Properties

Label 6084.2.a.x.1.3
Level $6084$
Weight $2$
Character 6084.1
Self dual yes
Analytic conductor $48.581$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6084,2,Mod(1,6084)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6084.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6084, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-8,0,-1,0,0,0,-6,0,0,0,0,0,10,0,4,0,0,0,-3,0,11,0,0, 0,1,0,5,0,0,0,12,0,4,0,0,0,-25,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5809845897\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 676)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 6084.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.19806 q^{5} +4.29590 q^{7} -3.69202 q^{11} +7.85086 q^{17} -4.65279 q^{19} -3.71379 q^{23} -3.56465 q^{25} -4.29590 q^{29} +2.91185 q^{31} -5.14675 q^{35} -8.03684 q^{37} -8.10992 q^{41} +0.884707 q^{43} +4.58211 q^{47} +11.4547 q^{49} -5.43296 q^{53} +4.42327 q^{55} -2.32975 q^{59} -6.25667 q^{61} -3.33513 q^{67} +4.35690 q^{71} +3.82908 q^{73} -15.8605 q^{77} -10.5526 q^{79} -5.24698 q^{83} -9.40581 q^{85} -9.46681 q^{89} +5.57434 q^{95} +3.67994 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{5} - q^{7} - 6 q^{11} + 10 q^{17} + 4 q^{19} - 3 q^{23} + 11 q^{25} + q^{29} + 5 q^{31} + 12 q^{35} + 4 q^{37} - 25 q^{41} + 5 q^{43} + 8 q^{47} + 12 q^{49} + 3 q^{53} + 16 q^{55} - 9 q^{59}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.19806 −0.535790 −0.267895 0.963448i \(-0.586328\pi\)
−0.267895 + 0.963448i \(0.586328\pi\)
\(6\) 0 0
\(7\) 4.29590 1.62370 0.811848 0.583869i \(-0.198462\pi\)
0.811848 + 0.583869i \(0.198462\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.69202 −1.11319 −0.556593 0.830785i \(-0.687892\pi\)
−0.556593 + 0.830785i \(0.687892\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.85086 1.90411 0.952056 0.305924i \(-0.0989653\pi\)
0.952056 + 0.305924i \(0.0989653\pi\)
\(18\) 0 0
\(19\) −4.65279 −1.06742 −0.533712 0.845666i \(-0.679203\pi\)
−0.533712 + 0.845666i \(0.679203\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.71379 −0.774379 −0.387190 0.922000i \(-0.626554\pi\)
−0.387190 + 0.922000i \(0.626554\pi\)
\(24\) 0 0
\(25\) −3.56465 −0.712929
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.29590 −0.797728 −0.398864 0.917010i \(-0.630595\pi\)
−0.398864 + 0.917010i \(0.630595\pi\)
\(30\) 0 0
\(31\) 2.91185 0.522984 0.261492 0.965206i \(-0.415785\pi\)
0.261492 + 0.965206i \(0.415785\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.14675 −0.869960
\(36\) 0 0
\(37\) −8.03684 −1.32125 −0.660624 0.750717i \(-0.729708\pi\)
−0.660624 + 0.750717i \(0.729708\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.10992 −1.26656 −0.633278 0.773924i \(-0.718291\pi\)
−0.633278 + 0.773924i \(0.718291\pi\)
\(42\) 0 0
\(43\) 0.884707 0.134917 0.0674583 0.997722i \(-0.478511\pi\)
0.0674583 + 0.997722i \(0.478511\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.58211 0.668369 0.334184 0.942508i \(-0.391539\pi\)
0.334184 + 0.942508i \(0.391539\pi\)
\(48\) 0 0
\(49\) 11.4547 1.63639
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.43296 −0.746274 −0.373137 0.927776i \(-0.621718\pi\)
−0.373137 + 0.927776i \(0.621718\pi\)
\(54\) 0 0
\(55\) 4.42327 0.596434
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.32975 −0.303307 −0.151654 0.988434i \(-0.548460\pi\)
−0.151654 + 0.988434i \(0.548460\pi\)
\(60\) 0 0
\(61\) −6.25667 −0.801084 −0.400542 0.916278i \(-0.631178\pi\)
−0.400542 + 0.916278i \(0.631178\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.33513 −0.407450 −0.203725 0.979028i \(-0.565305\pi\)
−0.203725 + 0.979028i \(0.565305\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.35690 0.517068 0.258534 0.966002i \(-0.416761\pi\)
0.258534 + 0.966002i \(0.416761\pi\)
\(72\) 0 0
\(73\) 3.82908 0.448160 0.224080 0.974571i \(-0.428062\pi\)
0.224080 + 0.974571i \(0.428062\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.8605 −1.80748
