Properties

Label 6080.2.a.bg.1.1
Level $6080$
Weight $2$
Character 6080.1
Self dual yes
Analytic conductor $48.549$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6080,2,Mod(1,6080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6080 = 2^{6} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5490444289\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 6080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} +1.00000 q^{5} +2.82843 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.41421 q^{3} +1.00000 q^{5} +2.82843 q^{7} -1.00000 q^{9} -0.828427 q^{11} -3.41421 q^{13} -1.41421 q^{15} +4.82843 q^{17} -1.00000 q^{19} -4.00000 q^{21} -4.00000 q^{23} +1.00000 q^{25} +5.65685 q^{27} +0.828427 q^{29} +1.17157 q^{33} +2.82843 q^{35} -10.2426 q^{37} +4.82843 q^{39} -0.828427 q^{41} +2.82843 q^{43} -1.00000 q^{45} +8.48528 q^{47} +1.00000 q^{49} -6.82843 q^{51} -13.0711 q^{53} -0.828427 q^{55} +1.41421 q^{57} +2.82843 q^{59} +1.65685 q^{61} -2.82843 q^{63} -3.41421 q^{65} -9.41421 q^{67} +5.65685 q^{69} -15.3137 q^{71} +12.1421 q^{73} -1.41421 q^{75} -2.34315 q^{77} +9.17157 q^{79} -5.00000 q^{81} +8.00000 q^{83} +4.82843 q^{85} -1.17157 q^{87} -3.17157 q^{89} -9.65685 q^{91} -1.00000 q^{95} -2.24264 q^{97} +0.828427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 2 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{17} - 2 q^{19} - 8 q^{21} - 8 q^{23} + 2 q^{25} - 4 q^{29} + 8 q^{33} - 12 q^{37} + 4 q^{39} + 4 q^{41} - 2 q^{45} + 2 q^{49} - 8 q^{51} - 12 q^{53} + 4 q^{55} - 8 q^{61} - 4 q^{65} - 16 q^{67} - 8 q^{71} - 4 q^{73} - 16 q^{77} + 24 q^{79} - 10 q^{81} + 16 q^{83} + 4 q^{85} - 8 q^{87} - 12 q^{89} - 8 q^{91} - 2 q^{95} + 4 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.828427 −0.249780 −0.124890 0.992171i \(-0.539858\pi\)
−0.124890 + 0.992171i \(0.539858\pi\)
\(12\) 0 0
\(13\) −3.41421 −0.946932 −0.473466 0.880812i \(-0.656997\pi\)
−0.473466 + 0.880812i \(0.656997\pi\)
\(14\) 0 0
\(15\) −1.41421 −0.365148
\(16\) 0 0
\(17\) 4.82843 1.17107 0.585533 0.810649i \(-0.300885\pi\)
0.585533 + 0.810649i \(0.300885\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.17157 0.203945
\(34\) 0 0
\(35\) 2.82843 0.478091
\(36\) 0 0
\(37\) −10.2426 −1.68388 −0.841940 0.539571i \(-0.818586\pi\)
−0.841940 + 0.539571i \(0.818586\pi\)
\(38\) 0 0
\(39\) 4.82843 0.773167
\(40\) 0 0
\(41\) −0.828427 −0.129379 −0.0646893 0.997905i \(-0.520606\pi\)
−0.0646893 + 0.997905i \(0.520606\pi\)
\(42\) 0 0
\(43\) 2.82843 0.431331 0.215666 0.976467i \(-0.430808\pi\)
0.215666 + 0.976467i \(0.430808\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −6.82843 −0.956171
\(52\) 0 0
\(53\) −13.0711 −1.79545 −0.897725 0.440557i \(-0.854781\pi\)
−0.897725 + 0.440557i \(0.854781\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) 0 0
\(57\) 1.41421 0.187317
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) 1.65685 0.212138 0.106069 0.994359i \(-0.466173\pi\)
0.106069 + 0.994359i \(0.466173\pi\)
\(62\) 0 0
\(63\) −2.82843 −0.356348
\(64\) 0 0
\(65\) −3.41421 −0.423481
\(66\) 0 0
\(67\) −9.41421 −1.15013 −0.575065 0.818108i \(-0.695023\pi\)
−0.575065 + 0.818108i \(0.695023\pi\)
\(68\) 0 0
\(69\) 5.65685 0.681005
\(70\) 0 0
\(71\) −15.3137 −1.81740 −0.908701 0.417447i \(-0.862925\pi\)
−0.908701 + 0.417447i \(0.862925\pi\)
\(72\) 0 0
\(73\) 12.1421 1.42113 0.710565 0.703632i \(-0.248440\pi\)
0.710565 + 0.703632i \(0.248440\pi\)
\(74\) 0 0
\(75\) −1.41421 −0.163299
\(76\) 0 0
\(77\) −2.34315 −0.267026
\(78\) 0 0
\(79\) 9.17157 1.03188 0.515941 0.856624i \(-0.327442\pi\)
0.515941 + 0.856624i \(0.327442\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 4.82843 0.523716
\(86\) 0 0
\(87\) −1.17157 −0.125606
\(88\) 0 0
\(89\) −3.17157 −0.336186 −0.168093 0.985771i \(-0.553761\pi\)
−0.168093 + 0.985771i \(0.553761\pi\)
\(90\) 0 0
\(91\) −9.65685 −1.01231
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −2.24264 −0.227706 −0.113853 0.993498i \(-0.536319\pi\)
