Properties

Label 62.6.a.c.1.4
Level $62$
Weight $6$
Character 62.1
Self dual yes
Analytic conductor $9.944$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,6,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.94379682840\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 221x^{2} - 140x + 2412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.02119\) of defining polynomial
Character \(\chi\) \(=\) 62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +23.5432 q^{3} +16.0000 q^{4} +4.68379 q^{5} -94.1729 q^{6} +223.045 q^{7} -64.0000 q^{8} +311.283 q^{9} -18.7352 q^{10} -697.575 q^{11} +376.692 q^{12} +608.528 q^{13} -892.181 q^{14} +110.272 q^{15} +256.000 q^{16} -1134.55 q^{17} -1245.13 q^{18} +2216.76 q^{19} +74.9407 q^{20} +5251.21 q^{21} +2790.30 q^{22} +4952.73 q^{23} -1506.77 q^{24} -3103.06 q^{25} -2434.11 q^{26} +1607.61 q^{27} +3568.73 q^{28} +4252.87 q^{29} -441.087 q^{30} +961.000 q^{31} -1024.00 q^{32} -16423.2 q^{33} +4538.22 q^{34} +1044.70 q^{35} +4980.53 q^{36} -11542.5 q^{37} -8867.06 q^{38} +14326.7 q^{39} -299.763 q^{40} -7267.04 q^{41} -21004.8 q^{42} -2660.85 q^{43} -11161.2 q^{44} +1457.99 q^{45} -19810.9 q^{46} -4011.52 q^{47} +6027.07 q^{48} +32942.2 q^{49} +12412.2 q^{50} -26711.1 q^{51} +9736.45 q^{52} -26632.7 q^{53} -6430.44 q^{54} -3267.30 q^{55} -14274.9 q^{56} +52189.8 q^{57} -17011.5 q^{58} +9837.40 q^{59} +1764.35 q^{60} -25660.4 q^{61} -3844.00 q^{62} +69430.3 q^{63} +4096.00 q^{64} +2850.22 q^{65} +65692.6 q^{66} -22067.8 q^{67} -18152.9 q^{68} +116603. q^{69} -4178.79 q^{70} -29062.7 q^{71} -19922.1 q^{72} -20167.7 q^{73} +46170.1 q^{74} -73056.1 q^{75} +35468.2 q^{76} -155591. q^{77} -57306.8 q^{78} -18775.8 q^{79} +1199.05 q^{80} -37793.5 q^{81} +29068.1 q^{82} -8063.50 q^{83} +84019.3 q^{84} -5314.02 q^{85} +10643.4 q^{86} +100126. q^{87} +44644.8 q^{88} +37717.2 q^{89} -5831.95 q^{90} +135729. q^{91} +79243.6 q^{92} +22625.0 q^{93} +16046.1 q^{94} +10382.9 q^{95} -24108.3 q^{96} +23398.0 q^{97} -131769. q^{98} -217143. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 10 q^{3} + 64 q^{4} + 2 q^{5} - 40 q^{6} + 146 q^{7} - 256 q^{8} - 36 q^{9} - 8 q^{10} - 270 q^{11} + 160 q^{12} + 1038 q^{13} - 584 q^{14} + 1864 q^{15} + 1024 q^{16} + 2020 q^{17} + 144 q^{18}+ \cdots - 324354 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 23.5432 1.51030 0.755149 0.655553i \(-0.227564\pi\)
0.755149 + 0.655553i \(0.227564\pi\)
\(4\) 16.0000 0.500000
\(5\) 4.68379 0.0837863 0.0418931 0.999122i \(-0.486661\pi\)
0.0418931 + 0.999122i \(0.486661\pi\)
\(6\) −94.1729 −1.06794
\(7\) 223.045 1.72047 0.860237 0.509895i \(-0.170316\pi\)
0.860237 + 0.509895i \(0.170316\pi\)
\(8\) −64.0000 −0.353553
\(9\) 311.283 1.28100
\(10\) −18.7352 −0.0592458
\(11\) −697.575 −1.73824 −0.869119 0.494604i \(-0.835313\pi\)
−0.869119 + 0.494604i \(0.835313\pi\)
\(12\) 376.692 0.755149
\(13\) 608.528 0.998670 0.499335 0.866409i \(-0.333578\pi\)
0.499335 + 0.866409i \(0.333578\pi\)
\(14\) −892.181 −1.21656
\(15\) 110.272 0.126542
\(16\) 256.000 0.250000
\(17\) −1134.55 −0.952145 −0.476072 0.879406i \(-0.657940\pi\)
−0.476072 + 0.879406i \(0.657940\pi\)
\(18\) −1245.13 −0.905805
\(19\) 2216.76 1.40875 0.704377 0.709826i \(-0.251226\pi\)
0.704377 + 0.709826i \(0.251226\pi\)
\(20\) 74.9407 0.0418931
\(21\) 5251.21 2.59843
\(22\) 2790.30 1.22912
\(23\) 4952.73 1.95220 0.976101 0.217318i \(-0.0697310\pi\)
0.976101 + 0.217318i \(0.0697310\pi\)
\(24\) −1506.77 −0.533971
\(25\) −3103.06 −0.992980
\(26\) −2434.11 −0.706166
\(27\) 1607.61 0.424396
\(28\) 3568.73 0.860237
\(29\) 4252.87 0.939047 0.469523 0.882920i \(-0.344426\pi\)
0.469523 + 0.882920i \(0.344426\pi\)
\(30\) −441.087 −0.0894789
\(31\) 961.000 0.179605
\(32\) −1024.00 −0.176777
\(33\) −16423.2 −2.62526
\(34\) 4538.22 0.673268
\(35\) 1044.70 0.144152
\(36\) 4980.53 0.640501
\(37\) −11542.5 −1.38611 −0.693053 0.720887i \(-0.743735\pi\)
−0.693053 + 0.720887i \(0.743735\pi\)
\(38\) −8867.06 −0.996140
\(39\) 14326.7 1.50829
\(40\) −299.763 −0.0296229
\(41\) −7267.04 −0.675146 −0.337573 0.941299i \(-0.609606\pi\)
−0.337573 + 0.941299i \(0.609606\pi\)
\(42\) −21004.8 −1.83737
\(43\) −2660.85 −0.219457 −0.109728 0.993962i \(-0.534998\pi\)
−0.109728 + 0.993962i \(0.534998\pi\)
\(44\) −11161.2 −0.869119
\(45\) 1457.99 0.107330
\(46\) −19810.9 −1.38041
\(47\) −4011.52 −0.264889 −0.132445 0.991190i \(-0.542283\pi\)
−0.132445 + 0.991190i \(0.542283\pi\)
\(48\) 6027.07 0.377575
\(49\) 32942.2 1.96003
\(50\) 12412.2 0.702143
\(51\) −26711.1 −1.43802
\(52\) 9736.45 0.499335
\(53\) −26632.7 −1.30234 −0.651172 0.758931i \(-0.725722\pi\)
−0.651172 + 0.758931i \(0.725722\pi\)
\(54\) −6430.44 −0.300094
\(55\) −3267.30 −0.145640
\(56\) −14274.9 −0.608279
\(57\) 52189.8 2.12764
\(58\) −17011.5 −0.664006
\(59\) 9837.40 0.367917 0.183959 0.982934i \(-0.441109\pi\)
0.183959 + 0.982934i \(0.441109\pi\)
\(60\) 1764.35 0.0632711
\(61\) −25660.4 −0.882955 −0.441477 0.897272i \(-0.645545\pi\)
−0.441477 + 0.897272i \(0.645545\pi\)
\(62\) −3844.00 −0.127000
\(63\) 69430.3 2.20393
\(64\) 4096.00 0.125000
\(65\) 2850.22 0.0836749
\(66\) 65692.6 1.85634
\(67\) −22067.8 −0.600581 −0.300291 0.953848i \(-0.597084\pi\)
−0.300291 + 0.953848i \(0.597084\pi\)
\(68\) −18152.9 −0.476072