\(78\) 0 0
\(79\) −10.5526 −1.18726 −0.593628 0.804739i \(-0.702305\pi\)
−0.593628 + 0.804739i \(0.702305\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.24698 −0.575931 −0.287965 0.957641i \(-0.592979\pi\)
−0.287965 + 0.957641i \(0.592979\pi\)
\(84\) 0 0
\(85\) −9.40581 −1.02020
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.46681 −1.00348 −0.501740 0.865018i \(-0.667307\pi\)
−0.501740 + 0.865018i \(0.667307\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.57434 0.571915
\(96\) 0 0
\(97\) 3.67994 0.373641 0.186821 0.982394i \(-0.440182\pi\)
0.186821 + 0.982394i \(0.440182\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.1250 1.70400 0.852000 0.523542i \(-0.175390\pi\)
0.852000 + 0.523542i \(0.175390\pi\)
\(102\) 0 0
\(103\) 8.14675 0.802723 0.401362 0.915920i \(-0.368537\pi\)
0.401362 + 0.915920i \(0.368537\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.564647 −0.0545865 −0.0272932 0.999627i \(-0.508689\pi\)
−0.0272932 + 0.999627i \(0.508689\pi\)
\(108\) 0 0
\(109\) 2.04354 0.195736 0.0978678 0.995199i \(-0.468798\pi\)
0.0978678 + 0.995199i \(0.468798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.7845 1.29673 0.648367 0.761328i \(-0.275452\pi\)
0.648367 + 0.761328i \(0.275452\pi\)
\(114\) 0 0
\(115\) 4.44935 0.414904
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 33.7265 3.09170
\(120\) 0 0
\(121\) 2.63102 0.239184
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.2610 0.917770
\(126\) 0 0
\(127\) −6.30798 −0.559743 −0.279871 0.960038i \(-0.590292\pi\)
−0.279871 + 0.960038i \(0.590292\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.2959 −1.24904 −0.624519 0.781009i \(-0.714705\pi\)
−0.624519 + 0.781009i \(0.714705\pi\)
\(132\) 0 0
\(133\) −19.9879 −1.73317
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.2078 −0.957543 −0.478771 0.877940i \(-0.658918\pi\)
−0.478771 + 0.877940i \(0.658918\pi\)
\(138\) 0 0
\(139\) 4.56465 0.387168 0.193584 0.981084i \(-0.437989\pi\)
0.193584 + 0.981084i \(0.437989\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.14675 0.427414
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.6746 −1.77565 −0.887825 0.460182i \(-0.847784\pi\)
−0.887825 + 0.460182i \(0.847784\pi\)
\(150\) 0 0
\(151\) −20.9758 −1.70699 −0.853495 0.521102i \(-0.825521\pi\)
−0.853495 + 0.521102i \(0.825521\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.48858 −0.280210
\(156\) 0 0
\(157\) 3.62565 0.289358 0.144679 0.989479i \(-0.453785\pi\)
0.144679 + 0.989479i \(0.453785\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −15.9541 −1.25736
\(162\) 0 0
\(163\) −21.7724 −1.70535 −0.852673 0.522445i \(-0.825020\pi\)
−0.852673 + 0.522445i \(0.825020\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.81163 −0.217570 −0.108785 0.994065i \(-0.534696\pi\)
−0.108785 + 0.994065i \(0.534696\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.01208 −0.533119 −0.266559 0.963819i \(-0.585887\pi\)
−0.266559 + 0.963819i \(0.585887\pi\)
\(174\) 0 0
\(175\) −15.3134 −1.15758
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.4862 1.15749 0.578746 0.815508i \(-0.303542\pi\)
0.578746 + 0.815508i \(0.303542\pi\)
\(180\) 0 0
\(181\) 5.67456 0.421787 0.210893 0.977509i \(-0.432363\pi\)
0.210893 + 0.977509i \(0.432363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.62863 0.707911
\(186\) 0 0
\(187\) −28.9855 −2.11963
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.5864 1.48958 0.744790 0.667298i \(-0.232549\pi\)
0.744790 + 0.667298i \(0.232549\pi\)
\(192\) 0 0
\(193\) −18.9530 −1.36427 −0.682133 0.731228i \(-0.738948\pi\)
−0.682133 + 0.731228i \(0.738948\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.34050 0.166754 0.0833769 0.996518i \(-0.473429\pi\)
0.0833769 + 0.996518i \(0.473429\pi\)
\(198\) 0 0
\(199\) 5.64071 0.399859 0.199930 0.979810i \(-0.435929\pi\)
0.199930 + 0.979810i \(0.435929\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.4547 −1.29527