−0.113853 + 0.993498i \(0.536319\pi\)
\(98\) 0 0
\(99\) 0.828427 0.0832601
\(100\) 0 0
\(101\) −17.6569 −1.75692 −0.878461 0.477813i \(-0.841429\pi\)
−0.878461 + 0.477813i \(0.841429\pi\)
\(102\) 0 0
\(103\) −8.24264 −0.812172 −0.406086 0.913835i \(-0.633107\pi\)
−0.406086 + 0.913835i \(0.633107\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 1.41421 0.136717 0.0683586 0.997661i \(-0.478224\pi\)
0.0683586 + 0.997661i \(0.478224\pi\)
\(108\) 0 0
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 0 0
\(111\) 14.4853 1.37488
\(112\) 0 0
\(113\) −14.7279 −1.38549 −0.692743 0.721184i \(-0.743598\pi\)
−0.692743 + 0.721184i \(0.743598\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 3.41421 0.315644
\(118\) 0 0
\(119\) 13.6569 1.25192
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) 1.17157 0.105637
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 13.4142 1.19032 0.595159 0.803608i \(-0.297089\pi\)
0.595159 + 0.803608i \(0.297089\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 7.31371 0.639002 0.319501 0.947586i \(-0.396485\pi\)
0.319501 + 0.947586i \(0.396485\pi\)
\(132\) 0 0
\(133\) −2.82843 −0.245256
\(134\) 0 0
\(135\) 5.65685 0.486864
\(136\) 0 0
\(137\) −7.17157 −0.612709 −0.306354 0.951918i \(-0.599109\pi\)
−0.306354 + 0.951918i \(0.599109\pi\)
\(138\) 0 0
\(139\) −3.17157 −0.269009 −0.134505 0.990913i \(-0.542944\pi\)
−0.134505 + 0.990913i \(0.542944\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) 2.82843 0.236525
\(144\) 0 0
\(145\) 0.828427 0.0687971
\(146\) 0 0
\(147\) −1.41421 −0.116642
\(148\) 0 0
\(149\) −1.65685 −0.135735 −0.0678674 0.997694i \(-0.521619\pi\)
−0.0678674 + 0.997694i \(0.521619\pi\)
\(150\) 0 0
\(151\) −6.14214 −0.499840 −0.249920 0.968267i \(-0.580404\pi\)
−0.249920 + 0.968267i \(0.580404\pi\)
\(152\) 0 0
\(153\) −4.82843 −0.390355
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.4853 0.836817 0.418408 0.908259i \(-0.362588\pi\)
0.418408 + 0.908259i \(0.362588\pi\)
\(158\) 0 0
\(159\) 18.4853 1.46598
\(160\) 0 0
\(161\) −11.3137 −0.891645
\(162\) 0 0
\(163\) 14.8284 1.16145 0.580726 0.814099i \(-0.302769\pi\)
0.580726 + 0.814099i \(0.302769\pi\)
\(164\) 0 0
\(165\) 1.17157 0.0912068
\(166\) 0 0
\(167\) −2.10051 −0.162542 −0.0812710 0.996692i \(-0.525898\pi\)
−0.0812710 + 0.996692i \(0.525898\pi\)
\(168\) 0 0
\(169\) −1.34315 −0.103319
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) 10.7279 0.815629 0.407814 0.913065i \(-0.366291\pi\)
0.407814 + 0.913065i \(0.366291\pi\)
\(174\) 0 0
\(175\) 2.82843 0.213809
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) 5.31371 0.394965 0.197482 0.980306i \(-0.436723\pi\)
0.197482 + 0.980306i \(0.436723\pi\)
\(182\) 0 0
\(183\) −2.34315 −0.173210
\(184\) 0 0
\(185\) −10.2426 −0.753054
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 16.0000 1.16383
\(190\) 0 0
\(191\) −3.31371 −0.239772 −0.119886 0.992788i \(-0.538253\pi\)
−0.119886 + 0.992788i \(0.538253\pi\)
\(192\) 0 0
\(193\) −6.92893 −0.498755 −0.249378 0.968406i \(-0.580226\pi\)
−0.249378 + 0.968406i \(0.580226\pi\)
\(194\) 0 0
\(195\) 4.82843 0.345771
\(196\) 0 0
\(197\) −25.3137 −1.80353 −0.901764 0.432230i \(-0.857727\pi\)
−0.901764 + 0.432230i \(0.857727\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) 13.3137 0.939077
\(202\) 0 0
\(203\) 2.34315 0.164457
\(204\) 0 0
\(205\) −0.828427 −0.0578599
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0.828427 0.0573035
\(210\) 0 0
\(211\) −16.4853 −1.13489 −0.567447 0.823410i \(-0.692069\pi\)
−0.567447 + 0.823410i \(0.692069\pi\)
\(212\) 0 0
\(213\) 21.6569 1.48390
\(214\) 0 0
\(215\) 2.82843 0.192897
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −17.1716 −1.16035
\(220\) 0 0
\(221\) −16.4853 −1.10892
\(222\) 0 0
\(223\) −13.4142 −0.898282 −0.449141 0.893461i \(-0.648270\pi\)
