Properties

Label 608.3.e.b.417.9
Level $608$
Weight $3$
Character 608.417
Analytic conductor $16.567$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,3,Mod(417,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.417"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,-52,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5668000731\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 196 x^{18} + 1676 x^{17} + 16346 x^{16} - 161824 x^{15} - 667200 x^{14} + \cdots + 1135285065792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 417.9
Root \(-0.454273 + 0.341165i\) of defining polynomial
Character \(\chi\) \(=\) 608.417
Dual form 608.3.e.b.417.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.682329i q^{3} +6.57489 q^{5} -8.44839 q^{7} +8.53443 q^{9} -2.26367 q^{11} +19.5893i q^{13} -4.48624i q^{15} +7.76481 q^{17} +(7.24637 + 17.5639i) q^{19} +5.76459i q^{21} +27.5478 q^{23} +18.2292 q^{25} -11.9643i q^{27} -48.3430i q^{29} +18.1890i q^{31} +1.54457i q^{33} -55.5473 q^{35} +42.8469i q^{37} +13.3663 q^{39} +19.0376i q^{41} +74.5673 q^{43} +56.1129 q^{45} -38.1195 q^{47} +22.3754 q^{49} -5.29816i q^{51} +8.32862i q^{53} -14.8834 q^{55} +(11.9844 - 4.94441i) q^{57} -66.1249i q^{59} +50.5024 q^{61} -72.1022 q^{63} +128.797i q^{65} -69.4618i q^{67} -18.7967i q^{69} +48.1973i q^{71} +71.7521 q^{73} -12.4383i q^{75} +19.1243 q^{77} +147.535i q^{79} +68.6463 q^{81} +103.693 q^{83} +51.0528 q^{85} -32.9859 q^{87} -143.373i q^{89} -165.498i q^{91} +12.4109 q^{93} +(47.6441 + 115.481i) q^{95} +49.3349i q^{97} -19.3191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 52 q^{9} + 56 q^{17} + 36 q^{25} + 64 q^{45} + 332 q^{49} + 88 q^{57} - 32 q^{61} - 152 q^{73} + 360 q^{77} - 476 q^{81} - 552 q^{85} + 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.682329i 0.227443i −0.993513 0.113722i \(-0.963723\pi\)
0.993513 0.113722i \(-0.0362772\pi\)
\(4\) 0 0
\(5\) 6.57489 1.31498 0.657489 0.753464i \(-0.271619\pi\)
0.657489 + 0.753464i \(0.271619\pi\)
\(6\) 0 0
\(7\) −8.44839 −1.20691 −0.603457 0.797396i \(-0.706210\pi\)
−0.603457 + 0.797396i \(0.706210\pi\)
\(8\) 0 0
\(9\) 8.53443 0.948270
\(10\) 0 0
\(11\) −2.26367 −0.205788 −0.102894 0.994692i \(-0.532810\pi\)
−0.102894 + 0.994692i \(0.532810\pi\)
\(12\) 0 0
\(13\) 19.5893i 1.50687i 0.657524 + 0.753434i \(0.271604\pi\)
−0.657524 + 0.753434i \(0.728396\pi\)
\(14\) 0 0
\(15\) 4.48624i 0.299083i
\(16\) 0 0
\(17\) 7.76481 0.456754 0.228377 0.973573i \(-0.426658\pi\)
0.228377 + 0.973573i \(0.426658\pi\)
\(18\) 0 0
\(19\) 7.24637 + 17.5639i 0.381388 + 0.924415i
\(20\) 0 0
\(21\) 5.76459i 0.274504i
\(22\) 0 0
\(23\) 27.5478 1.19773 0.598865 0.800850i \(-0.295619\pi\)
0.598865 + 0.800850i \(0.295619\pi\)
\(24\) 0 0
\(25\) 18.2292 0.729166
\(26\) 0 0