\(204\) 0 0
\(205\) 9.71618 0.678608
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.1782 1.18824
\(210\) 0 0
\(211\) 0.582105 0.0400738 0.0200369 0.999799i \(-0.493622\pi\)
0.0200369 + 0.999799i \(0.493622\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.05993 −0.0722869
\(216\) 0 0
\(217\) 12.5090 0.849168
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.2295 1.01984 0.509922 0.860221i \(-0.329674\pi\)
0.509922 + 0.860221i \(0.329674\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.4523 0.892863 0.446432 0.894818i \(-0.352695\pi\)
0.446432 + 0.894818i \(0.352695\pi\)
\(228\) 0 0
\(229\) −7.11529 −0.470192 −0.235096 0.971972i \(-0.575540\pi\)
−0.235096 + 0.971972i \(0.575540\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.36898 −0.482758 −0.241379 0.970431i \(-0.577600\pi\)
−0.241379 + 0.970431i \(0.577600\pi\)
\(234\) 0 0
\(235\) −5.48965 −0.358105
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.34481 −0.539781 −0.269891 0.962891i \(-0.586988\pi\)
−0.269891 + 0.962891i \(0.586988\pi\)
\(240\) 0 0
\(241\) 6.48427 0.417689 0.208844 0.977949i \(-0.433030\pi\)
0.208844 + 0.977949i \(0.433030\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.7235 −0.876761
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.26205 0.458376 0.229188 0.973382i \(-0.426393\pi\)
0.229188 + 0.973382i \(0.426393\pi\)
\(252\) 0 0
\(253\) 13.7114 0.862028
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.6364 0.850615 0.425308 0.905049i \(-0.360166\pi\)
0.425308 + 0.905049i \(0.360166\pi\)
\(258\) 0 0
\(259\) −34.5254 −2.14531
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.3123 −0.697546 −0.348773 0.937207i \(-0.613402\pi\)
−0.348773 + 0.937207i \(0.613402\pi\)
\(264\) 0 0
\(265\) 6.50902 0.399846
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.669186 −0.0408010 −0.0204005 0.999792i \(-0.506494\pi\)
−0.0204005 + 0.999792i \(0.506494\pi\)
\(270\) 0 0
\(271\) −20.4101 −1.23983 −0.619913 0.784670i \(-0.712832\pi\)
−0.619913 + 0.784670i \(0.712832\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.1608 0.793623
\(276\) 0 0
\(277\) −2.48858 −0.149524 −0.0747622 0.997201i \(-0.523820\pi\)
−0.0747622 + 0.997201i \(0.523820\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.6310 −0.992124 −0.496062 0.868287i \(-0.665221\pi\)
−0.496062 + 0.868287i \(0.665221\pi\)
\(282\) 0 0
\(283\) 2.86592 0.170361 0.0851806 0.996366i \(-0.472853\pi\)
0.0851806 + 0.996366i \(0.472853\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −34.8394 −2.05650
\(288\) 0 0
\(289\) 44.6359 2.62564
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −30.7711 −1.79767 −0.898833 0.438292i \(-0.855584\pi\)
−0.898833 + 0.438292i \(0.855584\pi\)
\(294\) 0 0
\(295\) 2.79118 0.162509
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.80061 0.219064
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.49588 0.429213
\(306\) 0 0
\(307\) 20.2392 1.15511 0.577556 0.816351i \(-0.304006\pi\)
0.577556 + 0.816351i \(0.304006\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.8442 −1.06855 −0.534277 0.845310i \(-0.679416\pi\)
−0.534277 + 0.845310i \(0.679416\pi\)
\(312\) 0 0
\(313\) 4.87263 0.275417 0.137709 0.990473i \(-0.456026\pi\)
0.137709 + 0.990473i \(0.456026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.2185 −0.742425 −0.371213 0.928548i \(-0.621058\pi\)
−0.371213 + 0.928548i \(0.621058\pi\)
\(318\) 0 0
\(319\) 15.8605 0.888020
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −36.5284 −2.03249
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19.6843 1.08523
\(330\) 0 0
\(331\) 21.8049 1.19851 0.599253 0.800559i \(-0.295464\pi\)
0.599253 + 0.800559i \(0.295464\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.99569 0.218308
\(336\) 0 0
\(337\) −10.1564 −0.553257 −0.276628 0.960977i \(-0.589217\pi\)
−0.276628 + 0.960977i \(0.589217\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.7506 −0.582179
\(342\) 0 0
\(343\) 19.1371 1.03330
