^{2} \)
41 \( 1 + (2.67e4 + 8.23e4i)T + (-1.57e11 + 1.14e11i)T^{2} \)
43 \( 1 + (-3.71e4 - 1.14e5i)T + (-2.19e11 + 1.59e11i)T^{2} \)
47 \( 1 + (2.32e5 - 7.14e5i)T + (-4.09e11 - 2.97e11i)T^{2} \)
53 \( 1 + (-2.66e5 - 1.93e5i)T + (3.63e11 + 1.11e12i)T^{2} \)
59 \( 1 + (8.94e5 - 2.75e6i)T + (-2.01e12 - 1.46e12i)T^{2} \)
61 \( 1 + 2.17e6T + 3.14e12T^{2} \)
67 \( 1 + 9.92e5T + 6.06e12T^{2} \)
71 \( 1 + (3.96e6 + 2.87e6i)T + (2.81e12 + 8.64e12i)T^{2} \)
73 \( 1 + (2.37e6 - 1.72e6i)T + (3.41e12 - 1.05e13i)T^{2} \)
79 \( 1 + (-3.80e6 - 2.76e6i)T + (5.93e12 + 1.82e13i)T^{2} \)
83 \( 1 + (-4.90e5 - 1.51e6i)T + (-2.19e13 + 1.59e13i)T^{2} \)
89 \( 1 + (9.91e5 - 7.20e5i)T + (1.36e13 - 4.20e13i)T^{2} \)
97 \( 1 + (8.03e6 - 5.83e6i)T + (2.49e13 - 7.68e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54900716333119896294180968224, −13.34841430222169863409195301975, −12.17714529103594623181133235380, −10.38522696738414155385078144341, −9.596746672573101648401939938881, −9.014586717273298636525766384044, −6.31769834570215124234236420351, −5.82032177461154905106705699052, −4.52834746325300562203001946267, −2.74876931984500846023258684037, 0.47052567438797893143866591369, 1.60318983626600482092045061005, 3.03158652017056182490477811194, 5.64144512970734776156764353362, 6.33632521778618010406124329916, 7.70487628741751335478316601580, 9.821020885828828962961944449749, 10.27453846890466720901005907839, 12.07728110794545440831235227174, 12.88951749136537979684877457998

Graph of the $Z$-function along the critical line