\(27\) 11.9643i 0.443121i
\(28\) 0 0
\(29\) 48.3430i 1.66700i −0.552519 0.833500i \(-0.686333\pi\)
0.552519 0.833500i \(-0.313667\pi\)
\(30\) 0 0
\(31\) 18.1890i 0.586742i 0.955999 + 0.293371i \(0.0947771\pi\)
−0.955999 + 0.293371i \(0.905223\pi\)
\(32\) 0 0
\(33\) 1.54457i 0.0468050i
\(34\) 0 0
\(35\) −55.5473 −1.58706
\(36\) 0 0
\(37\) 42.8469i 1.15802i 0.815319 + 0.579012i \(0.196562\pi\)
−0.815319 + 0.579012i \(0.803438\pi\)
\(38\) 0 0
\(39\) 13.3663 0.342727
\(40\) 0 0
\(41\) 19.0376i 0.464332i 0.972676 + 0.232166i \(0.0745813\pi\)
−0.972676 + 0.232166i \(0.925419\pi\)
\(42\) 0 0
\(43\) 74.5673 1.73412 0.867062 0.498201i \(-0.166006\pi\)
0.867062 + 0.498201i \(0.166006\pi\)
\(44\) 0 0
\(45\) 56.1129 1.24695
\(46\) 0 0
\(47\) −38.1195 −0.811052 −0.405526 0.914083i \(-0.632912\pi\)
−0.405526 + 0.914083i \(0.632912\pi\)
\(48\) 0 0
\(49\) 22.3754 0.456640
\(50\) 0 0
\(51\) 5.29816i 0.103886i
\(52\) 0 0
\(53\) 8.32862i 0.157144i 0.996908 + 0.0785719i \(0.0250360\pi\)
−0.996908 + 0.0785719i \(0.974964\pi\)
\(54\) 0 0
\(55\) −14.8834 −0.270606
\(56\) 0 0
\(57\) 11.9844 4.94441i 0.210252 0.0867440i
\(58\) 0 0
\(59\) 66.1249i 1.12076i −0.828235 0.560381i \(-0.810655\pi\)
0.828235 0.560381i \(-0.189345\pi\)
\(60\) 0 0
\(61\) 50.5024 0.827907 0.413954 0.910298i \(-0.364148\pi\)
0.413954 + 0.910298i \(0.364148\pi\)
\(62\) 0 0
\(63\) −72.1022 −1.14448
\(64\) 0 0
\(65\) 128.797i 1.98150i
\(66\) 0 0
\(67\) 69.4618i 1.03674i −0.855155 0.518372i \(-0.826538\pi\)
0.855155 0.518372i \(-0.173462\pi\)
\(68\) 0 0
\(69\) 18.7967i 0.272415i
\(70\) 0 0
\(71\) 48.1973i 0.678835i 0.940636 + 0.339418i \(0.110230\pi\)
−0.940636 + 0.339418i \(0.889770\pi\)
\(72\) 0 0
\(73\) 71.7521 0.982906 0.491453 0.870904i \(-0.336466\pi\)
0.491453 + 0.870904i \(0.336466\pi\)
\(74\) 0 0
\(75\) 12.4383i 0.165844i
\(76\) 0 0
\(77\) 19.1243 0.248368
\(78\) 0 0
\(79\) 147.535i 1.86753i 0.357891 + 0.933763i \(0.383496\pi\)
−0.357891 + 0.933763i \(0.616504\pi\)
\(80\) 0 0
\(81\) 68.6463 0.847485
\(82\) 0 0
\(83\) 103.693 1.24932 0.624658 0.780899i \(-0.285239\pi\)
0.624658 + 0.780899i \(0.285239\pi\)
\(84\) 0 0
\(85\) 51.0528 0.600621
\(86\) 0 0
\(87\) −32.9859 −0.379148
\(88\) 0 0
\(89\) 143.373i 1.61093i −0.592641 0.805466i \(-0.701915\pi\)
0.592641 0.805466i \(-0.298085\pi\)
\(90\) 0 0
\(91\) 165.498i 1.81866i
\(92\) 0 0
\(93\) 12.4109 0.133450
\(94\) 0 0
\(95\) 47.6441 + 115.481i 0.501516 + 1.21559i
\(96\) 0 0
\(97\) 49.3349i 0.508607i 0.967124 + 0.254304i \(0.0818463\pi\)
−0.967124 + 0.254304i \(0.918154\pi\)
\(98\) 0 0
\(99\) −19.3191 −0.195142
\(100\) 0 0
\(101\) 13.6012 0.134665 0.0673327 0.997731i \(-0.478551\pi\)
0.0673327 + 0.997731i \(0.478551\pi\)
\(102\) 0 0
\(103\) 11.5637i 0.112269i −0.998423 0.0561344i \(-0.982122\pi\)
0.998423 0.0561344i \(-0.0178775\pi\)