\(69\) 116603. 2.94841
\(70\) −4178.79 −0.101931
\(71\) −29062.7 −0.684212 −0.342106 0.939661i \(-0.611140\pi\)
−0.342106 + 0.939661i \(0.611140\pi\)
\(72\) −19922.1 −0.452902
\(73\) −20167.7 −0.442944 −0.221472 0.975167i \(-0.571086\pi\)
−0.221472 + 0.975167i \(0.571086\pi\)
\(74\) 46170.1 0.980124
\(75\) −73056.1 −1.49970
\(76\) 35468.2 0.704377
\(77\) −155591. −2.99059
\(78\) −57306.8 −1.06652
\(79\) −18775.8 −0.338478 −0.169239 0.985575i \(-0.554131\pi\)
−0.169239 + 0.985575i \(0.554131\pi\)
\(80\) 1199.05 0.0209466
\(81\) −37793.5 −0.640036
\(82\) 29068.1 0.477400
\(83\) −8063.50 −0.128478 −0.0642390 0.997935i \(-0.520462\pi\)
−0.0642390 + 0.997935i \(0.520462\pi\)
\(84\) 84019.3 1.29921
\(85\) −5314.02 −0.0797767
\(86\) 10643.4 0.155179
\(87\) 100126. 1.41824
\(88\) 44644.8 0.614560
\(89\) 37717.2 0.504736 0.252368 0.967631i \(-0.418791\pi\)
0.252368 + 0.967631i \(0.418791\pi\)
\(90\) −5831.95 −0.0758940
\(91\) 135729. 1.71819
\(92\) 79243.6 0.976101
\(93\) 22625.0 0.271258
\(94\) 16046.1 0.187305
\(95\) 10382.9 0.118034
\(96\) −24108.3 −0.266986
\(97\) 23398.0 0.252493 0.126247 0.991999i \(-0.459707\pi\)
0.126247 + 0.991999i \(0.459707\pi\)
\(98\) −131769. −1.38595
\(99\) −217143. −2.22668
\(100\) −49649.0 −0.496490
\(101\) −41048.5 −0.400400 −0.200200 0.979755i \(-0.564159\pi\)
−0.200200 + 0.979755i \(0.564159\pi\)
\(102\) 106844. 1.01684
\(103\) 50513.9 0.469156 0.234578 0.972097i \(-0.424629\pi\)
0.234578 + 0.972097i \(0.424629\pi\)
\(104\) −38945.8 −0.353083
\(105\) 24595.6 0.217713
\(106\) 106531. 0.920896
\(107\) 15991.7 0.135032 0.0675159 0.997718i \(-0.478493\pi\)
0.0675159 + 0.997718i \(0.478493\pi\)
\(108\) 25721.8 0.212198
\(109\) −33598.4 −0.270865 −0.135432 0.990787i \(-0.543242\pi\)
−0.135432 + 0.990787i \(0.543242\pi\)
\(110\) 13069.2 0.102983
\(111\) −271748. −2.09343
\(112\) 57099.6 0.430118
\(113\) 94717.0 0.697802 0.348901 0.937160i \(-0.386555\pi\)
0.348901 + 0.937160i \(0.386555\pi\)
\(114\) −208759. −1.50447
\(115\) 23197.5 0.163568
\(116\) 68045.9 0.469523
\(117\) 189425. 1.27930
\(118\) −39349.6 −0.260157
\(119\) −253057. −1.63814
\(120\) −7057.38 −0.0447395
\(121\) 325559. 2.02147
\(122\) 102642. 0.624343
\(123\) −171089. −1.01967
\(124\) 15376.0 0.0898027
\(125\) −29171.0 −0.166984
\(126\) −277721. −1.55841
\(127\) −199995. −1.10030 −0.550148 0.835067i \(-0.685429\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −62644.9 −0.331445
\(130\) −11400.9 −0.0591671
\(131\) 24450.2 0.124482 0.0622408 0.998061i \(-0.480175\pi\)
0.0622408 + 0.998061i \(0.480175\pi\)
\(132\) −262771. −1.31263
\(133\) 494439. 2.42373
\(134\) 88271.2 0.424675
\(135\) 7529.72 0.0355586
\(136\) 72611.5 0.336634
\(137\) −335345. −1.52648 −0.763239 0.646117i \(-0.776392\pi\)
−0.763239 + 0.646117i \(0.776392\pi\)
\(138\) −466412. −2.08484
\(139\) −355730. −1.56165 −0.780824 0.624751i \(-0.785201\pi\)
−0.780824 + 0.624751i \(0.785201\pi\)
\(140\) 16715.2 0.0720760
\(141\) −94444.1 −0.400062
\(142\) 116251. 0.483811
\(143\) −424494. −1.73593
\(144\) 79688.5 0.320250
\(145\) 19919.6 0.0786792
\(146\) 80670.8 0.313209
\(147\) 775566. 2.96023
\(148\) −184680. −0.693053
\(149\) 335641. 1.23854 0.619269 0.785179i \(-0.287429\pi\)
0.619269 + 0.785179i \(0.287429\pi\)
\(150\) 292224. 1.06045
\(151\) −24794.1 −0.0884923 −0.0442462 0.999021i \(-0.514089\pi\)
−0.0442462 + 0.999021i \(0.514089\pi\)
\(152\) −141873. −0.498070
\(153\) −353168. −1.21970
\(154\) 622363. 2.11467
\(155\) 4501.13 0.0150485
\(156\) 229227. 0.754145
\(157\) 412132. 1.33440 0.667202 0.744877i \(-0.267492\pi\)
0.667202 + 0.744877i \(0.267492\pi\)
\(158\) 75103.1 0.239340
\(159\) −627019. −1.96693
\(160\) −4796.21 −0.0148115
\(161\) 1.10468e6 3.35871
\(162\) 151174. 0.452574
\(163\) −342794. −1.01056 −0.505282 0.862954i \(-0.668612\pi\)
−0.505282 + 0.862954i \(0.668612\pi\)
\(164\) −116273. −0.337573
\(165\) −76922.7 −0.219960
\(166\) 32254.0 0.0908476
\(167\) 369801. 1.02607 0.513035 0.858367i \(-0.328521\pi\)
0.513035 + 0.858367i \(0.328521\pi\)
\(168\) −336077. −0.918683
\(169\) −986.835 −0.00265783
\(170\) 21256.1 0.0564106
\(171\) 690042. 1.80462
\(172\) −42573.5 −0.109728
\(173\) −577230. −1.46634 −0.733168 0.680047i \(-0.761959\pi\)
−0.733168 + 0.680047i \(0.761959\pi\)
\(174\) −400505. −1.00285
\(175\) −692123. −1.70840
\(176\) −178579. −0.434559
\(177\) 231604. 0.555665
\(178\) −150869. −0.356902
\(179\) 569871. 1.32936 0.664682 0.747127i \(-0.268567\pi\)
0.664682 + 0.747127i \(0.268567\pi\)
\(180\) 23327.8 0.0536652
\(181\) 645580. 1.46472 0.732358 0.680920i \(-0.238420\pi\)
0.732358 + 0.680920i \(0.238420\pi\)
\(182\) −542917. −1.21494
\(183\) −604128. −1.33353
\(184\) −316974. −0.690207
\(185\) −54062.8 −0.116137
\(186\) −90500.2 −0.191808
\(187\) 791436. 1.65505
\(188\) −64184.3 −0.132445
\(189\) 358570. 0.730163
\(190\) −41531.5 −0.0834629
\(191\) 64481.5 0.127894 0.0639472 0.997953i \(-0.479631\pi\)
0.0639472 + 0.997953i \(0.479631\pi\)
\(192\) 96433.0 0.188787
\(193\) 231863. 0.448061 0.224031 0.974582i \(-0.428078\pi\)
0.224031 + 0.974582i \(0.428078\pi\)
\(194\) −93592.1 −0.178540
\(195\) 67103.4 0.126374
\(196\) 527075. 0.980015
\(197\) −419129. −0.769454 −0.384727 0.923030i \(-0.625704\pi\)
−0.384727 + 0.923030i \(0.625704\pi\)
\(198\) 868574. 1.57450
