Properties

Label 62.8.a.a
Level $62$
Weight $8$
Character orbit 62.a
Self dual yes
Analytic conductor $19.368$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,8,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3678715800\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 947x - 3456 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta_1 - 9) q^{3} + 64 q^{4} + ( - \beta_{2} - 2 \beta_1 + 50) q^{5} + (8 \beta_1 + 72) q^{6} + (3 \beta_{2} + 7 \beta_1 - 499) q^{7} - 512 q^{8} + (12 \beta_{2} + 26 \beta_1 + 423) q^{9}+ \cdots + (54990 \beta_{2} + 152544 \beta_1 + 2328804) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 24 q^{2} - 26 q^{3} + 192 q^{4} + 152 q^{5} + 208 q^{6} - 1504 q^{7} - 1536 q^{8} + 1243 q^{9} - 1216 q^{10} + 4884 q^{11} - 1664 q^{12} + 7300 q^{13} + 12032 q^{14} + 15910 q^{15} + 12288 q^{16}+ \cdots + 6833868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 947x - 3456 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 5\nu - 630 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{2} + 5\beta _1 + 1265 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
32.9373
−3.71830
−28.2190
−8.00000 −73.8745 64.0000 −176.475 590.996 245.299 −512.000 3270.45 1411.80
1.2 −8.00000 −0.563391 64.0000 266.067 4.50713 −1155.64 −512.000 −2186.68 −2128.54
1.3 −8.00000 48.4379 64.0000 62.4075 −387.504 −593.661 −512.000 159.234 −499.260
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 62.8.a.a 3
3.b odd 2 1 558.8.a.g 3
4.b odd 2 1 496.8.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.8.a.a 3 1.a even 1 1 trivial
496.8.a.a 3 4.b odd 2 1
558.8.a.g 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 26T_{3}^{2} - 3564T_{3} - 2016 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(62))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 26 T^{2} + \cdots - 2016 \) Copy content Toggle raw display
$5$ \( T^{3} - 152 T^{2} + \cdots + 2930298 \) Copy content Toggle raw display
$7$ \( T^{3} + 1504 T^{2} + \cdots - 168289456 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 121900627296 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 103204066296 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 6570154100232 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 539939504716 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 116422844777568 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 739019343333672 \) Copy content Toggle raw display
$31$ \( (T - 29791)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 30\!\cdots\!92 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 37\!\cdots\!22 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 54\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 87\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 62\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 85\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 13\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 13\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 17\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 17\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 93\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 27\!\cdots\!22 \) Copy content Toggle raw display
show more
show less