Defining parameters
Level: | \( N \) | \(=\) | \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6084.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(2184\) | ||
Trace bound: | \(43\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6084))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 64 | 1112 |
Cusp forms | 1009 | 64 | 945 |
Eisenstein series | 167 | 0 | 167 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(147\) | \(0\) | \(147\) | \(120\) | \(0\) | \(120\) | \(27\) | \(0\) | \(27\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(153\) | \(0\) | \(153\) | \(125\) | \(0\) | \(125\) | \(28\) | \(0\) | \(28\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(154\) | \(0\) | \(154\) | \(126\) | \(0\) | \(126\) | \(28\) | \(0\) | \(28\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(148\) | \(0\) | \(148\) | \(120\) | \(0\) | \(120\) | \(28\) | \(0\) | \(28\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(147\) | \(15\) | \(132\) | \(133\) | \(15\) | \(118\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(141\) | \(10\) | \(131\) | \(127\) | \(10\) | \(117\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(140\) | \(18\) | \(122\) | \(126\) | \(18\) | \(108\) | \(14\) | \(0\) | \(14\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(146\) | \(21\) | \(125\) | \(132\) | \(21\) | \(111\) | \(14\) | \(0\) | \(14\) | |||
Plus space | \(+\) | \(576\) | \(28\) | \(548\) | \(493\) | \(28\) | \(465\) | \(83\) | \(0\) | \(83\) | |||||
Minus space | \(-\) | \(600\) | \(36\) | \(564\) | \(516\) | \(36\) | \(480\) | \(84\) | \(0\) | \(84\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6084))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6084))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6084)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(676))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1014))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1521))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2028))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3042))\)\(^{\oplus 2}\)