−0.449141 + 0.893461i \(0.648270\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 24.0416 1.59570 0.797850 0.602857i \(-0.205971\pi\)
0.797850 + 0.602857i \(0.205971\pi\)
\(228\) 0 0
\(229\) −11.3137 −0.747631 −0.373815 0.927503i \(-0.621951\pi\)
−0.373815 + 0.927503i \(0.621951\pi\)
\(230\) 0 0
\(231\) 3.31371 0.218026
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 8.48528 0.553519
\(236\) 0 0
\(237\) −12.9706 −0.842529
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 8.14214 0.524481 0.262241 0.965003i \(-0.415539\pi\)
0.262241 + 0.965003i \(0.415539\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) 3.41421 0.217241
\(248\) 0 0
\(249\) −11.3137 −0.716977
\(250\) 0 0
\(251\) 28.9706 1.82861 0.914303 0.405031i \(-0.132739\pi\)
0.914303 + 0.405031i \(0.132739\pi\)
\(252\) 0 0
\(253\) 3.31371 0.208331
\(254\) 0 0
\(255\) −6.82843 −0.427613
\(256\) 0 0
\(257\) −4.10051 −0.255782 −0.127891 0.991788i \(-0.540821\pi\)
−0.127891 + 0.991788i \(0.540821\pi\)
\(258\) 0 0
\(259\) −28.9706 −1.80014
\(260\) 0 0
\(261\) −0.828427 −0.0512784
\(262\) 0 0
\(263\) −27.3137 −1.68424 −0.842118 0.539294i \(-0.818691\pi\)
−0.842118 + 0.539294i \(0.818691\pi\)
\(264\) 0 0
\(265\) −13.0711 −0.802949
\(266\) 0 0
\(267\) 4.48528 0.274495
\(268\) 0 0
\(269\) 29.3137 1.78729 0.893644 0.448776i \(-0.148140\pi\)
0.893644 + 0.448776i \(0.148140\pi\)
\(270\) 0 0
\(271\) 9.51472 0.577978 0.288989 0.957332i \(-0.406681\pi\)
0.288989 + 0.957332i \(0.406681\pi\)
\(272\) 0 0
\(273\) 13.6569 0.826550
\(274\) 0 0
\(275\) −0.828427 −0.0499560
\(276\) 0 0
\(277\) −19.1716 −1.15191 −0.575954 0.817482i \(-0.695369\pi\)
−0.575954 + 0.817482i \(0.695369\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1716 0.666440 0.333220 0.942849i \(-0.391865\pi\)
0.333220 + 0.942849i \(0.391865\pi\)
\(282\) 0 0
\(283\) 6.34315 0.377061 0.188530 0.982067i \(-0.439628\pi\)
0.188530 + 0.982067i \(0.439628\pi\)
\(284\) 0 0
\(285\) 1.41421 0.0837708
\(286\) 0 0
\(287\) −2.34315 −0.138312
\(288\) 0 0
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) 3.17157 0.185921
\(292\) 0 0
\(293\) −32.3848 −1.89194 −0.945969 0.324256i \(-0.894886\pi\)
−0.945969 + 0.324256i \(0.894886\pi\)
\(294\) 0 0
\(295\) 2.82843 0.164677
\(296\) 0 0
\(297\) −4.68629 −0.271926
\(298\) 0 0
\(299\) 13.6569 0.789796
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 24.9706 1.43452
\(304\) 0 0
\(305\) 1.65685 0.0948712
\(306\) 0 0
\(307\) 1.41421 0.0807134 0.0403567 0.999185i \(-0.487151\pi\)
0.0403567 + 0.999185i \(0.487151\pi\)
\(308\) 0 0
\(309\) 11.6569 0.663135
\(310\) 0 0
\(311\) −19.1716 −1.08712 −0.543560 0.839370i \(-0.682924\pi\)
−0.543560 + 0.839370i \(0.682924\pi\)
\(312\) 0 0
\(313\) −5.31371 −0.300349 −0.150174 0.988660i \(-0.547983\pi\)
−0.150174 + 0.988660i \(0.547983\pi\)
\(314\) 0 0
\(315\) −2.82843 −0.159364
\(316\) 0 0
\(317\) −0.100505 −0.00564493 −0.00282246 0.999996i \(-0.500898\pi\)
−0.00282246 + 0.999996i \(0.500898\pi\)
\(318\) 0 0
\(319\) −0.686292 −0.0384249
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) −4.82843 −0.268661
\(324\) 0 0
\(325\) −3.41421 −0.189386
\(326\) 0 0
\(327\) 5.17157 0.285989
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −17.4558 −0.959460 −0.479730 0.877416i \(-0.659265\pi\)
−0.479730 + 0.877416i \(0.659265\pi\)
\(332\) 0 0
\(333\) 10.2426 0.561293
\(334\) 0 0
\(335\) −9.41421 −0.514353
\(336\) 0 0
\(337\) −20.3848 −1.11043 −0.555215 0.831707i \(-0.687364\pi\)
−0.555215 + 0.831707i \(0.687364\pi\)
\(338\) 0 0
\(339\) 20.8284 1.13124
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 5.65685 0.304555
\(346\) 0 0
\(347\) −20.2843 −1.08892 −0.544458 0.838788i \(-0.683265\pi\)
−0.544458 + 0.838788i \(0.683265\pi\)
\(348\) 0 0
\(349\) −12.3431 −0.660713 −0.330357 0.943856i \(-0.607169\pi\)
−0.330357 + 0.943856i \(0.607169\pi\)
\(350\) 0 0
\(351\) −19.3137 −1.03089
\(352\) 0 0
\(353\) −12.1421 −0.646261 −0.323130 0.946354i \(-0.604735\pi\)