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.8834 −1.49686 −0.748429 0.663215i \(-0.769192\pi\)
−0.748429 + 0.663215i \(0.769192\pi\)
\(348\) 0 0
\(349\) 35.4209 1.89604 0.948018 0.318216i \(-0.103084\pi\)
0.948018 + 0.318216i \(0.103084\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.99031 −0.478506 −0.239253 0.970957i \(-0.576903\pi\)
−0.239253 + 0.970957i \(0.576903\pi\)
\(354\) 0 0
\(355\) −5.21983 −0.277040
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.83446 −0.255153 −0.127577 0.991829i \(-0.540720\pi\)
−0.127577 + 0.991829i \(0.540720\pi\)
\(360\) 0 0
\(361\) 2.64848 0.139394
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.58748 −0.240120
\(366\) 0 0
\(367\) −28.4077 −1.48287 −0.741436 0.671024i \(-0.765855\pi\)
−0.741436 + 0.671024i \(0.765855\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −23.3394 −1.21172
\(372\) 0 0
\(373\) −26.3967 −1.36677 −0.683385 0.730058i \(-0.739493\pi\)
−0.683385 + 0.730058i \(0.739493\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 19.8616 1.02022 0.510111 0.860108i \(-0.329604\pi\)
0.510111 + 0.860108i \(0.329604\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.219833 −0.0112329 −0.00561646 0.999984i \(-0.501788\pi\)
−0.00561646 + 0.999984i \(0.501788\pi\)
\(384\) 0 0
\(385\) 19.0019 0.968427
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.0543 0.509773 0.254886 0.966971i \(-0.417962\pi\)
0.254886 + 0.966971i \(0.417962\pi\)
\(390\) 0 0
\(391\) −29.1564 −1.47450
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.6426 0.636120
\(396\) 0 0
\(397\) 5.76032 0.289102 0.144551 0.989497i \(-0.453826\pi\)
0.144551 + 0.989497i \(0.453826\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.9299 −1.74432 −0.872158 0.489224i \(-0.837280\pi\)
−0.872158 + 0.489224i \(0.837280\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29.6722 1.47079
\(408\) 0 0
\(409\) −11.8442 −0.585656 −0.292828 0.956165i \(-0.594596\pi\)
−0.292828 + 0.956165i \(0.594596\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0084 −0.492479
\(414\) 0 0
\(415\) 6.28621 0.308578
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.7530 −0.525319 −0.262660 0.964889i \(-0.584600\pi\)
−0.262660 + 0.964889i \(0.584600\pi\)
\(420\) 0 0
\(421\) −37.6722 −1.83603 −0.918015 0.396547i \(-0.870209\pi\)
−0.918015 + 0.396547i \(0.870209\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27.9855 −1.35750
\(426\) 0 0
\(427\) −26.8780 −1.30072
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −23.3129 −1.12294 −0.561471 0.827496i \(-0.689764\pi\)
−0.561471 + 0.827496i \(0.689764\pi\)
\(432\) 0 0
\(433\) 23.2368 1.11669 0.558345 0.829609i \(-0.311437\pi\)
0.558345 + 0.829609i \(0.311437\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.2795 0.826591
\(438\) 0 0
\(439\) 18.6189 0.888634 0.444317 0.895870i \(-0.353446\pi\)
0.444317 + 0.895870i \(0.353446\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.0180 −1.28367 −0.641833 0.766844i \(-0.721826\pi\)
−0.641833 + 0.766844i \(0.721826\pi\)
\(444\) 0 0
\(445\) 11.3418 0.537654
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.6708 1.44745 0.723723 0.690090i \(-0.242429\pi\)
0.723723 + 0.690090i \(0.242429\pi\)
\(450\) 0 0
\(451\) 29.9420 1.40991
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.4426 −0.815933 −0.407966 0.912997i \(-0.633762\pi\)
−0.407966 + 0.912997i \(0.633762\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.0368 −1.25923 −0.629615 0.776907i \(-0.716788\pi\)
−0.629615 + 0.776907i \(0.716788\pi\)
\(462\) 0 0
\(463\) −7.90408 −0.367334 −0.183667 0.982989i \(-0.558797\pi\)
−0.183667 + 0.982989i \(0.558797\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.7845 0.684144 0.342072 0.939674i \(-0.388871\pi\)
0.342072 + 0.939674i \(0.388871\pi\)
\(468\) 0 0
\(469\) −14.3274 −0.661576
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.26636 −0.150187
\(474\) 0 0
\(475\) 16.5856 0.760998