\(104\) 0 0
\(105\) 37.9015i 0.360967i
\(106\) 0 0
\(107\) 51.7552i 0.483693i −0.970315 0.241847i \(-0.922247\pi\)
0.970315 0.241847i \(-0.0777531\pi\)
\(108\) 0 0
\(109\) 69.7610i 0.640009i 0.947416 + 0.320005i \(0.103684\pi\)
−0.947416 + 0.320005i \(0.896316\pi\)
\(110\) 0 0
\(111\) 29.2357 0.263385
\(112\) 0 0
\(113\) 3.31598i 0.0293449i 0.999892 + 0.0146725i \(0.00467056\pi\)
−0.999892 + 0.0146725i \(0.995329\pi\)
\(114\) 0 0
\(115\) 181.124 1.57499
\(116\) 0 0
\(117\) 167.183i 1.42892i
\(118\) 0 0
\(119\) −65.6002 −0.551262
\(120\) 0 0
\(121\) −115.876 −0.957651
\(122\) 0 0
\(123\) 12.9899 0.105609
\(124\) 0 0
\(125\) −44.5175 −0.356140
\(126\) 0 0
\(127\) 220.929i 1.73960i 0.493403 + 0.869801i \(0.335753\pi\)
−0.493403 + 0.869801i \(0.664247\pi\)
\(128\) 0 0
\(129\) 50.8795i 0.394415i
\(130\) 0 0
\(131\) −169.477 −1.29372 −0.646859 0.762609i \(-0.723918\pi\)
−0.646859 + 0.762609i \(0.723918\pi\)
\(132\) 0 0
\(133\) −61.2202 148.387i −0.460302 1.11569i
\(134\) 0 0
\(135\) 78.6636i 0.582694i
\(136\) 0 0
\(137\) −55.9106 −0.408107 −0.204053 0.978960i \(-0.565412\pi\)
−0.204053 + 0.978960i \(0.565412\pi\)
\(138\) 0 0
\(139\) −151.801 −1.09210 −0.546048 0.837754i \(-0.683868\pi\)
−0.546048 + 0.837754i \(0.683868\pi\)
\(140\) 0 0
\(141\) 26.0100i 0.184468i
\(142\) 0 0
\(143\) 44.3436i 0.310095i
\(144\) 0 0
\(145\) 317.850i 2.19207i
\(146\) 0 0
\(147\) 15.2674i 0.103860i
\(148\) 0 0
\(149\) −154.521 −1.03706 −0.518528 0.855061i \(-0.673520\pi\)
−0.518528 + 0.855061i \(0.673520\pi\)
\(150\) 0 0
\(151\) 33.0833i 0.219095i −0.993982 0.109547i \(-0.965060\pi\)
0.993982 0.109547i \(-0.0349402\pi\)
\(152\) 0 0
\(153\) 66.2682 0.433126
\(154\) 0 0
\(155\) 119.591i 0.771552i
\(156\) 0 0
\(157\) −229.071 −1.45905 −0.729524 0.683955i \(-0.760258\pi\)
−0.729524 + 0.683955i \(0.760258\pi\)
\(158\) 0 0
\(159\) 5.68286 0.0357413
\(160\) 0 0
\(161\) −232.735 −1.44556
\(162\) 0 0
\(163\) 89.5191 0.549197 0.274598 0.961559i \(-0.411455\pi\)
0.274598 + 0.961559i \(0.411455\pi\)
\(164\) 0 0
\(165\) 10.1554i 0.0615476i
\(166\) 0 0
\(167\) 212.489i 1.27239i −0.771530 0.636193i \(-0.780508\pi\)
0.771530 0.636193i \(-0.219492\pi\)
\(168\) 0 0
\(169\) −214.740 −1.27065
\(170\) 0 0
\(171\) 61.8436 + 149.898i 0.361658 + 0.876595i
\(172\) 0 0
\(173\) 284.987i 1.64732i −0.567083 0.823661i \(-0.691928\pi\)
0.567083 0.823661i \(-0.308072\pi\)
\(174\) 0 0
\(175\) −154.007 −0.880041
\(176\) 0 0
\(177\) −45.1190 −0.254910
\(178\) 0 0
\(179\) 186.577i 1.04233i −0.853456 0.521165i \(-0.825498\pi\)
0.853456 0.521165i \(-0.174502\pi\)
\(180\) 0 0
\(181\) 278.532i 1.53885i −0.638736 0.769426i \(-0.720542\pi\)
0.638736 0.769426i \(-0.279458\pi\)
\(182\) 0 0
\(183\) 34.4592i 0.188302i
\(184\) 0 0
\(185\) 281.714i 1.52278i
\(186\) 0 0
\(187\) −17.5769 −0.0939944