−0.323130 + 0.946354i \(0.604735\pi\)
\(354\) 0 0
\(355\) −15.3137 −0.812767
\(356\) 0 0
\(357\) −19.3137 −1.02219
\(358\) 0 0
\(359\) 19.4558 1.02684 0.513420 0.858137i \(-0.328378\pi\)
0.513420 + 0.858137i \(0.328378\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 14.5858 0.765555
\(364\) 0 0
\(365\) 12.1421 0.635548
\(366\) 0 0
\(367\) −31.1127 −1.62407 −0.812035 0.583609i \(-0.801640\pi\)
−0.812035 + 0.583609i \(0.801640\pi\)
\(368\) 0 0
\(369\) 0.828427 0.0431262
\(370\) 0 0
\(371\) −36.9706 −1.91942
\(372\) 0 0
\(373\) 33.5563 1.73748 0.868741 0.495267i \(-0.164930\pi\)
0.868741 + 0.495267i \(0.164930\pi\)
\(374\) 0 0
\(375\) −1.41421 −0.0730297
\(376\) 0 0
\(377\) −2.82843 −0.145671
\(378\) 0 0
\(379\) 9.65685 0.496039 0.248020 0.968755i \(-0.420220\pi\)
0.248020 + 0.968755i \(0.420220\pi\)
\(380\) 0 0
\(381\) −18.9706 −0.971891
\(382\) 0 0
\(383\) −32.7279 −1.67232 −0.836159 0.548487i \(-0.815204\pi\)
−0.836159 + 0.548487i \(0.815204\pi\)
\(384\) 0 0
\(385\) −2.34315 −0.119418
\(386\) 0 0
\(387\) −2.82843 −0.143777
\(388\) 0 0
\(389\) −9.31371 −0.472224 −0.236112 0.971726i \(-0.575873\pi\)
−0.236112 + 0.971726i \(0.575873\pi\)
\(390\) 0 0
\(391\) −19.3137 −0.976736
\(392\) 0 0
\(393\) −10.3431 −0.521743
\(394\) 0 0
\(395\) 9.17157 0.461472
\(396\) 0 0
\(397\) −36.8284 −1.84837 −0.924183 0.381950i \(-0.875253\pi\)
−0.924183 + 0.381950i \(0.875253\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 14.9706 0.747594 0.373797 0.927510i \(-0.378056\pi\)
0.373797 + 0.927510i \(0.378056\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) 8.48528 0.420600
\(408\) 0 0
\(409\) −30.2843 −1.49746 −0.748730 0.662875i \(-0.769336\pi\)
−0.748730 + 0.662875i \(0.769336\pi\)
\(410\) 0 0
\(411\) 10.1421 0.500275
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 4.48528 0.219645
\(418\) 0 0
\(419\) 1.65685 0.0809426 0.0404713 0.999181i \(-0.487114\pi\)
0.0404713 + 0.999181i \(0.487114\pi\)
\(420\) 0 0
\(421\) 20.8284 1.01512 0.507558 0.861618i \(-0.330548\pi\)
0.507558 + 0.861618i \(0.330548\pi\)
\(422\) 0 0
\(423\) −8.48528 −0.412568
\(424\) 0 0
\(425\) 4.82843 0.234213
\(426\) 0 0
\(427\) 4.68629 0.226786
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 14.8284 0.714260 0.357130 0.934055i \(-0.383755\pi\)
0.357130 + 0.934055i \(0.383755\pi\)
\(432\) 0 0
\(433\) −18.0416 −0.867025 −0.433513 0.901147i \(-0.642726\pi\)
−0.433513 + 0.901147i \(0.642726\pi\)
\(434\) 0 0
\(435\) −1.17157 −0.0561726
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) −14.1421 −0.674967 −0.337484 0.941331i \(-0.609576\pi\)
−0.337484 + 0.941331i \(0.609576\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 0.686292 0.0326067 0.0163033 0.999867i \(-0.494810\pi\)
0.0163033 + 0.999867i \(0.494810\pi\)
\(444\) 0 0
\(445\) −3.17157 −0.150347
\(446\) 0 0
\(447\) 2.34315 0.110827
\(448\) 0 0
\(449\) 26.2843 1.24043 0.620216 0.784431i \(-0.287045\pi\)
0.620216 + 0.784431i \(0.287045\pi\)
\(450\) 0 0
\(451\) 0.686292 0.0323162
\(452\) 0 0
\(453\) 8.68629 0.408118
\(454\) 0 0
\(455\) −9.65685 −0.452720
\(456\) 0 0
\(457\) −34.2843 −1.60375 −0.801875 0.597491i \(-0.796164\pi\)
−0.801875 + 0.597491i \(0.796164\pi\)
\(458\) 0 0
\(459\) 27.3137 1.27489
\(460\) 0 0
\(461\) 8.62742 0.401819 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(462\) 0 0
\(463\) −26.6274 −1.23748 −0.618741 0.785595i \(-0.712357\pi\)
−0.618741 + 0.785595i \(0.712357\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 0 0
\(469\) −26.6274 −1.22954
\(470\) 0 0
\(471\) −14.8284 −0.683258
\(472\) 0 0
\(473\) −2.34315 −0.107738
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 13.0711 0.598483
\(478\) 0 0
\(479\) −23.4558 −1.07172 −0.535862 0.844305i \(-0.680013\pi\)
−0.535862 + 0.844305i \(0.680013\pi\)
\(480\) 0 0
\(481\) 34.9706 1.59452
\(482\) 0 0
\(483\) 16.0000 0.728025
\(484\) 0 0
\(485\) −2.24264 −0.101833
\(486\) 0 0
\(487\) −27.5563 −1.24870 −0.624349 0.781146i \(-0.714636\pi\)
