Properties

Label 6080.2.a.bg
Level 60806080
Weight 22
Character orbit 6080.a
Self dual yes
Analytic conductor 48.54948.549
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6080,2,Mod(1,6080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6080.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 6080=26519 6080 = 2^{6} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,0,0,-2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.549044428948.5490444289
Analytic rank: 11
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{2})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 760)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq3+q52βq7q9+(2β+2)q11+(β2)q13+βq15+(2β+2)q17q194q214q23+q254βq27+(2β2)q29++(2β2)q99+O(q100) q + \beta q^{3} + q^{5} - 2 \beta q^{7} - q^{9} + (2 \beta + 2) q^{11} + (\beta - 2) q^{13} + \beta q^{15} + ( - 2 \beta + 2) q^{17} - q^{19} - 4 q^{21} - 4 q^{23} + q^{25} - 4 \beta q^{27} + ( - 2 \beta - 2) q^{29} + \cdots + ( - 2 \beta - 2) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q52q9+4q114q13+4q172q198q218q23+2q254q29+8q3312q37+4q39+4q412q45+2q498q5112q53+4q99+O(q100) 2 q + 2 q^{5} - 2 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{17} - 2 q^{19} - 8 q^{21} - 8 q^{23} + 2 q^{25} - 4 q^{29} + 8 q^{33} - 12 q^{37} + 4 q^{39} + 4 q^{41} - 2 q^{45} + 2 q^{49} - 8 q^{51} - 12 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.41421
1.41421
0 −1.41421 0 1.00000 0 2.82843 0 −1.00000 0
1.2 0 1.41421 0 1.00000 0 −2.82843 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6080.2.a.bg 2
4.b odd 2 1 6080.2.a.bf 2
8.b even 2 1 1520.2.a.m 2
8.d odd 2 1 760.2.a.f 2
24.f even 2 1 6840.2.a.z 2
40.e odd 2 1 3800.2.a.n 2
40.f even 2 1 7600.2.a.ba 2
40.k even 4 2 3800.2.d.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.a.f 2 8.d odd 2 1
1520.2.a.m 2 8.b even 2 1
3800.2.a.n 2 40.e odd 2 1
3800.2.d.i 4 40.k even 4 2
6080.2.a.bf 2 4.b odd 2 1
6080.2.a.bg 2 1.a even 1 1 trivial
6840.2.a.z 2 24.f even 2 1
7600.2.a.ba 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6080))S_{2}^{\mathrm{new}}(\Gamma_0(6080)):

T322 T_{3}^{2} - 2 Copy content Toggle raw display
T728 T_{7}^{2} - 8 Copy content Toggle raw display
T1124T114 T_{11}^{2} - 4T_{11} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T22 T^{2} - 2 Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T28 T^{2} - 8 Copy content Toggle raw display
1111 T24T4 T^{2} - 4T - 4 Copy content Toggle raw display
1313 T2+4T+2 T^{2} + 4T + 2 Copy content Toggle raw display
1717 T24T4 T^{2} - 4T - 4 Copy content Toggle raw display
1919 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
2323 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2929 T2+4T4 T^{2} + 4T - 4 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+12T+18 T^{2} + 12T + 18 Copy content Toggle raw display
4141 T24T4 T^{2} - 4T - 4 Copy content Toggle raw display
4343 T28 T^{2} - 8 Copy content Toggle raw display
4747 T272 T^{2} - 72 Copy content Toggle raw display
5353 T2+12T14 T^{2} + 12T - 14 Copy content Toggle raw display
5959 T28 T^{2} - 8 Copy content Toggle raw display
6161 T2+8T16 T^{2} + 8T - 16 Copy content Toggle raw display
6767 T2+16T+62 T^{2} + 16T + 62 Copy content Toggle raw display
7171 T2+8T112 T^{2} + 8T - 112 Copy content Toggle raw display
7373 T2+4T196 T^{2} + 4T - 196 Copy content Toggle raw display
7979 T224T+136 T^{2} - 24T + 136 Copy content Toggle raw display
8383 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8989 T2+12T+28 T^{2} + 12T + 28 Copy content Toggle raw display
9797 T24T14 T^{2} - 4T - 14 Copy content Toggle raw display
show more
show less