\(199\) 224958. 0.402688 0.201344 0.979521i \(-0.435469\pi\)
0.201344 + 0.979521i \(0.435469\pi\)
\(200\) 198596. 0.351071
\(201\) −519547. −0.907057
\(202\) 164194. 0.283126
\(203\) 948583. 1.61560
\(204\) −427377. −0.719012
\(205\) −34037.3 −0.0565680
\(206\) −202056. −0.331744
\(207\) 1.54170e6 2.50077
\(208\) 155783. 0.249668
\(209\) −1.54636e6 −2.44875
\(210\) −98382.3 −0.153946
\(211\) −499777. −0.772805 −0.386403 0.922330i \(-0.626283\pi\)
−0.386403 + 0.922330i \(0.626283\pi\)
\(212\) −426123. −0.651172
\(213\) −684230. −1.03336
\(214\) −63966.9 −0.0954818
\(215\) −12462.9 −0.0183874
\(216\) −102887. −0.150047
\(217\) 214347. 0.309006
\(218\) 134394. 0.191530
\(219\) −474813. −0.668978
\(220\) −52276.7 −0.0728202
\(221\) −690408. −0.950879
\(222\) 1.08699e6 1.48028
\(223\) 453035. 0.610056 0.305028 0.952343i \(-0.401334\pi\)
0.305028 + 0.952343i \(0.401334\pi\)
\(224\) −228398. −0.304140
\(225\) −965932. −1.27201
\(226\) −378868. −0.493420
\(227\) −109538. −0.141091 −0.0705456 0.997509i \(-0.522474\pi\)
−0.0705456 + 0.997509i \(0.522474\pi\)
\(228\) 835036. 1.06382
\(229\) 676432. 0.852384 0.426192 0.904633i \(-0.359855\pi\)
0.426192 + 0.904633i \(0.359855\pi\)
\(230\) −92790.2 −0.115660
\(231\) −3.66311e6 −4.51669
\(232\) −272184. −0.332003
\(233\) 1.54715e6 1.86700 0.933499 0.358581i \(-0.116739\pi\)
0.933499 + 0.358581i \(0.116739\pi\)
\(234\) −757698. −0.904600
\(235\) −18789.1 −0.0221941
\(236\) 157398. 0.183959
\(237\) −442042. −0.511203
\(238\) 1.01223e6 1.15834
\(239\) −1.14833e6 −1.30039 −0.650194 0.759768i \(-0.725313\pi\)
−0.650194 + 0.759768i \(0.725313\pi\)
\(240\) 28229.5 0.0316356
\(241\) 253058. 0.280658 0.140329 0.990105i \(-0.455184\pi\)
0.140329 + 0.990105i \(0.455184\pi\)
\(242\) −1.30224e6 −1.42939
\(243\) −1.28043e6 −1.39104
\(244\) −410566. −0.441477
\(245\) 154295. 0.164224
\(246\) 684358. 0.721017
\(247\) 1.34896e6 1.40688
\(248\) −61504.0 −0.0635001
\(249\) −189841. −0.194040
\(250\) 116684. 0.118076
\(251\) 978120. 0.979959 0.489980 0.871734i \(-0.337004\pi\)
0.489980 + 0.871734i \(0.337004\pi\)
\(252\) 1.11088e6 1.10196
\(253\) −3.45490e6 −3.39339
\(254\) 799979. 0.778026
\(255\) −125109. −0.120487
\(256\) 65536.0 0.0625000
\(257\) 527626. 0.498303 0.249151 0.968465i \(-0.419848\pi\)
0.249151 + 0.968465i \(0.419848\pi\)
\(258\) 250580. 0.234367
\(259\) −2.57450e6 −2.38476
\(260\) 45603.5 0.0418374
\(261\) 1.32385e6 1.20292
\(262\) −97801.0 −0.0880218
\(263\) −129057. −0.115051 −0.0575257 0.998344i \(-0.518321\pi\)
−0.0575257 + 0.998344i \(0.518321\pi\)
\(264\) 1.05108e6 0.928168
\(265\) −124742. −0.109118
\(266\) −1.97776e6 −1.71383
\(267\) 887985. 0.762302
\(268\) −353085. −0.300291
\(269\) 106600. 0.0898205 0.0449103 0.998991i \(-0.485700\pi\)
0.0449103 + 0.998991i \(0.485700\pi\)
\(270\) −30118.9 −0.0251437
\(271\) 1.19192e6 0.985879 0.492939 0.870064i \(-0.335922\pi\)
0.492939 + 0.870064i \(0.335922\pi\)
\(272\) −290446. −0.238036
\(273\) 3.19551e6 2.59497
\(274\) 1.34138e6 1.07938
\(275\) 2.16462e6 1.72603
\(276\) 1.86565e6 1.47420
\(277\) −916761. −0.717888 −0.358944 0.933359i \(-0.616863\pi\)
−0.358944 + 0.933359i \(0.616863\pi\)
\(278\) 1.42292e6 1.10425
\(279\) 299143. 0.230075
\(280\) −66860.7 −0.0509655
\(281\) −658158. −0.497238 −0.248619 0.968601i \(-0.579977\pi\)
−0.248619 + 0.968601i \(0.579977\pi\)
\(282\) 377776. 0.282886
\(283\) 712136. 0.528563 0.264282 0.964446i \(-0.414865\pi\)
0.264282 + 0.964446i \(0.414865\pi\)
\(284\) −465004. −0.342106
\(285\) 244446. 0.178267
\(286\) 1.69797e6 1.22748
\(287\) −1.62088e6 −1.16157
\(288\) −318754. −0.226451
\(289\) −132643. −0.0934201
\(290\) −79678.3 −0.0556346
\(291\) 550865. 0.381340
\(292\) −322683. −0.221472
\(293\) 2.46729e6 1.67900 0.839500 0.543360i \(-0.182848\pi\)
0.839500 + 0.543360i \(0.182848\pi\)
\(294\) −3.10226e6 −2.09320
\(295\) 46076.4 0.0308264
\(296\) 738721. 0.490062
\(297\) −1.12143e6 −0.737701
\(298\) −1.34256e6 −0.875779
\(299\) 3.01387e6 1.94961
\(300\) −1.16890e6 −0.749848
\(301\) −593489. −0.377569
\(302\) 99176.3 0.0625735
\(303\) −966415. −0.604724
\(304\) 567492. 0.352189
\(305\) −120188. −0.0739795
\(306\) 1.41267e6 0.862458
\(307\) 1.00251e6 0.607076 0.303538 0.952819i \(-0.401832\pi\)
0.303538 + 0.952819i \(0.401832\pi\)
\(308\) −2.48945e6 −1.49530
\(309\) 1.18926e6 0.708566
\(310\) −18004.5 −0.0106409
\(311\) 1.58696e6 0.930392 0.465196 0.885208i \(-0.345984\pi\)
0.465196 + 0.885208i \(0.345984\pi\)
\(312\) −916909. −0.533261
\(313\) 3.07317e6 1.77307 0.886534 0.462664i \(-0.153106\pi\)
0.886534 + 0.462664i \(0.153106\pi\)
\(314\) −1.64853e6 −0.943566
\(315\) 325197. 0.184659
\(316\) −300412. −0.169239
\(317\) 763883. 0.426951 0.213476 0.976948i \(-0.431522\pi\)
0.213476 + 0.976948i \(0.431522\pi\)
\(318\) 2.50808e6 1.39083
\(319\) −2.96669e6 −1.63229
\(320\) 19184.8 0.0104733
\(321\) 376497. 0.203938
\(322\) −4.41873e6 −2.37497
\(323\) −2.51504e6 −1.34134
\(324\) −604696. −0.320018
\(325\) −1.88830e6 −0.991659
\(326\) 1.37117e6 0.714577
\(327\) −791015. −0.409087
\(328\) 465090. 0.238700
\(329\) −894751. −0.455735
\(330\) 307691. 0.155536
\(331\) −1.96459e6 −0.985605 −0.492803 0.870141i \(-0.664028\pi\)
−0.492803 + 0.870141i \(0.664028\pi\)
\(332\) −129016. −0.0642390
\(333\) −3.59299e6 −1.77560