−0.624349 + 0.781146i \(0.714636\pi\)
\(488\) 0 0
\(489\) −20.9706 −0.948322
\(490\) 0 0
\(491\) −12.9706 −0.585353 −0.292677 0.956211i \(-0.594546\pi\)
−0.292677 + 0.956211i \(0.594546\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0.828427 0.0372350
\(496\) 0 0
\(497\) −43.3137 −1.94289
\(498\) 0 0
\(499\) 4.14214 0.185427 0.0927137 0.995693i \(-0.470446\pi\)
0.0927137 + 0.995693i \(0.470446\pi\)
\(500\) 0 0
\(501\) 2.97056 0.132715
\(502\) 0 0
\(503\) 1.65685 0.0738755 0.0369377 0.999318i \(-0.488240\pi\)
0.0369377 + 0.999318i \(0.488240\pi\)
\(504\) 0 0
\(505\) −17.6569 −0.785720
\(506\) 0 0
\(507\) 1.89949 0.0843595
\(508\) 0 0
\(509\) 15.4558 0.685068 0.342534 0.939505i \(-0.388715\pi\)
0.342534 + 0.939505i \(0.388715\pi\)
\(510\) 0 0
\(511\) 34.3431 1.51925
\(512\) 0 0
\(513\) −5.65685 −0.249756
\(514\) 0 0
\(515\) −8.24264 −0.363214
\(516\) 0 0
\(517\) −7.02944 −0.309154
\(518\) 0 0
\(519\) −15.1716 −0.665958
\(520\) 0 0
\(521\) 14.6863 0.643418 0.321709 0.946839i \(-0.395743\pi\)
0.321709 + 0.946839i \(0.395743\pi\)
\(522\) 0 0
\(523\) −36.2426 −1.58478 −0.792390 0.610015i \(-0.791163\pi\)
−0.792390 + 0.610015i \(0.791163\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −2.82843 −0.122743
\(532\) 0 0
\(533\) 2.82843 0.122513
\(534\) 0 0
\(535\) 1.41421 0.0611418
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −0.828427 −0.0356829
\(540\) 0 0
\(541\) −36.2843 −1.55998 −0.779991 0.625790i \(-0.784777\pi\)
−0.779991 + 0.625790i \(0.784777\pi\)
\(542\) 0 0
\(543\) −7.51472 −0.322487
\(544\) 0 0
\(545\) −3.65685 −0.156642
\(546\) 0 0
\(547\) −39.0711 −1.67056 −0.835279 0.549826i \(-0.814694\pi\)
−0.835279 + 0.549826i \(0.814694\pi\)
\(548\) 0 0
\(549\) −1.65685 −0.0707128
\(550\) 0 0
\(551\) −0.828427 −0.0352922
\(552\) 0 0
\(553\) 25.9411 1.10313
\(554\) 0 0
\(555\) 14.4853 0.614866
\(556\) 0 0
\(557\) 5.79899 0.245711 0.122856 0.992425i \(-0.460795\pi\)
0.122856 + 0.992425i \(0.460795\pi\)
\(558\) 0 0
\(559\) −9.65685 −0.408441
\(560\) 0 0
\(561\) 5.65685 0.238833
\(562\) 0 0
\(563\) −4.24264 −0.178806 −0.0894030 0.995996i \(-0.528496\pi\)
−0.0894030 + 0.995996i \(0.528496\pi\)
\(564\) 0 0
\(565\) −14.7279 −0.619608
\(566\) 0 0
\(567\) −14.1421 −0.593914
\(568\) 0 0
\(569\) −31.9411 −1.33904 −0.669521 0.742793i \(-0.733501\pi\)
−0.669521 + 0.742793i \(0.733501\pi\)
\(570\) 0 0
\(571\) −30.4853 −1.27577 −0.637885 0.770132i \(-0.720190\pi\)
−0.637885 + 0.770132i \(0.720190\pi\)
\(572\) 0 0
\(573\) 4.68629 0.195773
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 44.6274 1.85786 0.928932 0.370251i \(-0.120728\pi\)
0.928932 + 0.370251i \(0.120728\pi\)
\(578\) 0 0
\(579\) 9.79899 0.407232
\(580\) 0 0
\(581\) 22.6274 0.938743
\(582\) 0 0
\(583\) 10.8284 0.448468
\(584\) 0 0
\(585\) 3.41421 0.141160
\(586\) 0 0
\(587\) −5.65685 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 35.7990 1.47257
\(592\) 0 0
\(593\) 16.6274 0.682806 0.341403 0.939917i \(-0.389098\pi\)
0.341403 + 0.939917i \(0.389098\pi\)
\(594\) 0 0
\(595\) 13.6569 0.559876
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) −6.14214 −0.250961 −0.125480 0.992096i \(-0.540047\pi\)
−0.125480 + 0.992096i \(0.540047\pi\)
\(600\) 0 0
\(601\) −14.4853 −0.590867 −0.295433 0.955363i \(-0.595464\pi\)
−0.295433 + 0.955363i \(0.595464\pi\)
\(602\) 0 0
\(603\) 9.41421 0.383376
\(604\) 0 0
\(605\) −10.3137 −0.419312
\(606\) 0 0
\(607\) 7.75736 0.314862 0.157431 0.987530i \(-0.449679\pi\)
0.157431 + 0.987530i \(0.449679\pi\)
\(608\) 0 0
\(609\) −3.31371 −0.134278
\(610\) 0 0
\(611\) −28.9706 −1.17202
\(612\) 0 0
\(613\) −17.7990 −0.718894 −0.359447 0.933165i \(-0.617035\pi\)
−0.359447 + 0.933165i \(0.617035\pi\)
\(614\) 0 0
\(615\) 1.17157 0.0472424
\(616\) 0 0
\(617\) −37.7990 −1.52173 −0.760865 0.648910i \(-0.775225\pi\)
−0.760865 + 0.648910i \(0.775225\pi\)
\(618\) 0 0
\(619\) 40.1421 1.61345 0.806724 0.590928i \(-0.201238\pi\)