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.5224 0.526473 0.263237 0.964731i \(-0.415210\pi\)
0.263237 + 0.964731i \(0.415210\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.40880 −0.200193
\(486\) 0 0
\(487\) −32.7415 −1.48366 −0.741830 0.670588i \(-0.766042\pi\)
−0.741830 + 0.670588i \(0.766042\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.106932 −0.00482579 −0.00241289 0.999997i \(-0.500768\pi\)
−0.00241289 + 0.999997i \(0.500768\pi\)
\(492\) 0 0
\(493\) −33.7265 −1.51896
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.7168 0.839562
\(498\) 0 0
\(499\) 5.58402 0.249975 0.124988 0.992158i \(-0.460111\pi\)
0.124988 + 0.992158i \(0.460111\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.3134 0.593613 0.296807 0.954938i \(-0.404078\pi\)
0.296807 + 0.954938i \(0.404078\pi\)
\(504\) 0 0
\(505\) −20.5168 −0.912985
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.5260 1.04277 0.521386 0.853321i \(-0.325415\pi\)
0.521386 + 0.853321i \(0.325415\pi\)
\(510\) 0 0
\(511\) 16.4494 0.727677
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.76032 −0.430091
\(516\) 0 0
\(517\) −16.9172 −0.744019
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.20046 0.403079 0.201540 0.979480i \(-0.435406\pi\)
0.201540 + 0.979480i \(0.435406\pi\)
\(522\) 0 0
\(523\) −35.5609 −1.55497 −0.777485 0.628901i \(-0.783505\pi\)
−0.777485 + 0.628901i \(0.783505\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.8605 0.995821
\(528\) 0 0
\(529\) −9.20775 −0.400337
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.676482 0.0292469
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −42.2911 −1.82161
\(540\) 0 0
\(541\) 20.1943 0.868223 0.434111 0.900859i \(-0.357062\pi\)
0.434111 + 0.900859i \(0.357062\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.44829 −0.104873
\(546\) 0 0
\(547\) 20.2218 0.864620 0.432310 0.901725i \(-0.357699\pi\)
0.432310 + 0.901725i \(0.357699\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.9879 0.851514
\(552\) 0 0
\(553\) −45.3327 −1.92774
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.57673 −0.236294 −0.118147 0.992996i \(-0.537695\pi\)
−0.118147 + 0.992996i \(0.537695\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.7041 −0.619704 −0.309852 0.950785i \(-0.600280\pi\)
−0.309852 + 0.950785i \(0.600280\pi\)
\(564\) 0 0
\(565\) −16.5147 −0.694777
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.79417 0.0752154 0.0376077 0.999293i \(-0.488026\pi\)
0.0376077 + 0.999293i \(0.488026\pi\)
\(570\) 0 0
\(571\) 38.8025 1.62384 0.811918 0.583772i \(-0.198424\pi\)
0.811918 + 0.583772i \(0.198424\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.2384 0.552078
\(576\) 0 0
\(577\) −19.3230 −0.804429 −0.402214 0.915545i \(-0.631759\pi\)
−0.402214 + 0.915545i \(0.631759\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −22.5405 −0.935137
\(582\) 0 0
\(583\) 20.0586 0.830743
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.2054 −1.08161 −0.540805 0.841148i \(-0.681880\pi\)
−0.540805 + 0.841148i \(0.681880\pi\)
\(588\) 0 0
\(589\) −13.5483 −0.558246
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.5676 0.433961 0.216980 0.976176i \(-0.430379\pi\)
0.216980 + 0.976176i \(0.430379\pi\)
\(594\) 0 0
\(595\) −40.4064 −1.65650
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.50663 0.102418 0.0512091 0.998688i \(-0.483693\pi\)
0.0512091 + 0.998688i \(0.483693\pi\)
\(600\) 0 0
\(601\) −25.3370 −1.03352 −0.516760 0.856130i \(-0.672862\pi\)
−0.516760 + 0.856130i \(0.672862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.15213 −0.128152
\(606\) 0 0
\(607\) −4.62624 −0.187773 −0.0938866 0.995583i \(-0.529929\pi\)
−0.0938866 + 0.995583i \(0.529929\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −20.5429 −0.829719 −0.414859 0.909885i \(-0.636169\pi\)
−0.414859 + 0.909885i \(0.636169\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.9879 0.965717 0.482859 0.875698i \(-0.339599\pi\)