\(334\) −1.47921e6 −0.725542
\(335\) −103361. −0.0503205
\(336\) 1.34431e6 0.649607
\(337\) 973571. 0.466974 0.233487 0.972360i \(-0.424986\pi\)
0.233487 + 0.972360i \(0.424986\pi\)
\(338\) 3947.34 0.00187937
\(339\) 2.22994e6 1.05389
\(340\) −85024.3 −0.0398883
\(341\) −670369. −0.312197
\(342\) −2.76017e6 −1.27606
\(343\) 3.59888e6 1.65171
\(344\) 170294. 0.0775896
\(345\) 546145. 0.247036
\(346\) 2.30892e6 1.03686
\(347\) −825632. −0.368097 −0.184049 0.982917i \(-0.558920\pi\)
−0.184049 + 0.982917i \(0.558920\pi\)
\(348\) 1.60202e6 0.709120
\(349\) −1.13449e6 −0.498584 −0.249292 0.968428i \(-0.580198\pi\)
−0.249292 + 0.968428i \(0.580198\pi\)
\(350\) 2.76849e6 1.20802
\(351\) 978276. 0.423832
\(352\) 714316. 0.307280
\(353\) 332778. 0.142140 0.0710702 0.997471i \(-0.477359\pi\)
0.0710702 + 0.997471i \(0.477359\pi\)
\(354\) −926416. −0.392914
\(355\) −136124. −0.0573275
\(356\) 603475. 0.252368
\(357\) −5.95778e6 −2.47408
\(358\) −2.27948e6 −0.940002
\(359\) 992000. 0.406233 0.203117 0.979155i \(-0.434893\pi\)
0.203117 + 0.979155i \(0.434893\pi\)
\(360\) −93311.2 −0.0379470
\(361\) 2.43794e6 0.984590
\(362\) −2.58232e6 −1.03571
\(363\) 7.66472e6 3.05302
\(364\) 2.17167e6 0.859093
\(365\) −94461.4 −0.0371127
\(366\) 2.41651e6 0.942945
\(367\) 4.81905e6 1.86765 0.933827 0.357724i \(-0.116447\pi\)
0.933827 + 0.357724i \(0.116447\pi\)
\(368\) 1.26790e6 0.488050
\(369\) −2.26211e6 −0.864863
\(370\) 216251. 0.0821210
\(371\) −5.94030e6 −2.24065
\(372\) 362001. 0.135629
\(373\) 684010. 0.254560 0.127280 0.991867i \(-0.459375\pi\)
0.127280 + 0.991867i \(0.459375\pi\)
\(374\) −3.16575e6 −1.17030
\(375\) −686779. −0.252196
\(376\) 256737. 0.0936525
\(377\) 2.58799e6 0.937798
\(378\) −1.43428e6 −0.516303
\(379\) −3.17152e6 −1.13415 −0.567073 0.823668i \(-0.691924\pi\)
−0.567073 + 0.823668i \(0.691924\pi\)
\(380\) 166126. 0.0590172
\(381\) −4.70852e6 −1.66177
\(382\) −257926. −0.0904351
\(383\) −3.27993e6 −1.14253 −0.571265 0.820766i \(-0.693547\pi\)
−0.571265 + 0.820766i \(0.693547\pi\)
\(384\) −385732. −0.133493
\(385\) −728755. −0.250570
\(386\) −927450. −0.316827
\(387\) −828277. −0.281124
\(388\) 374368. 0.126247
\(389\) 1.13995e6 0.381953 0.190977 0.981595i \(-0.438835\pi\)
0.190977 + 0.981595i \(0.438835\pi\)
\(390\) −268413. −0.0893599
\(391\) −5.61914e6 −1.85878
\(392\) −2.10830e6 −0.692975
\(393\) 575638. 0.188004
\(394\) 1.67652e6 0.544086
\(395\) −87941.9 −0.0283598
\(396\) −3.47429e6 −1.11334
\(397\) 5.52647e6 1.75983 0.879917 0.475128i \(-0.157598\pi\)
0.879917 + 0.475128i \(0.157598\pi\)
\(398\) −899832. −0.284744
\(399\) 1.16407e7 3.66055
\(400\) −794384. −0.248245
\(401\) 1.64448e6 0.510702 0.255351 0.966848i \(-0.417809\pi\)
0.255351 + 0.966848i \(0.417809\pi\)
\(402\) 2.07819e6 0.641386
\(403\) 584795. 0.179366
\(404\) −656777. −0.200200
\(405\) −177017. −0.0536263
\(406\) −3.79433e6 −1.14241
\(407\) 8.05177e6 2.40938
\(408\) 1.70951e6 0.508418
\(409\) −4.67117e6 −1.38076 −0.690378 0.723449i \(-0.742556\pi\)
−0.690378 + 0.723449i \(0.742556\pi\)
\(410\) 136149. 0.0399996
\(411\) −7.89510e6 −2.30544
\(412\) 808222. 0.234578
\(413\) 2.19419e6 0.632992
\(414\) −6.16680e6 −1.76831
\(415\) −37767.8 −0.0107647
\(416\) −623133. −0.176542
\(417\) −8.37503e6 −2.35855
\(418\) 6.18543e6 1.73153
\(419\) −705742. −0.196386 −0.0981931 0.995167i \(-0.531306\pi\)
−0.0981931 + 0.995167i \(0.531306\pi\)
\(420\) 393529. 0.108856
\(421\) −115874. −0.0318625 −0.0159313 0.999873i \(-0.505071\pi\)
−0.0159313 + 0.999873i \(0.505071\pi\)
\(422\) 1.99911e6 0.546456
\(423\) −1.24872e6 −0.339323
\(424\) 1.70449e6 0.460448
\(425\) 3.52059e6 0.945461
\(426\) 2.73692e6 0.730699
\(427\) −5.72343e6 −1.51910
\(428\) 255868. 0.0675159
\(429\) −9.99395e6 −2.62177
\(430\) 49851.4 0.0130019
\(431\) −6.27049e6 −1.62595 −0.812977 0.582296i \(-0.802155\pi\)
−0.812977 + 0.582296i \(0.802155\pi\)
\(432\) 411548. 0.106099
\(433\) −4.06089e6 −1.04088 −0.520441 0.853898i \(-0.674232\pi\)
−0.520441 + 0.853898i \(0.674232\pi\)
\(434\) −857386. −0.218500
\(435\) 468971. 0.118829
\(436\) −537575. −0.135432
\(437\) 1.09790e7 2.75017
\(438\) 1.89925e6 0.473039
\(439\) 5.40713e6 1.33908 0.669539 0.742777i \(-0.266492\pi\)
0.669539 + 0.742777i \(0.266492\pi\)
\(440\) 209107. 0.0514917
\(441\) 1.02544e7 2.51080
\(442\) 2.76163e6 0.672373
\(443\) 2.50805e6 0.607194 0.303597 0.952801i \(-0.401812\pi\)
0.303597 + 0.952801i \(0.401812\pi\)
\(444\) −4.34797e6 −1.04672
\(445\) 176660. 0.0422900
\(446\) −1.81214e6 −0.431375
\(447\) 7.90207e6 1.87056
\(448\) 913594. 0.215059
\(449\) 3.09796e6 0.725203 0.362601 0.931944i \(-0.381889\pi\)
0.362601 + 0.931944i \(0.381889\pi\)
\(450\) 3.86373e6 0.899446
\(451\) 5.06930e6 1.17356
\(452\) 1.51547e6 0.348901
\(453\) −583733. −0.133650
\(454\) 438152. 0.0997665
\(455\) 635728. 0.143960
\(456\) −3.34015e6 −0.752234
\(457\) −7.64379e6 −1.71206 −0.856028 0.516929i \(-0.827075\pi\)
−0.856028 + 0.516929i \(0.827075\pi\)
\(458\) −2.70573e6 −0.602727
\(459\) −1.82392e6 −0.404087
\(460\) 371161. 0.0817838
\(461\) 2.29806e6 0.503628 0.251814 0.967776i \(-0.418973\pi\)
0.251814 + 0.967776i \(0.418973\pi\)
\(462\) 1.46524e7 3.19378
\(463\) −2.13584e6 −0.463037 −0.231518 0.972831i \(-0.574369\pi\)
−0.231518 + 0.972831i \(0.574369\pi\)
