gp: [N,k,chi] = [6080,2,Mod(1,6080)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6080.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [2,0,0,0,2,0,0,0,-2,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 2 \beta = \sqrt{2} β = 2 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
19 19 1 9
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 6080 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(6080)) S 2 n e w ( Γ 0 ( 6 0 8 0 ) ) :
T 3 2 − 2 T_{3}^{2} - 2 T 3 2 − 2
T3^2 - 2
T 7 2 − 8 T_{7}^{2} - 8 T 7 2 − 8
T7^2 - 8
T 11 2 − 4 T 11 − 4 T_{11}^{2} - 4T_{11} - 4 T 1 1 2 − 4 T 1 1 − 4
T11^2 - 4*T11 - 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 2 T^{2} - 2 T 2 − 2
T^2 - 2
5 5 5
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
7 7 7
T 2 − 8 T^{2} - 8 T 2 − 8
T^2 - 8
11 11 1 1
T 2 − 4 T − 4 T^{2} - 4T - 4 T 2 − 4 T − 4
T^2 - 4*T - 4
13 13 1 3
T 2 + 4 T + 2 T^{2} + 4T + 2 T 2 + 4 T + 2
T^2 + 4*T + 2
17 17 1 7
T 2 − 4 T − 4 T^{2} - 4T - 4 T 2 − 4 T − 4
T^2 - 4*T - 4
19 19 1 9
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
23 23 2 3
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
29 29 2 9
T 2 + 4 T − 4 T^{2} + 4T - 4 T 2 + 4 T − 4
T^2 + 4*T - 4
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 + 12 T + 18 T^{2} + 12T + 18 T 2 + 1 2 T + 1 8
T^2 + 12*T + 18
41 41 4 1
T 2 − 4 T − 4 T^{2} - 4T - 4 T 2 − 4 T − 4
T^2 - 4*T - 4
43 43 4 3
T 2 − 8 T^{2} - 8 T 2 − 8
T^2 - 8
47 47 4 7
T 2 − 72 T^{2} - 72 T 2 − 7 2
T^2 - 72
53 53 5 3
T 2 + 12 T − 14 T^{2} + 12T - 14 T 2 + 1 2 T − 1 4
T^2 + 12*T - 14
59 59 5 9
T 2 − 8 T^{2} - 8 T 2 − 8
T^2 - 8
61 61 6 1
T 2 + 8 T − 16 T^{2} + 8T - 16 T 2 + 8 T − 1 6
T^2 + 8*T - 16
67 67 6 7
T 2 + 16 T + 62 T^{2} + 16T + 62 T 2 + 1 6 T + 6 2
T^2 + 16*T + 62
71 71 7 1
T 2 + 8 T − 112 T^{2} + 8T - 112 T 2 + 8 T − 1 1 2
T^2 + 8*T - 112
73 73 7 3
T 2 + 4 T − 196 T^{2} + 4T - 196 T 2 + 4 T − 1 9 6
T^2 + 4*T - 196
79 79 7 9
T 2 − 24 T + 136 T^{2} - 24T + 136 T 2 − 2 4 T + 1 3 6
T^2 - 24*T + 136
83 83 8 3
( T − 8 ) 2 (T - 8)^{2} ( T − 8 ) 2
(T - 8)^2
89 89 8 9
T 2 + 12 T + 28 T^{2} + 12T + 28 T 2 + 1 2 T + 2 8
T^2 + 12*T + 28
97 97 9 7
T 2 − 4 T − 14 T^{2} - 4T - 14 T 2 − 4 T − 1 4
T^2 - 4*T - 14
show more
show less