0.806724 + 0.590928i \(0.201238\pi\)
\(620\) 0 0
\(621\) −22.6274 −0.908007
\(622\) 0 0
\(623\) −8.97056 −0.359398
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.17157 −0.0467881
\(628\) 0 0
\(629\) −49.4558 −1.97193
\(630\) 0 0
\(631\) 34.4853 1.37284 0.686419 0.727207i \(-0.259182\pi\)
0.686419 + 0.727207i \(0.259182\pi\)
\(632\) 0 0
\(633\) 23.3137 0.926637
\(634\) 0 0
\(635\) 13.4142 0.532327
\(636\) 0 0
\(637\) −3.41421 −0.135276
\(638\) 0 0
\(639\) 15.3137 0.605801
\(640\) 0 0
\(641\) 27.4558 1.08444 0.542220 0.840236i \(-0.317584\pi\)
0.542220 + 0.840236i \(0.317584\pi\)
\(642\) 0 0
\(643\) −35.3137 −1.39264 −0.696318 0.717733i \(-0.745180\pi\)
−0.696318 + 0.717733i \(0.745180\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 16.6863 0.656006 0.328003 0.944677i \(-0.393624\pi\)
0.328003 + 0.944677i \(0.393624\pi\)
\(648\) 0 0
\(649\) −2.34315 −0.0919765
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.1421 −0.475158 −0.237579 0.971368i \(-0.576354\pi\)
−0.237579 + 0.971368i \(0.576354\pi\)
\(654\) 0 0
\(655\) 7.31371 0.285770
\(656\) 0 0
\(657\) −12.1421 −0.473710
\(658\) 0 0
\(659\) −28.4853 −1.10963 −0.554815 0.831974i \(-0.687211\pi\)
−0.554815 + 0.831974i \(0.687211\pi\)
\(660\) 0 0
\(661\) −8.82843 −0.343386 −0.171693 0.985151i \(-0.554924\pi\)
−0.171693 + 0.985151i \(0.554924\pi\)
\(662\) 0 0
\(663\) 23.3137 0.905429
\(664\) 0 0
\(665\) −2.82843 −0.109682
\(666\) 0 0
\(667\) −3.31371 −0.128307
\(668\) 0 0
\(669\) 18.9706 0.733444
\(670\) 0 0
\(671\) −1.37258 −0.0529880
\(672\) 0 0
\(673\) 8.38478 0.323209 0.161605 0.986856i \(-0.448333\pi\)
0.161605 + 0.986856i \(0.448333\pi\)
\(674\) 0 0
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) 7.61522 0.292677 0.146338 0.989235i \(-0.453251\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(678\) 0 0
\(679\) −6.34315 −0.243428
\(680\) 0 0
\(681\) −34.0000 −1.30288
\(682\) 0 0
\(683\) −9.89949 −0.378794 −0.189397 0.981901i \(-0.560653\pi\)
−0.189397 + 0.981901i \(0.560653\pi\)
\(684\) 0 0
\(685\) −7.17157 −0.274012
\(686\) 0 0
\(687\) 16.0000 0.610438
\(688\) 0 0
\(689\) 44.6274 1.70017
\(690\) 0 0
\(691\) −35.1716 −1.33799 −0.668995 0.743267i \(-0.733275\pi\)
−0.668995 + 0.743267i \(0.733275\pi\)
\(692\) 0 0
\(693\) 2.34315 0.0890087
\(694\) 0 0
\(695\) −3.17157 −0.120305
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 14.1421 0.534905
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) 10.2426 0.386309
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) −49.9411 −1.87823
\(708\) 0 0
\(709\) 18.2843 0.686680 0.343340 0.939211i \(-0.388442\pi\)
0.343340 + 0.939211i \(0.388442\pi\)
\(710\) 0 0
\(711\) −9.17157 −0.343961
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 2.82843 0.105777
\(716\) 0 0
\(717\) 11.3137 0.422518
\(718\) 0 0
\(719\) 31.4558 1.17311 0.586553 0.809911i \(-0.300485\pi\)
0.586553 + 0.809911i \(0.300485\pi\)
\(720\) 0 0
\(721\) −23.3137 −0.868248
\(722\) 0 0
\(723\) −11.5147 −0.428237
\(724\) 0 0
\(725\) 0.828427 0.0307670
\(726\) 0 0
\(727\) 41.4558 1.53751 0.768756 0.639542i \(-0.220876\pi\)
0.768756 + 0.639542i \(0.220876\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 13.6569 0.505117
\(732\) 0 0
\(733\) −4.34315 −0.160418 −0.0802089 0.996778i \(-0.525559\pi\)
−0.0802089 + 0.996778i \(0.525559\pi\)
\(734\) 0 0
\(735\) −1.41421 −0.0521641
\(736\) 0 0
\(737\) 7.79899 0.287279
\(738\) 0 0
\(739\) 0.686292 0.0252456 0.0126228 0.999920i \(-0.495982\pi\)
0.0126228 + 0.999920i \(0.495982\pi\)
\(740\) 0 0
\(741\) −4.82843 −0.177377
\(742\) 0 0
\(743\) 15.7574 0.578081 0.289041 0.957317i \(-0.406664\pi\)
0.289041 + 0.957317i \(0.406664\pi\)
\(744\) 0 0
\(745\) −1.65685 −0.0607024
\(746\) 0 0
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 44.4853 1.62329 0.811645 0.584150i \(-0.198572\pi\)
0.811645 + 0.584150i \(0.198572\pi\)
\(752\) 0 0
\(753\) −40.9706 −1.49305