\(464\) 1.08873e6 0.234762
\(465\) 105971. 0.0227277
\(466\) −6.18862e6 −1.32017
\(467\) −508175. −0.107825 −0.0539127 0.998546i \(-0.517169\pi\)
−0.0539127 + 0.998546i \(0.517169\pi\)
\(468\) 3.03079e6 0.639649
\(469\) −4.92212e6 −1.03328
\(470\) 75156.5 0.0156936
\(471\) 9.70292e6 2.01535
\(472\) −629594. −0.130078
\(473\) 1.85614e6 0.381468
\(474\) 1.76817e6 0.361475
\(475\) −6.87876e6 −1.39887
\(476\) −4.04891e6 −0.819070
\(477\) −8.29032e6 −1.66830
\(478\) 4.59333e6 0.919514
\(479\) 715922. 0.142570 0.0712848 0.997456i \(-0.477290\pi\)
0.0712848 + 0.997456i \(0.477290\pi\)
\(480\) −112918. −0.0223697
\(481\) −7.02394e6 −1.38426
\(482\) −1.01223e6 −0.198455
\(483\) 2.60078e7 5.07266
\(484\) 5.20895e6 1.01073
\(485\) 109592. 0.0211555
\(486\) 5.12172e6 0.983616
\(487\) −4.06580e6 −0.776825 −0.388413 0.921486i \(-0.626976\pi\)
−0.388413 + 0.921486i \(0.626976\pi\)
\(488\) 1.64226e6 0.312172
\(489\) −8.07047e6 −1.52625
\(490\) −617178. −0.116124
\(491\) −2.14116e6 −0.400816 −0.200408 0.979713i \(-0.564227\pi\)
−0.200408 + 0.979713i \(0.564227\pi\)
\(492\) −2.73743e6 −0.509836
\(493\) −4.82511e6 −0.894108
\(494\) −5.39585e6 −0.994815
\(495\) −1.01706e6 −0.186566
\(496\) 246016. 0.0449013
\(497\) −6.48230e6 −1.17717
\(498\) 759363. 0.137207
\(499\) −8.35595e6 −1.50226 −0.751129 0.660155i \(-0.770491\pi\)
−0.751129 + 0.660155i \(0.770491\pi\)
\(500\) −466735. −0.0834922
\(501\) 8.70632e6 1.54967
\(502\) −3.91248e6 −0.692936
\(503\) 4.45563e6 0.785215 0.392608 0.919706i \(-0.371573\pi\)
0.392608 + 0.919706i \(0.371573\pi\)
\(504\) −4.44354e6 −0.779207
\(505\) −192263. −0.0335480
\(506\) 1.38196e7 2.39949
\(507\) −23233.3 −0.00401412
\(508\) −3.19992e6 −0.550148
\(509\) −4.70860e6 −0.805559 −0.402779 0.915297i \(-0.631956\pi\)
−0.402779 + 0.915297i \(0.631956\pi\)
\(510\) 500437. 0.0851969
\(511\) −4.49831e6 −0.762074
\(512\) −262144. −0.0441942
\(513\) 3.56369e6 0.597870
\(514\) −2.11050e6 −0.352353
\(515\) 236597. 0.0393089
\(516\) −1.00232e6 −0.165722
\(517\) 2.79833e6 0.460440
\(518\) 1.02980e7 1.68628
\(519\) −1.35899e7 −2.21461
\(520\) −182414. −0.0295835
\(521\) 256990. 0.0414784 0.0207392 0.999785i \(-0.493398\pi\)
0.0207392 + 0.999785i \(0.493398\pi\)
\(522\) −5.29539e6 −0.850593
\(523\) −9.77502e6 −1.56266 −0.781328 0.624120i \(-0.785457\pi\)
−0.781328 + 0.624120i \(0.785457\pi\)
\(524\) 391204. 0.0622408
\(525\) −1.62948e7 −2.58019
\(526\) 516227. 0.0813536
\(527\) −1.09031e6 −0.171010
\(528\) −4.20433e6 −0.656314
\(529\) 1.80931e7 2.81109
\(530\) 498968. 0.0771584
\(531\) 3.06222e6 0.471303
\(532\) 7.91102e6 1.21186
\(533\) −4.42219e6 −0.674248
\(534\) −3.55194e6 −0.539029
\(535\) 74901.9 0.0113138
\(536\) 1.41234e6 0.212338
\(537\) 1.34166e7 2.00774
\(538\) −426399. −0.0635127
\(539\) −2.29797e7 −3.40700
\(540\) 120476. 0.0177793
\(541\) −5.69126e6 −0.836017 −0.418009 0.908443i \(-0.637272\pi\)
−0.418009 + 0.908443i \(0.637272\pi\)
\(542\) −4.76768e6 −0.697122
\(543\) 1.51990e7 2.21216
\(544\) 1.16178e6 0.168317
\(545\) −157368. −0.0226948
\(546\) −1.27820e7 −1.83492
\(547\) 4.52243e6 0.646254 0.323127 0.946356i \(-0.395266\pi\)
0.323127 + 0.946356i \(0.395266\pi\)
\(548\) −5.36552e6 −0.763239
\(549\) −7.98765e6 −1.13107
\(550\) −8.65847e6 −1.22049
\(551\) 9.42761e6 1.32289
\(552\) −7.46260e6 −1.04242
\(553\) −4.18785e6 −0.582342
\(554\) 3.66704e6 0.507623
\(555\) −1.27281e6 −0.175401
\(556\) −5.69168e6 −0.780824
\(557\) 844618. 0.115351 0.0576756 0.998335i \(-0.481631\pi\)
0.0576756 + 0.998335i \(0.481631\pi\)
\(558\) −1.19657e6 −0.162687
\(559\) −1.61920e6 −0.219165
\(560\) 267443. 0.0360380
\(561\) 1.86330e7 2.49962
\(562\) 2.63263e6 0.351600
\(563\) −1.37503e6 −0.182827 −0.0914135 0.995813i \(-0.529139\pi\)
−0.0914135 + 0.995813i \(0.529139\pi\)
\(564\) −1.51111e6 −0.200031
\(565\) 443635. 0.0584662
\(566\) −2.84855e6 −0.373751
\(567\) −8.42967e6 −1.10117
\(568\) 1.86001e6 0.241905
\(569\) 1.34420e7 1.74054 0.870269 0.492576i \(-0.163945\pi\)
0.870269 + 0.492576i \(0.163945\pi\)
\(570\) −977785. −0.126054
\(571\) 1.12408e7 1.44281 0.721404 0.692514i \(-0.243497\pi\)
0.721404 + 0.692514i \(0.243497\pi\)
\(572\) −6.79190e6 −0.867963
\(573\) 1.51810e6 0.193159
\(574\) 6.48351e6 0.821355
\(575\) −1.53686e7 −1.93850
\(576\) 1.27502e6 0.160125
\(577\) −2.66356e6 −0.333061 −0.166530 0.986036i \(-0.553256\pi\)
−0.166530 + 0.986036i \(0.553256\pi\)
\(578\) 530572. 0.0660580
\(579\) 5.45879e6 0.676706
\(580\) 318713. 0.0393396
\(581\) −1.79853e6 −0.221043
\(582\) −2.20346e6 −0.269648
\(583\) 1.85783e7 2.26378
\(584\) 1.29073e6 0.156605
\(585\) 887226. 0.107188
\(586\) −9.86915e6 −1.18723
\(587\) 8.77559e6 1.05119 0.525595 0.850735i \(-0.323843\pi\)
0.525595 + 0.850735i \(0.323843\pi\)
\(588\) 1.24091e7 1.48011
\(589\) 2.13031e6 0.253020
\(590\) −184305. −0.0217976
\(591\) −9.86766e6 −1.16211
\(592\) −2.95488e6 −0.346526
\(593\) 4.55045e6 0.531395 0.265697 0.964057i \(-0.414398\pi\)
0.265697 + 0.964057i \(0.414398\pi\)
\(594\) 4.48572e6 0.521634
\(595\) −1.18527e6 −0.137254
\(596\) 5.37026e6 0.619269
\(597\) 5.29624e6 0.608179
\(598\) −1.20555e7 −1.37858
\(599\) −5.37769e6 −0.612391 −0.306195 0.951969i \(-0.599056\pi\)
−0.306195 + 0.951969i \(0.599056\pi\)
\(600\) 4.67559e6 0.530223
\(601\) 9.92474e6 1.12081 0.560406 0.828218i \(-0.310645\pi\)