0.482859 + 0.875698i \(0.339599\pi\)
\(618\) 0 0
\(619\) 33.1153 1.33102 0.665508 0.746391i \(-0.268215\pi\)
0.665508 + 0.746391i \(0.268215\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −40.6684 −1.62935
\(624\) 0 0
\(625\) 5.52994 0.221198
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −63.0960 −2.51580
\(630\) 0 0
\(631\) −14.3134 −0.569806 −0.284903 0.958556i \(-0.591961\pi\)
−0.284903 + 0.958556i \(0.591961\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.55735 0.299904
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −42.7372 −1.68802 −0.844009 0.536329i \(-0.819811\pi\)
−0.844009 + 0.536329i \(0.819811\pi\)
\(642\) 0 0
\(643\) 28.9661 1.14231 0.571157 0.820841i \(-0.306495\pi\)
0.571157 + 0.820841i \(0.306495\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 46.6112 1.83247 0.916237 0.400636i \(-0.131211\pi\)
0.916237 + 0.400636i \(0.131211\pi\)
\(648\) 0 0
\(649\) 8.60148 0.337638
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −34.1008 −1.33447 −0.667234 0.744848i \(-0.732522\pi\)
−0.667234 + 0.744848i \(0.732522\pi\)
\(654\) 0 0
\(655\) 17.1274 0.669222
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.5967 1.62038 0.810189 0.586169i \(-0.199365\pi\)
0.810189 + 0.586169i \(0.199365\pi\)
\(660\) 0 0
\(661\) 10.7536 0.418267 0.209134 0.977887i \(-0.432936\pi\)
0.209134 + 0.977887i \(0.432936\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.9468 0.928616
\(666\) 0 0
\(667\) 15.9541 0.617744
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23.0998 0.891756
\(672\) 0 0
\(673\) −3.16613 −0.122045 −0.0610227 0.998136i \(-0.519436\pi\)
−0.0610227 + 0.998136i \(0.519436\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.8323 −0.992817 −0.496409 0.868089i \(-0.665348\pi\)
−0.496409 + 0.868089i \(0.665348\pi\)
\(678\) 0 0
\(679\) 15.8086 0.606680
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.66487 −0.0637046 −0.0318523 0.999493i \(-0.510141\pi\)
−0.0318523 + 0.999493i \(0.510141\pi\)
\(684\) 0 0
\(685\) 13.4276 0.513042
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −25.0006 −0.951067 −0.475534 0.879698i \(-0.657745\pi\)
−0.475534 + 0.879698i \(0.657745\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.46873 −0.207441
\(696\) 0 0
\(697\) −63.6698 −2.41166
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.01208 0.227073 0.113537 0.993534i \(-0.463782\pi\)
0.113537 + 0.993534i \(0.463782\pi\)
\(702\) 0 0
\(703\) 37.3937 1.41033
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 73.5672 2.76678
\(708\) 0 0
\(709\) −16.1317 −0.605838 −0.302919 0.953016i \(-0.597961\pi\)
−0.302919 + 0.953016i \(0.597961\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10.8140 −0.404988
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.5808 0.655652 0.327826 0.944738i \(-0.393684\pi\)
0.327826 + 0.944738i \(0.393684\pi\)
\(720\) 0 0
\(721\) 34.9976 1.30338
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.3134 0.568724
\(726\) 0 0
\(727\) 4.18731 0.155299 0.0776493 0.996981i \(-0.475259\pi\)
0.0776493 + 0.996981i \(0.475259\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.94571 0.256896
\(732\) 0 0
\(733\) 24.7821 0.915347 0.457674 0.889120i \(-0.348683\pi\)
0.457674 + 0.889120i \(0.348683\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.3134 0.453568
\(738\) 0 0
\(739\) 22.8358 0.840028 0.420014 0.907518i \(-0.362025\pi\)
0.420014 + 0.907518i \(0.362025\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 35.2924 1.29475 0.647377 0.762170i \(-0.275866\pi\)
0.647377 + 0.762170i \(0.275866\pi\)
\(744\) 0 0
\(745\) 25.9675 0.951375
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.42566 −0.0886319
\(750\) 0 0
\(751\) 51.4965 1.87913 0.939566 0.342367i \(-0.111228\pi\)
0.939566 + 0.342367i \(0.111228\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.1304 0.914587
\(756\) 0 0
\(757\) 16.8538 0.612563 0.306282 0.951941i \(-0.400915\pi\)