\(754\) 0 0
\(755\) −6.14214 −0.223535
\(756\) 0 0
\(757\) 22.2843 0.809936 0.404968 0.914331i \(-0.367283\pi\)
0.404968 + 0.914331i \(0.367283\pi\)
\(758\) 0 0
\(759\) −4.68629 −0.170102
\(760\) 0 0
\(761\) 1.37258 0.0497561 0.0248780 0.999690i \(-0.492080\pi\)
0.0248780 + 0.999690i \(0.492080\pi\)
\(762\) 0 0
\(763\) −10.3431 −0.374447
\(764\) 0 0
\(765\) −4.82843 −0.174572
\(766\) 0 0
\(767\) −9.65685 −0.348689
\(768\) 0 0
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) 5.79899 0.208846
\(772\) 0 0
\(773\) 48.8701 1.75773 0.878867 0.477067i \(-0.158300\pi\)
0.878867 + 0.477067i \(0.158300\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 40.9706 1.46981
\(778\) 0 0
\(779\) 0.828427 0.0296815
\(780\) 0 0
\(781\) 12.6863 0.453951
\(782\) 0 0
\(783\) 4.68629 0.167474
\(784\) 0 0
\(785\) 10.4853 0.374236
\(786\) 0 0
\(787\) −1.41421 −0.0504113 −0.0252056 0.999682i \(-0.508024\pi\)
−0.0252056 + 0.999682i \(0.508024\pi\)
\(788\) 0 0
\(789\) 38.6274 1.37517
\(790\) 0 0
\(791\) −41.6569 −1.48115
\(792\) 0 0
\(793\) −5.65685 −0.200881
\(794\) 0 0
\(795\) 18.4853 0.655605
\(796\) 0 0
\(797\) −27.6985 −0.981131 −0.490565 0.871404i \(-0.663210\pi\)
−0.490565 + 0.871404i \(0.663210\pi\)
\(798\) 0 0
\(799\) 40.9706 1.44943
\(800\) 0 0
\(801\) 3.17157 0.112062
\(802\) 0 0
\(803\) −10.0589 −0.354970
\(804\) 0 0
\(805\) −11.3137 −0.398756
\(806\) 0 0
\(807\) −41.4558 −1.45931
\(808\) 0 0
\(809\) 38.0000 1.33601 0.668004 0.744157i \(-0.267149\pi\)
0.668004 + 0.744157i \(0.267149\pi\)
\(810\) 0 0
\(811\) −0.686292 −0.0240990 −0.0120495 0.999927i \(-0.503836\pi\)
−0.0120495 + 0.999927i \(0.503836\pi\)
\(812\) 0 0
\(813\) −13.4558 −0.471917
\(814\) 0 0
\(815\) 14.8284 0.519417
\(816\) 0 0
\(817\) −2.82843 −0.0989541
\(818\) 0 0
\(819\) 9.65685 0.337438
\(820\) 0 0
\(821\) 49.5980 1.73098 0.865491 0.500925i \(-0.167007\pi\)
0.865491 + 0.500925i \(0.167007\pi\)
\(822\) 0 0
\(823\) 16.4853 0.574641 0.287320 0.957835i \(-0.407236\pi\)
0.287320 + 0.957835i \(0.407236\pi\)
\(824\) 0 0
\(825\) 1.17157 0.0407889
\(826\) 0 0
\(827\) 13.6985 0.476343 0.238171 0.971223i \(-0.423452\pi\)
0.238171 + 0.971223i \(0.423452\pi\)
\(828\) 0 0
\(829\) 49.5980 1.72261 0.861305 0.508089i \(-0.169648\pi\)
0.861305 + 0.508089i \(0.169648\pi\)
\(830\) 0 0
\(831\) 27.1127 0.940529
\(832\) 0 0
\(833\) 4.82843 0.167295
\(834\) 0 0
\(835\) −2.10051 −0.0726910
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.201010 −0.00693964 −0.00346982 0.999994i \(-0.501104\pi\)
−0.00346982 + 0.999994i \(0.501104\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) −15.7990 −0.544146
\(844\) 0 0
\(845\) −1.34315 −0.0462056
\(846\) 0 0
\(847\) −29.1716 −1.00235
\(848\) 0 0
\(849\) −8.97056 −0.307869
\(850\) 0 0
\(851\) 40.9706 1.40445
\(852\) 0 0
\(853\) 27.9411 0.956686 0.478343 0.878173i \(-0.341238\pi\)
0.478343 + 0.878173i \(0.341238\pi\)
\(854\) 0 0
\(855\) 1.00000 0.0341993
\(856\) 0 0
\(857\) 31.2132 1.06622 0.533111 0.846045i \(-0.321023\pi\)
0.533111 + 0.846045i \(0.321023\pi\)
\(858\) 0 0
\(859\) 6.34315 0.216425 0.108213 0.994128i \(-0.465487\pi\)
0.108213 + 0.994128i \(0.465487\pi\)
\(860\) 0 0
\(861\) 3.31371 0.112931
\(862\) 0 0
\(863\) 44.0416 1.49919 0.749597 0.661894i \(-0.230247\pi\)
0.749597 + 0.661894i \(0.230247\pi\)
\(864\) 0 0
\(865\) 10.7279 0.364760
\(866\) 0 0
\(867\) −8.92893 −0.303242
\(868\) 0 0
\(869\) −7.59798 −0.257744
\(870\) 0 0
\(871\) 32.1421 1.08909
\(872\) 0 0
\(873\) 2.24264 0.0759019
\(874\) 0 0
\(875\) 2.82843 0.0956183
\(876\) 0 0
\(877\) −18.7279 −0.632397 −0.316198 0.948693i \(-0.602407\pi\)
−0.316198 + 0.948693i \(0.602407\pi\)
\(878\) 0 0
\(879\) 45.7990 1.54476
\(880\) 0 0
\(881\) −1.65685 −0.0558208 −0.0279104 0.999610i \(-0.508885\pi\)
−0.0279104 + 0.999610i \(0.508885\pi\)
\(882\) 0 0
\(883\) −10.8284 −0.364406 −0.182203 0.983261i \(-0.558323\pi\)
−0.182203 + 0.983261i \(0.558323\pi\)
\(884\) 0 0