0.560406 + 0.828218i \(0.310645\pi\)
\(602\) 2.37396e6 0.266982
\(603\) −6.86934e6 −0.769346
\(604\) −396705. −0.0442462
\(605\) 1.52485e6 0.169371
\(606\) 3.86566e6 0.427604
\(607\) −1.19072e7 −1.31171 −0.655854 0.754888i \(-0.727691\pi\)
−0.655854 + 0.754888i \(0.727691\pi\)
\(608\) −2.26997e6 −0.249035
\(609\) 2.23327e7 2.44005
\(610\) 480752. 0.0523114
\(611\) −2.44112e6 −0.264537
\(612\) −5.65069e6 −0.609850
\(613\) −8.81440e6 −0.947418 −0.473709 0.880681i \(-0.657085\pi\)
−0.473709 + 0.880681i \(0.657085\pi\)
\(614\) −4.01004e6 −0.429267
\(615\) −801348. −0.0854345
\(616\) 9.95781e6 1.05733
\(617\) −185755. −0.0196439 −0.00982197 0.999952i \(-0.503126\pi\)
−0.00982197 + 0.999952i \(0.503126\pi\)
\(618\) −4.75704e6 −0.501032
\(619\) 7.57371e6 0.794478 0.397239 0.917715i \(-0.369968\pi\)
0.397239 + 0.917715i \(0.369968\pi\)
\(620\) 72018.0 0.00752423
\(621\) 7.96206e6 0.828507
\(622\) −6.34786e6 −0.657887
\(623\) 8.41265e6 0.868385
\(624\) 3.66764e6 0.377073
\(625\) 9.56044e6 0.978989
\(626\) −1.22927e7 −1.25375
\(627\) −3.64063e7 −3.69834
\(628\) 6.59412e6 0.667202
\(629\) 1.30956e7 1.31977
\(630\) −1.30079e6 −0.130574
\(631\) −1.08066e7 −1.08048 −0.540239 0.841512i \(-0.681666\pi\)
−0.540239 + 0.841512i \(0.681666\pi\)
\(632\) 1.20165e6 0.119670
\(633\) −1.17664e7 −1.16717
\(634\) −3.05553e6 −0.301900
\(635\) −936734. −0.0921896
\(636\) −1.00323e7 −0.983463
\(637\) 2.00463e7 1.95742
\(638\) 1.18668e7 1.15420
\(639\) −9.04674e6 −0.876476
\(640\) −76739.3 −0.00740573
\(641\) 1.04529e7 1.00483 0.502415 0.864627i \(-0.332445\pi\)
0.502415 + 0.864627i \(0.332445\pi\)
\(642\) −1.50599e6 −0.144206
\(643\) −4.02341e6 −0.383766 −0.191883 0.981418i \(-0.561459\pi\)
−0.191883 + 0.981418i \(0.561459\pi\)
\(644\) 1.76749e7 1.67936
\(645\) −293416. −0.0277705
\(646\) 1.00602e7 0.948470
\(647\) 6.26614e6 0.588490 0.294245 0.955730i \(-0.404932\pi\)
0.294245 + 0.955730i \(0.404932\pi\)
\(648\) 2.41878e6 0.226287
\(649\) −6.86232e6 −0.639528
\(650\) 7.55320e6 0.701209
\(651\) 5.04641e6 0.466692
\(652\) −5.48470e6 −0.505282
\(653\) −4.84802e6 −0.444919 −0.222460 0.974942i \(-0.571409\pi\)
−0.222460 + 0.974942i \(0.571409\pi\)
\(654\) 3.16406e6 0.289268
\(655\) 114520. 0.0104298
\(656\) −1.86036e6 −0.168786
\(657\) −6.27787e6 −0.567413
\(658\) 3.57900e6 0.322253
\(659\) −1.92462e7 −1.72636 −0.863178 0.504899i \(-0.831530\pi\)
−0.863178 + 0.504899i \(0.831530\pi\)
\(660\) −1.23076e6 −0.109980
\(661\) 1.94105e7 1.72796 0.863980 0.503527i \(-0.167964\pi\)
0.863980 + 0.503527i \(0.167964\pi\)
\(662\) 7.85838e6 0.696928
\(663\) −1.62544e7 −1.43611
\(664\) 516064. 0.0454238
\(665\) 2.31585e6 0.203075
\(666\) 1.43720e7 1.25554
\(667\) 2.10633e7 1.83321
\(668\) 5.91682e6 0.513035
\(669\) 1.06659e7 0.921367
\(670\) 413444. 0.0355819
\(671\) 1.79000e7 1.53478
\(672\) −5.37723e6 −0.459342
\(673\) 1.79680e7 1.52919 0.764597 0.644509i \(-0.222938\pi\)
0.764597 + 0.644509i \(0.222938\pi\)
\(674\) −3.89428e6 −0.330200
\(675\) −4.98852e6 −0.421417
\(676\) −15789.4 −0.00132892
\(677\) −1.13996e7 −0.955912 −0.477956 0.878384i \(-0.658622\pi\)
−0.477956 + 0.878384i \(0.658622\pi\)
\(678\) −8.91978e6 −0.745212
\(679\) 5.21882e6 0.434408
\(680\) 340097. 0.0282053
\(681\) −2.57888e6 −0.213090
\(682\) 2.68148e6 0.220756
\(683\) −1.06569e7 −0.874138 −0.437069 0.899428i \(-0.643984\pi\)
−0.437069 + 0.899428i \(0.643984\pi\)
\(684\) 1.10407e7 0.902309
\(685\) −1.57069e6 −0.127898
\(686\) −1.43955e7 −1.16793
\(687\) 1.59254e7 1.28735
\(688\) −681177. −0.0548641
\(689\) −1.62067e7 −1.30061
\(690\) −2.18458e6 −0.174681
\(691\) 7.42580e6 0.591627 0.295814 0.955246i \(-0.404409\pi\)
0.295814 + 0.955246i \(0.404409\pi\)
\(692\) −9.23568e6 −0.733168
\(693\) −4.84328e7 −3.83095
\(694\) 3.30253e6 0.260284
\(695\) −1.66617e6 −0.130845
\(696\) −6.40808e6 −0.501424
\(697\) 8.24485e6 0.642837
\(698\) 4.53797e6 0.352552
\(699\) 3.64250e7 2.81972
\(700\) −1.10740e7 −0.854198
\(701\) −1.05567e7 −0.811398 −0.405699 0.914007i \(-0.632972\pi\)
−0.405699 + 0.914007i \(0.632972\pi\)
\(702\) −3.91310e6 −0.299694
\(703\) −2.55870e7 −1.95268
\(704\) −2.85727e6 −0.217280
\(705\) −442357. −0.0335197
\(706\) −1.33111e6 −0.100508
\(707\) −9.15569e6 −0.688878
\(708\) 3.70567e6 0.277833
\(709\) −1.80867e6 −0.135127 −0.0675637 0.997715i \(-0.521523\pi\)
−0.0675637 + 0.997715i \(0.521523\pi\)
\(710\) 544495. 0.0405367
\(711\) −5.84459e6 −0.433591
\(712\) −2.41390e6 −0.178451
\(713\) 4.75957e6 0.350626
\(714\) 2.38311e7 1.74944
\(715\) −1.98824e6 −0.145447
\(716\) 9.11793e6 0.664682
\(717\) −2.70355e7 −1.96398
\(718\) −3.96800e6 −0.287250
\(719\) −73457.0 −0.00529921 −0.00264960 0.999996i \(-0.500843\pi\)
−0.00264960 + 0.999996i \(0.500843\pi\)
\(720\) 373245. 0.0268326
\(721\) 1.12669e7 0.807171
\(722\) −9.75177e6 −0.696210
\(723\) 5.95781e6 0.423878
\(724\) 1.03293e7 0.732358
\(725\) −1.31969e7 −0.932454
\(726\) −3.06589e7 −2.15881
\(727\) 1.10069e7 0.772379 0.386190 0.922419i \(-0.373791\pi\)
0.386190 + 0.922419i \(0.373791\pi\)
\(728\) −8.68667e6 −0.607470
\(729\) −2.09616e7 −1.46085
\(730\) 377846. 0.0262426
\(731\) 3.01887e6 0.208954
\(732\) −9.66605e6 −0.666763
\(733\) −2.69655e7 −1.85374 −0.926868 0.375388i \(-0.877509\pi\)
−0.926868 + 0.375388i \(0.877509\pi\)
\(734\) −1.92762e7 −1.32063