\(188\) 0 0
\(189\) 101.079i 0.534808i
\(190\) 0 0
\(191\) −321.592 −1.68373 −0.841865 0.539689i \(-0.818542\pi\)
−0.841865 + 0.539689i \(0.818542\pi\)
\(192\) 0 0
\(193\) 158.345i 0.820442i 0.911986 + 0.410221i \(0.134548\pi\)
−0.911986 + 0.410221i \(0.865452\pi\)
\(194\) 0 0
\(195\) 87.8822 0.450678
\(196\) 0 0
\(197\) 128.416 0.651855 0.325928 0.945395i \(-0.394323\pi\)
0.325928 + 0.945395i \(0.394323\pi\)
\(198\) 0 0
\(199\) 82.0731 0.412427 0.206214 0.978507i \(-0.433886\pi\)
0.206214 + 0.978507i \(0.433886\pi\)
\(200\) 0 0
\(201\) −47.3959 −0.235800
\(202\) 0 0
\(203\) 408.421i 2.01192i
\(204\) 0 0
\(205\) 125.170i 0.610586i
\(206\) 0 0
\(207\) 235.105 1.13577
\(208\) 0 0
\(209\) −16.4034 39.7588i −0.0784850 0.190233i
\(210\) 0 0
\(211\) 254.865i 1.20789i −0.797026 0.603945i \(-0.793595\pi\)
0.797026 0.603945i \(-0.206405\pi\)
\(212\) 0 0
\(213\) 32.8864 0.154396
\(214\) 0 0
\(215\) 490.272 2.28033
\(216\) 0 0
\(217\) 153.668i 0.708147i
\(218\) 0 0
\(219\) 48.9586i 0.223555i
\(220\) 0 0
\(221\) 152.107i 0.688268i
\(222\) 0 0
\(223\) 293.721i 1.31714i 0.752521 + 0.658568i \(0.228837\pi\)
−0.752521 + 0.658568i \(0.771163\pi\)
\(224\) 0 0
\(225\) 155.575 0.691446
\(226\) 0 0
\(227\) 39.0553i 0.172050i −0.996293 0.0860249i \(-0.972584\pi\)
0.996293 0.0860249i \(-0.0274165\pi\)
\(228\) 0 0
\(229\) −336.404 −1.46901 −0.734507 0.678602i \(-0.762586\pi\)
−0.734507 + 0.678602i \(0.762586\pi\)
\(230\) 0 0
\(231\) 13.0491i 0.0564896i
\(232\) 0 0
\(233\) −0.150576 −0.000646248 −0.000323124 1.00000i \(-0.500103\pi\)
−0.000323124 1.00000i \(0.500103\pi\)
\(234\) 0 0
\(235\) −250.631 −1.06652
\(236\) 0 0
\(237\) 100.667 0.424756
\(238\) 0 0
\(239\) 101.554 0.424910 0.212455 0.977171i \(-0.431854\pi\)
0.212455 + 0.977171i \(0.431854\pi\)
\(240\) 0 0
\(241\) 22.2112i 0.0921625i 0.998938 + 0.0460812i \(0.0146733\pi\)
−0.998938 + 0.0460812i \(0.985327\pi\)
\(242\) 0 0
\(243\) 154.518i 0.635875i
\(244\) 0 0
\(245\) 147.116 0.600472
\(246\) 0 0
\(247\) −344.064 + 141.951i −1.39297 + 0.574701i
\(248\) 0 0
\(249\) 70.7529i 0.284148i
\(250\) 0 0
\(251\) 279.017 1.11162 0.555811 0.831309i \(-0.312408\pi\)
0.555811 + 0.831309i \(0.312408\pi\)
\(252\) 0 0
\(253\) −62.3590 −0.246478
\(254\) 0 0
\(255\) 34.8348i 0.136607i
\(256\) 0 0
\(257\) 124.658i 0.485051i −0.970145 0.242525i \(-0.922024\pi\)
0.970145 0.242525i \(-0.0779758\pi\)
\(258\) 0 0
\(259\) 361.988i 1.39764i
\(260\) 0 0
\(261\) 412.580i 1.58077i
\(262\) 0 0
\(263\) 132.853 0.505145 0.252572 0.967578i \(-0.418723\pi\)
0.252572 + 0.967578i \(0.418723\pi\)
\(264\) 0 0
\(265\) 54.7597i 0.206641i
\(266\) 0 0
\(267\) −97.8276 −0.366396
\(268\) 0 0
\(269\) 97.2652i 0.361581i −0.983522 0.180790i \(-0.942134\pi\)
0.983522 0.180790i \(-0.0578656\pi\)
\(270\) 0 0