\(885\) −4.00000 −0.134459
\(886\) 0 0
\(887\) 15.2721 0.512786 0.256393 0.966573i \(-0.417466\pi\)
0.256393 + 0.966573i \(0.417466\pi\)
\(888\) 0 0
\(889\) 37.9411 1.27250
\(890\) 0 0
\(891\) 4.14214 0.138767
\(892\) 0 0
\(893\) −8.48528 −0.283949
\(894\) 0 0
\(895\) 8.48528 0.283632
\(896\) 0 0
\(897\) −19.3137 −0.644866
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −63.1127 −2.10259
\(902\) 0 0
\(903\) −11.3137 −0.376497
\(904\) 0 0
\(905\) 5.31371 0.176634
\(906\) 0 0
\(907\) 48.0416 1.59520 0.797598 0.603189i \(-0.206104\pi\)
0.797598 + 0.603189i \(0.206104\pi\)
\(908\) 0 0
\(909\) 17.6569 0.585641
\(910\) 0 0
\(911\) 9.17157 0.303868 0.151934 0.988391i \(-0.451450\pi\)
0.151934 + 0.988391i \(0.451450\pi\)
\(912\) 0 0
\(913\) −6.62742 −0.219335
\(914\) 0 0
\(915\) −2.34315 −0.0774620
\(916\) 0 0
\(917\) 20.6863 0.683122
\(918\) 0 0
\(919\) 17.9411 0.591823 0.295912 0.955215i \(-0.404377\pi\)
0.295912 + 0.955215i \(0.404377\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 0 0
\(923\) 52.2843 1.72096
\(924\) 0 0
\(925\) −10.2426 −0.336776
\(926\) 0 0
\(927\) 8.24264 0.270724
\(928\) 0 0
\(929\) 41.3137 1.35546 0.677729 0.735311i \(-0.262964\pi\)
0.677729 + 0.735311i \(0.262964\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 27.1127 0.887630
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 55.4558 1.81166 0.905832 0.423638i \(-0.139247\pi\)
0.905832 + 0.423638i \(0.139247\pi\)
\(938\) 0 0
\(939\) 7.51472 0.245234
\(940\) 0 0
\(941\) −21.5980 −0.704074 −0.352037 0.935986i \(-0.614511\pi\)
−0.352037 + 0.935986i \(0.614511\pi\)
\(942\) 0 0
\(943\) 3.31371 0.107909
\(944\) 0 0
\(945\) 16.0000 0.520480
\(946\) 0 0
\(947\) 47.3137 1.53749 0.768744 0.639556i \(-0.220882\pi\)
0.768744 + 0.639556i \(0.220882\pi\)
\(948\) 0 0
\(949\) −41.4558 −1.34571
\(950\) 0 0
\(951\) 0.142136 0.00460906
\(952\) 0 0
\(953\) −34.7279 −1.12495 −0.562474 0.826815i \(-0.690150\pi\)
−0.562474 + 0.826815i \(0.690150\pi\)
\(954\) 0 0
\(955\) −3.31371 −0.107229
\(956\) 0 0
\(957\) 0.970563 0.0313738
\(958\) 0 0
\(959\) −20.2843 −0.655013
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −1.41421 −0.0455724
\(964\) 0 0
\(965\) −6.92893 −0.223050
\(966\) 0 0
\(967\) −37.6569 −1.21096 −0.605481 0.795859i \(-0.707019\pi\)
−0.605481 + 0.795859i \(0.707019\pi\)
\(968\) 0 0
\(969\) 6.82843 0.219361
\(970\) 0 0
\(971\) 25.9411 0.832490 0.416245 0.909252i \(-0.363346\pi\)
0.416245 + 0.909252i \(0.363346\pi\)
\(972\) 0 0
\(973\) −8.97056 −0.287583
\(974\) 0 0
\(975\) 4.82843 0.154633
\(976\) 0 0
\(977\) −53.8406 −1.72251 −0.861257 0.508170i \(-0.830322\pi\)
−0.861257 + 0.508170i \(0.830322\pi\)
\(978\) 0 0
\(979\) 2.62742 0.0839726
\(980\) 0 0
\(981\) 3.65685 0.116754
\(982\) 0 0
\(983\) −4.04163 −0.128908 −0.0644540 0.997921i \(-0.520531\pi\)
−0.0644540 + 0.997921i \(0.520531\pi\)
\(984\) 0 0
\(985\) −25.3137 −0.806562
\(986\) 0 0
\(987\) −33.9411 −1.08036
\(988\) 0 0
\(989\) −11.3137 −0.359755
\(990\) 0 0
\(991\) −44.7696 −1.42215 −0.711076 0.703115i \(-0.751792\pi\)
−0.711076 + 0.703115i \(0.751792\pi\)
\(992\) 0 0
\(993\) 24.6863 0.783396
\(994\) 0 0
\(995\) 5.65685 0.179334
\(996\) 0 0
\(997\) −12.8284 −0.406280 −0.203140 0.979150i \(-0.565115\pi\)
−0.203140 + 0.979150i \(0.565115\pi\)
\(998\) 0 0
\(999\) −57.9411 −1.83318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6080.2.a.bg.1.1 2
4.3 odd 2 6080.2.a.bf.1.2 2
8.3 odd 2 760.2.a.f.1.1 2
8.5 even 2 1520.2.a.m.1.2 2
24.11 even 2 6840.2.a.z.1.1 2
40.3 even 4 3800.2.d.i.3649.1 4
40.19 odd 2 3800.2.a.n.1.2 2
40.27 even 4 3800.2.d.i.3649.3 4
40.29 even 2 7600.2.a.ba.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.f.1.1 2 8.3 odd 2
1520.2.a.m.1.2 2 8.5 even 2
3800.2.a.n.1.2 2 40.19 odd 2
3800.2.d.i.3649.1 4 40.3 even 4
3800.2.d.i.3649.3 4 40.27 even 4
6080.2.a.bf.1.2 2 4.3 odd 2
6080.2.a.bg.1.1 2 1.1 even 1 trivial
6840.2.a.z.1.1 2 24.11 even 2
7600.2.a.ba.1.1 2 40.29 even 2