\(735\) 3.63259e6 0.248027
\(736\) −5.07159e6 −0.345104
\(737\) 1.53939e7 1.04395
\(738\) 9.04843e6 0.611551
\(739\) −800226. −0.0539016 −0.0269508 0.999637i \(-0.508580\pi\)
−0.0269508 + 0.999637i \(0.508580\pi\)
\(740\) −865005. −0.0580683
\(741\) 3.17589e7 2.12481
\(742\) 2.37612e7 1.58438
\(743\) −1.66717e7 −1.10792 −0.553960 0.832544i \(-0.686884\pi\)
−0.553960 + 0.832544i \(0.686884\pi\)
\(744\) −1.44800e6 −0.0959041
\(745\) 1.57207e6 0.103772
\(746\) −2.73604e6 −0.180001
\(747\) −2.51003e6 −0.164580
\(748\) 1.26630e7 0.827527
\(749\) 3.56688e6 0.232318
\(750\) 2.74711e6 0.178330
\(751\) 1.51782e7 0.982021 0.491011 0.871154i \(-0.336628\pi\)
0.491011 + 0.871154i \(0.336628\pi\)
\(752\) −1.02695e6 −0.0662223
\(753\) 2.30281e7 1.48003
\(754\) −1.03520e7 −0.663123
\(755\) −116130. −0.00741444
\(756\) 5.73712e6 0.365081
\(757\) −8.97321e6 −0.569126 −0.284563 0.958657i \(-0.591848\pi\)
−0.284563 + 0.958657i \(0.591848\pi\)
\(758\) 1.26861e7 0.801962
\(759\) −8.13394e7 −5.12503
\(760\) −664503. −0.0417314
\(761\) −2.22534e7 −1.39295 −0.696475 0.717581i \(-0.745249\pi\)
−0.696475 + 0.717581i \(0.745249\pi\)
\(762\) 1.88341e7 1.17505
\(763\) −7.49397e6 −0.466016
\(764\) 1.03170e6 0.0639472
\(765\) −1.65417e6 −0.102194
\(766\) 1.31197e7 0.807891
\(767\) 5.98633e6 0.367428
\(768\) 1.54293e6 0.0943937
\(769\) 1.79652e7 1.09551 0.547755 0.836639i \(-0.315483\pi\)
0.547755 + 0.836639i \(0.315483\pi\)
\(770\) 2.91502e6 0.177180
\(771\) 1.24220e7 0.752586
\(772\) 3.70980e6 0.224031
\(773\) 2.10629e7 1.26785 0.633927 0.773393i \(-0.281442\pi\)
0.633927 + 0.773393i \(0.281442\pi\)
\(774\) 3.31311e6 0.198785
\(775\) −2.98204e6 −0.178344
\(776\) −1.49747e6 −0.0892699
\(777\) −6.06121e7 −3.60170
\(778\) −4.55978e6 −0.270082
\(779\) −1.61093e7 −0.951115
\(780\) 1.07365e6 0.0631870
\(781\) 2.02734e7 1.18932
\(782\) 2.24765e7 1.31436
\(783\) 6.83696e6 0.398528
\(784\) 8.43321e6 0.490007
\(785\) 1.93034e6 0.111805
\(786\) −2.30255e6 −0.132939
\(787\) 2.58789e7 1.48939 0.744697 0.667403i \(-0.232594\pi\)
0.744697 + 0.667403i \(0.232594\pi\)
\(788\) −6.70607e6 −0.384727
\(789\) −3.03841e6 −0.173762
\(790\) 351768. 0.0200534
\(791\) 2.11262e7 1.20055
\(792\) 1.38972e7 0.787252
\(793\) −1.56151e7 −0.881781
\(794\) −2.21059e7 −1.24439
\(795\) −2.93683e6 −0.164801
\(796\) 3.59933e6 0.201344
\(797\) 6.65997e6 0.371387 0.185693 0.982608i \(-0.440547\pi\)
0.185693 + 0.982608i \(0.440547\pi\)
\(798\) −4.65627e7 −2.58840
\(799\) 4.55129e6 0.252213
\(800\) 3.17754e6 0.175536
\(801\) 1.17407e7 0.646568
\(802\) −6.57792e6 −0.361121
\(803\) 1.40685e7 0.769942
\(804\) −8.31275e6 −0.453529
\(805\) 5.17410e6 0.281414
\(806\) −2.33918e6 −0.126831
\(807\) 2.50970e6 0.135656
\(808\) 2.62711e6 0.141563
\(809\) 2.24564e7 1.20633 0.603167 0.797615i \(-0.293905\pi\)
0.603167 + 0.797615i \(0.293905\pi\)
\(810\) 708068. 0.0379195
\(811\) 2.11849e7 1.13103 0.565515 0.824738i \(-0.308677\pi\)
0.565515 + 0.824738i \(0.308677\pi\)
\(812\) 1.51773e7 0.807802
\(813\) 2.80616e7 1.48897
\(814\) −3.22071e7 −1.70369
\(815\) −1.60558e6 −0.0846714
\(816\) −6.83803e6 −0.359506
\(817\) −5.89847e6 −0.309161
\(818\) 1.86847e7 0.976342
\(819\) 4.22503e7 2.20100
\(820\) −544597. −0.0282840
\(821\) −3.09018e7 −1.60002 −0.800010 0.599986i \(-0.795173\pi\)
−0.800010 + 0.599986i \(0.795173\pi\)
\(822\) 3.15804e7 1.63019
\(823\) −2.47393e6 −0.127317 −0.0636586 0.997972i \(-0.520277\pi\)
−0.0636586 + 0.997972i \(0.520277\pi\)
\(824\) −3.23289e6 −0.165872
\(825\) 5.09621e7 2.60683
\(826\) −8.77674e6 −0.447593
\(827\) −2.90215e7 −1.47556 −0.737780 0.675042i \(-0.764126\pi\)
−0.737780 + 0.675042i \(0.764126\pi\)
\(828\) 2.46672e7 1.25039
\(829\) −9.17185e6 −0.463522 −0.231761 0.972773i \(-0.574449\pi\)
−0.231761 + 0.972773i \(0.574449\pi\)
\(830\) 151071. 0.00761178
\(831\) −2.15835e7 −1.08423
\(832\) 2.49253e6 0.124834
\(833\) −3.73747e7 −1.86623
\(834\) 3.35001e7 1.66775
\(835\) 1.73207e6 0.0859706
\(836\) −2.47417e7 −1.22437
\(837\) 1.54491e6 0.0762238
\(838\) 2.82297e6 0.138866
\(839\) 9.92376e6 0.486711 0.243356 0.969937i \(-0.421752\pi\)
0.243356 + 0.969937i \(0.421752\pi\)
\(840\) −1.57412e6 −0.0769730
\(841\) −2.42424e6 −0.118191
\(842\) 463495. 0.0225302
\(843\) −1.54952e7 −0.750978
\(844\) −7.99643e6 −0.386403
\(845\) −4622.13 −0.000222690 0
\(846\) 4.99488e6 0.239938
\(847\) 7.26145e7 3.47788
\(848\) −6.81797e6 −0.325586
\(849\) 1.67660e7 0.798289
\(850\) −1.40824e7 −0.668542
\(851\) −5.71669e7 −2.70596
\(852\) −1.09477e7 −0.516682
\(853\) −3.64850e7 −1.71689 −0.858444 0.512908i \(-0.828568\pi\)
−0.858444 + 0.512908i \(0.828568\pi\)
\(854\) 2.28937e7 1.07417
\(855\) 3.23201e6 0.151202
\(856\) −1.02347e6 −0.0477409
\(857\) −2.73328e7 −1.27125 −0.635627 0.771996i \(-0.719258\pi\)
−0.635627 + 0.771996i \(0.719258\pi\)
\(858\) 3.99758e7 1.85387
\(859\) −3.98534e7 −1.84282 −0.921409 0.388595i \(-0.872961\pi\)
−0.921409 + 0.388595i \(0.872961\pi\)
\(860\) −199406. −0.00919372
\(861\) −3.81607e7 −1.75432
\(862\) 2.50820e7 1.14972
\(863\) 2.53256e7 1.15753 0.578765 0.815494i \(-0.303535\pi\)
0.578765 + 0.815494i \(0.303535\pi\)
\(864\) −1.64619e6 −0.0750234
\(865\) −2.70363e6 −0.122859
\(866\) 1.62435e7 0.736014
\(867\) −3.12285e6 −0.141092
\(868\) 3.42954e6 0.154503