0.306282 + 0.951941i \(0.400915\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.91962 −0.287086 −0.143543 0.989644i \(-0.545850\pi\)
−0.143543 + 0.989644i \(0.545850\pi\)
\(762\) 0 0
\(763\) 8.77884 0.317815
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 16.0043 0.577130 0.288565 0.957460i \(-0.406822\pi\)
0.288565 + 0.957460i \(0.406822\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.5080 1.38504 0.692518 0.721401i \(-0.256502\pi\)
0.692518 + 0.721401i \(0.256502\pi\)
\(774\) 0 0
\(775\) −10.3797 −0.372851
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 37.7338 1.35195
\(780\) 0 0
\(781\) −16.0858 −0.575594
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.34375 −0.155035
\(786\) 0 0
\(787\) 16.5840 0.591157 0.295578 0.955319i \(-0.404488\pi\)
0.295578 + 0.955319i \(0.404488\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 59.2167 2.10550
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −37.8864 −1.34200 −0.671002 0.741456i \(-0.734136\pi\)
−0.671002 + 0.741456i \(0.734136\pi\)
\(798\) 0 0
\(799\) 35.9734 1.27265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.1371 −0.498886
\(804\) 0 0
\(805\) 19.1140 0.673679
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.1366 1.69239 0.846196 0.532871i \(-0.178887\pi\)
0.846196 + 0.532871i \(0.178887\pi\)
\(810\) 0 0
\(811\) 38.7743 1.36155 0.680775 0.732492i \(-0.261643\pi\)
0.680775 + 0.732492i \(0.261643\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 26.0847 0.913707
\(816\) 0 0
\(817\) −4.11636 −0.144013
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.5730 −0.892504 −0.446252 0.894907i \(-0.647242\pi\)
−0.446252 + 0.894907i \(0.647242\pi\)
\(822\) 0 0
\(823\) −35.9965 −1.25476 −0.627380 0.778713i \(-0.715873\pi\)
−0.627380 + 0.778713i \(0.715873\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −46.2495 −1.60825 −0.804126 0.594459i \(-0.797366\pi\)
−0.804126 + 0.594459i \(0.797366\pi\)
\(828\) 0 0
\(829\) 39.1963 1.36134 0.680671 0.732589i \(-0.261688\pi\)
0.680671 + 0.732589i \(0.261688\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 89.9294 3.11587
\(834\) 0 0
\(835\) 3.36850 0.116572
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.2271 1.00903 0.504516 0.863402i \(-0.331671\pi\)
0.504516 + 0.863402i \(0.331671\pi\)
\(840\) 0 0
\(841\) −10.5453 −0.363630
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.3026 0.388362
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 29.8471 1.02315
\(852\) 0 0
\(853\) 14.9638 0.512349 0.256175 0.966631i \(-0.417538\pi\)
0.256175 + 0.966631i \(0.417538\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10.0537 −0.343428 −0.171714 0.985147i \(-0.554930\pi\)
−0.171714 + 0.985147i \(0.554930\pi\)
\(858\) 0 0
\(859\) 4.52409 0.154360 0.0771800 0.997017i \(-0.475408\pi\)
0.0771800 + 0.997017i \(0.475408\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.6582 1.31594 0.657970 0.753044i \(-0.271415\pi\)
0.657970 + 0.753044i \(0.271415\pi\)
\(864\) 0 0
\(865\) 8.40091 0.285640
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 38.9603 1.32164
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 44.0801 1.49018
\(876\) 0 0
\(877\) −44.8200 −1.51346 −0.756732 0.653726i \(-0.773205\pi\)
−0.756732 + 0.653726i \(0.773205\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −35.1890 −1.18555 −0.592773 0.805369i \(-0.701967\pi\)
−0.592773 + 0.805369i \(0.701967\pi\)
\(882\) 0 0
\(883\) −34.6262 −1.16527 −0.582633 0.812736i \(-0.697977\pi\)
−0.582633 + 0.812736i \(0.697977\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.10560 −0.0706993 −0.0353496 0.999375i \(-0.511254\pi\)
−0.0353496 + 0.999375i \(0.511254\pi\)
\(888\) 0 0
\(889\) −27.0984 −0.908852
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21.3196 −0.713433
\(894\) 0 0
\(895\) −18.5534 −0.620172
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.5090 −0.417199
\(900\) 0 0
\(901\) −42.6534 −1.42099
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.79848 −0.225989
\(906\) 0 0
\(907\) −16.4373 −0.545791 −0.272895 0.962044i \(-0.587981\pi\)
−0.272895 + 0.962044i \(0.587981\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5623 0.416206 0.208103 0.978107i \(-0.433271\pi\)
0.208103 + 0.978107i \(0.433271\pi\)
\(912\) 0 0
\(913\) 19.3720 0.641118
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −61.4137 −2.02806
\(918\) 0 0
\(919\) −36.2881 −1.19703 −0.598517 0.801110i \(-0.704243\pi\)
−0.598517 + 0.801110i \(0.704243\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 28.6485 0.941956
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.5719 −0.707752 −0.353876 0.935292i \(-0.615137\pi\)
−0.353876 + 0.935292i \(0.615137\pi\)
\(930\) 0 0
\(931\) −53.2965 −1.74672
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 34.7265 1.13568
\(936\) 0 0
\(937\) 5.95599 0.194574 0.0972868 0.995256i \(-0.468984\pi\)
0.0972868 + 0.995256i \(0.468984\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.8431 −1.52704 −0.763520 0.645784i \(-0.776531\pi\)
−0.763520 + 0.645784i \(0.776531\pi\)
\(942\) 0 0
\(943\) 30.1185 0.980795
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.1823 1.40323 0.701617 0.712554i \(-0.252462\pi\)
0.701617 + 0.712554i \(0.252462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.8407 −1.16099 −0.580497 0.814262i \(-0.697142\pi\)
−0.580497 + 0.814262i \(0.697142\pi\)
\(954\) 0 0
\(955\) −24.6638 −0.798102
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −48.1473 −1.55476
\(960\) 0 0
\(961\) −22.5211 −0.726487
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.7069 0.730960
\(966\) 0 0
\(967\) −13.9815 −0.449614 −0.224807 0.974403i \(-0.572175\pi\)
−0.224807 + 0.974403i \(0.572175\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.6098 1.30323 0.651616 0.758549i \(-0.274091\pi\)
0.651616 + 0.758549i \(0.274091\pi\)
\(972\) 0 0
\(973\) 19.6093 0.628644
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.9597 −0.478603 −0.239302 0.970945i \(-0.576919\pi\)
−0.239302 + 0.970945i \(0.576919\pi\)
\(978\) 0 0
\(979\) 34.9517 1.11706
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.4722 0.812437 0.406218 0.913776i \(-0.366847\pi\)
0.406218 + 0.913776i \(0.366847\pi\)
\(984\) 0 0
\(985\) −2.80407 −0.0893450
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.28562 −0.104477
\(990\) 0 0
\(991\) 21.1803 0.672816 0.336408 0.941716i \(-0.390788\pi\)
0.336408 + 0.941716i \(0.390788\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.75792 −0.214241
\(996\) 0 0
\(997\) 52.5954 1.66571 0.832856 0.553490i \(-0.186704\pi\)
0.832856 + 0.553490i \(0.186704\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6084.2.a.x.1.3 3
3.2 odd 2 676.2.a.h.1.3 yes 3
12.11 even 2 2704.2.a.y.1.1 3
13.5 odd 4 6084.2.b.p.4393.4 6
13.8 odd 4 6084.2.b.p.4393.3 6
13.12 even 2 6084.2.a.bc.1.1 3
39.2 even 12 676.2.h.e.485.1 12
39.5 even 4 676.2.d.e.337.5 6
39.8 even 4 676.2.d.e.337.6 6
39.11 even 12 676.2.h.e.485.2 12
39.17 odd 6 676.2.e.f.653.1 6
39.20 even 12 676.2.h.e.361.2 12
39.23 odd 6 676.2.e.f.529.1 6
39.29 odd 6 676.2.e.g.529.1 6
39.32 even 12 676.2.h.e.361.1 12
39.35 odd 6 676.2.e.g.653.1 6
39.38 odd 2 676.2.a.g.1.3 3
156.47 odd 4 2704.2.f.n.337.2 6
156.83 odd 4 2704.2.f.n.337.1 6
156.155 even 2 2704.2.a.x.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.2.a.g.1.3 3 39.38 odd 2
676.2.a.h.1.3 yes 3 3.2 odd 2
676.2.d.e.337.5 6 39.5 even 4
676.2.d.e.337.6 6 39.8 even 4
676.2.e.f.529.1 6 39.23 odd 6
676.2.e.f.653.1 6 39.17 odd 6
676.2.e.g.529.1 6 39.29 odd 6
676.2.e.g.653.1 6 39.35 odd 6
676.2.h.e.361.1 12 39.32 even 12
676.2.h.e.361.2 12 39.20 even 12
676.2.h.e.485.1 12 39.2 even 12
676.2.h.e.485.2 12 39.11 even 12
2704.2.a.x.1.1 3 156.155 even 2
2704.2.a.y.1.1 3 12.11 even 2
2704.2.f.n.337.1 6 156.83 odd 4
2704.2.f.n.337.2 6 156.47 odd 4
6084.2.a.x.1.3 3 1.1 even 1 trivial
6084.2.a.bc.1.1 3 13.12 even 2
6084.2.b.p.4393.3 6 13.8 odd 4
6084.2.b.p.4393.4 6 13.5 odd 4