\(869\) 1.30975e7 0.588355
\(870\) −1.87588e6 −0.0840249
\(871\) −1.34289e7 −0.599783
\(872\) 2.15030e6 0.0957652
\(873\) 7.28342e6 0.323444
\(874\) −4.39161e7 −1.94467
\(875\) −6.50645e6 −0.287292
\(876\) −7.59700e6 −0.334489
\(877\) 2.29767e7 1.00876 0.504381 0.863481i \(-0.331721\pi\)
0.504381 + 0.863481i \(0.331721\pi\)
\(878\) −2.16285e7 −0.946871
\(879\) 5.80879e7 2.53579
\(880\) −836428. −0.0364101
\(881\) −1.47864e7 −0.641834 −0.320917 0.947107i \(-0.603991\pi\)
−0.320917 + 0.947107i \(0.603991\pi\)
\(882\) −4.10175e7 −1.77540
\(883\) 2.49004e7 1.07474 0.537371 0.843346i \(-0.319418\pi\)
0.537371 + 0.843346i \(0.319418\pi\)
\(884\) −1.10465e7 −0.475439
\(885\) 1.08479e6 0.0465571
\(886\) −1.00322e7 −0.429351
\(887\) −2.55626e6 −0.109093 −0.0545464 0.998511i \(-0.517371\pi\)
−0.0545464 + 0.998511i \(0.517371\pi\)
\(888\) 1.73919e7 0.740140
\(889\) −4.46079e7 −1.89303
\(890\) −706639. −0.0299035
\(891\) 2.63638e7 1.11254
\(892\) 7.24856e6 0.305028
\(893\) −8.89259e6 −0.373164
\(894\) −3.16083e7 −1.32269
\(895\) 2.66916e6 0.111382
\(896\) −3.65437e6 −0.152070
\(897\) 7.09562e7 2.94449
\(898\) −1.23918e7 −0.512796
\(899\) 4.08701e6 0.168658
\(900\) −1.54549e7 −0.636004
\(901\) 3.02162e7 1.24002
\(902\) −2.02772e7 −0.829835
\(903\) −1.39727e7 −0.570242
\(904\) −6.06189e6 −0.246710
\(905\) 3.02376e6 0.122723
\(906\) 2.33493e6 0.0945047
\(907\) −1.48169e7 −0.598054 −0.299027 0.954245i \(-0.596662\pi\)
−0.299027 + 0.954245i \(0.596662\pi\)
\(908\) −1.75261e6 −0.0705456
\(909\) −1.27777e7 −0.512913
\(910\) −2.54291e6 −0.101795
\(911\) 2.09632e7 0.836876 0.418438 0.908245i \(-0.362578\pi\)
0.418438 + 0.908245i \(0.362578\pi\)
\(912\) 1.33606e7 0.531910
\(913\) 5.62489e6 0.223325
\(914\) 3.05752e7 1.21061
\(915\) −2.82961e6 −0.111731
\(916\) 1.08229e7 0.426192
\(917\) 5.45351e6 0.214167
\(918\) 7.29569e6 0.285733
\(919\) 6.13865e6 0.239764 0.119882 0.992788i \(-0.461748\pi\)
0.119882 + 0.992788i \(0.461748\pi\)
\(920\) −1.48464e6 −0.0578299
\(921\) 2.36023e7 0.916866
\(922\) −9.19225e6 −0.356119
\(923\) −1.76855e7 −0.683302
\(924\) −5.86097e7 −2.25834
\(925\) 3.58171e7 1.37637
\(926\) 8.54334e6 0.327416
\(927\) 1.57241e7 0.600990
\(928\) −4.35494e6 −0.166002
\(929\) 4.90552e7 1.86486 0.932428 0.361355i \(-0.117686\pi\)
0.932428 + 0.361355i \(0.117686\pi\)
\(930\) −423884. −0.0160709
\(931\) 7.30251e7 2.76120
\(932\) 2.47545e7 0.933499
\(933\) 3.73622e7 1.40517
\(934\) 2.03270e6 0.0762441
\(935\) 3.70693e6 0.138671
\(936\) −1.21232e7 −0.452300
\(937\) −2.98959e7 −1.11240 −0.556201 0.831048i \(-0.687742\pi\)
−0.556201 + 0.831048i \(0.687742\pi\)
\(938\) 1.96885e7 0.730642
\(939\) 7.23522e7 2.67786
\(940\) −300626. −0.0110970
\(941\) −2.23165e7 −0.821584 −0.410792 0.911729i \(-0.634748\pi\)
−0.410792 + 0.911729i \(0.634748\pi\)
\(942\) −3.88117e7 −1.42507
\(943\) −3.59916e7 −1.31802
\(944\) 2.51837e6 0.0919793
\(945\) 1.67947e6 0.0611776
\(946\) −7.42456e6 −0.269738
\(947\) −1.32192e6 −0.0478994 −0.0239497 0.999713i \(-0.507624\pi\)
−0.0239497 + 0.999713i \(0.507624\pi\)
\(948\) −7.07268e6 −0.255601
\(949\) −1.22726e7 −0.442355
\(950\) 2.75150e7 0.989147
\(951\) 1.79843e7 0.644824
\(952\) 1.61957e7 0.579170
\(953\) 2.49351e7 0.889364 0.444682 0.895689i \(-0.353317\pi\)
0.444682 + 0.895689i \(0.353317\pi\)
\(954\) 3.31613e7 1.17967
\(955\) 302018. 0.0107158
\(956\) −1.83733e7 −0.650194
\(957\) −6.98456e7 −2.46524
\(958\) −2.86369e6 −0.100812
\(959\) −7.47971e7 −2.62626
\(960\) 451673. 0.0158178
\(961\) 923521. 0.0322581
\(962\) 2.80958e7 0.978821
\(963\) 4.97796e6 0.172976
\(964\) 4.04893e6 0.140329
\(965\) 1.08600e6 0.0375414
\(966\) −1.04031e8 −3.58691
\(967\) −1.56638e7 −0.538681 −0.269341 0.963045i \(-0.586806\pi\)
−0.269341 + 0.963045i \(0.586806\pi\)
\(968\) −2.08358e7 −0.714697
\(969\) −5.92121e7 −2.02582
\(970\) −438366. −0.0149592
\(971\) 2.11281e7 0.719139 0.359570 0.933118i \(-0.382923\pi\)
0.359570 + 0.933118i \(0.382923\pi\)
\(972\) −2.04869e7 −0.695521
\(973\) −7.93439e7 −2.68677
\(974\) 1.62632e7 0.549298
\(975\) −4.44567e7 −1.49770
\(976\) −6.56906e6 −0.220739
\(977\) 3.71989e7 1.24679 0.623396 0.781907i \(-0.285753\pi\)
0.623396 + 0.781907i \(0.285753\pi\)
\(978\) 3.22819e7 1.07922
\(979\) −2.63106e7 −0.877351
\(980\) 2.46871e6 0.0821118
\(981\) −1.04586e7 −0.346978
\(982\) 8.56463e6 0.283420
\(983\) −3.33723e7 −1.10155 −0.550773 0.834655i \(-0.685667\pi\)
−0.550773 + 0.834655i \(0.685667\pi\)
\(984\) 1.09497e7 0.360508
\(985\) −1.96312e6 −0.0644697
\(986\) 1.93005e7 0.632230
\(987\) −2.10653e7 −0.688296
\(988\) 2.15834e7 0.703441
\(989\) −1.31784e7 −0.428423
\(990\) 4.06822e6 0.131922
\(991\) 3.39824e6 0.109918 0.0549592 0.998489i \(-0.482497\pi\)
0.0549592 + 0.998489i \(0.482497\pi\)
\(992\) −984064. −0.0317500
\(993\) −4.62529e7 −1.48856
\(994\) 2.59292e7 0.832384
\(995\) 1.05366e6 0.0337397
\(996\) −3.03745e6 −0.0970200
\(997\) −8.75443e6 −0.278927 −0.139463 0.990227i \(-0.544538\pi\)
−0.139463 + 0.990227i \(0.544538\pi\)
\(998\) 3.34238e7 1.06226
\(999\) −1.85559e7 −0.588258
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 62.6.a.c.1.4 4
3.2 odd 2 558.6.a.k.1.2 4
4.3 odd 2 496.6.a.d.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.6.a.c.1.4 4 1.1 even 1 trivial
496.6.a.d.1.1 4 4.3 odd 2
558.6.a.k.1.2 4 3.2 odd 2