\(271\) −286.837 −1.05844 −0.529220 0.848485i \(-0.677515\pi\)
−0.529220 + 0.848485i \(0.677515\pi\)
\(272\) 0 0
\(273\) −112.924 −0.413642
\(274\) 0 0
\(275\) −41.2647 −0.150054
\(276\) 0 0
\(277\) −186.839 −0.674508 −0.337254 0.941414i \(-0.609498\pi\)
−0.337254 + 0.941414i \(0.609498\pi\)
\(278\) 0 0
\(279\) 155.233i 0.556389i
\(280\) 0 0
\(281\) 67.5878i 0.240526i −0.992742 0.120263i \(-0.961626\pi\)
0.992742 0.120263i \(-0.0383738\pi\)
\(282\) 0 0
\(283\) 178.824 0.631889 0.315944 0.948778i \(-0.397679\pi\)
0.315944 + 0.948778i \(0.397679\pi\)
\(284\) 0 0
\(285\) 78.7958 32.5089i 0.276477 0.114066i
\(286\) 0 0
\(287\) 160.837i 0.560409i
\(288\) 0 0
\(289\) −228.708 −0.791376
\(290\) 0 0
\(291\) 33.6627 0.115679
\(292\) 0 0
\(293\) 391.555i 1.33636i 0.743998 + 0.668182i \(0.232927\pi\)
−0.743998 + 0.668182i \(0.767073\pi\)
\(294\) 0 0
\(295\) 434.764i 1.47378i
\(296\) 0 0
\(297\) 27.0831i 0.0911888i
\(298\) 0 0
\(299\) 539.641i 1.80482i
\(300\) 0 0
\(301\) −629.974 −2.09294
\(302\) 0 0
\(303\) 9.28050i 0.0306287i
\(304\) 0 0
\(305\) 332.047 1.08868
\(306\) 0 0
\(307\) 80.7622i 0.263069i −0.991312 0.131534i \(-0.958010\pi\)
0.991312 0.131534i \(-0.0419904\pi\)
\(308\) 0 0
\(309\) −7.89025 −0.0255348
\(310\) 0 0
\(311\) −389.789 −1.25334 −0.626670 0.779284i \(-0.715583\pi\)
−0.626670 + 0.779284i \(0.715583\pi\)
\(312\) 0 0
\(313\) −448.692 −1.43352 −0.716761 0.697319i \(-0.754376\pi\)
−0.716761 + 0.697319i \(0.754376\pi\)
\(314\) 0 0
\(315\) −474.064 −1.50496
\(316\) 0 0
\(317\) 191.082i 0.602783i −0.953500 0.301392i \(-0.902549\pi\)
0.953500 0.301392i \(-0.0974511\pi\)
\(318\) 0 0
\(319\) 109.432i 0.343048i
\(320\) 0 0
\(321\) −35.3141 −0.110013
\(322\) 0 0
\(323\) 56.2667 + 136.380i 0.174200 + 0.422230i
\(324\) 0 0
\(325\) 357.096i 1.09876i
\(326\) 0 0
\(327\) 47.6000 0.145566
\(328\) 0 0
\(329\) 322.048 0.978870
\(330\) 0 0
\(331\) 285.538i 0.862652i 0.902196 + 0.431326i \(0.141954\pi\)
−0.902196 + 0.431326i \(0.858046\pi\)
\(332\) 0 0
\(333\) 365.674i 1.09812i
\(334\) 0 0
\(335\) 456.704i 1.36330i
\(336\) 0 0
\(337\) 366.245i 1.08678i −0.839480 0.543390i \(-0.817140\pi\)
0.839480 0.543390i \(-0.182860\pi\)
\(338\) 0 0
\(339\) 2.26259 0.00667430
\(340\) 0 0
\(341\) 41.1738i 0.120744i
\(342\) 0 0
\(343\) 224.935 0.655788
\(344\) 0 0
\(345\) 123.586i 0.358220i
\(346\) 0 0
\(347\) −101.528 −0.292589 −0.146295 0.989241i \(-0.546735\pi\)
−0.146295 + 0.989241i \(0.546735\pi\)
\(348\) 0 0
\(349\) 417.572 1.19648 0.598241 0.801316i \(-0.295867\pi\)
0.598241 + 0.801316i \(0.295867\pi\)
\(350\) 0 0
\(351\) 234.371 0.667724
\(352\) 0 0
\(353\) 481.539 1.36413 0.682067 0.731290i \(-0.261081\pi\)
0.682067 + 0.731290i \(0.261081\pi\)
\(354\) 0 0
\(355\) 316.892i 0.892653i
\(356\) 0 0
\(357\) 44.7610i 0.125381i
\(358\) 0 0
\(359\) 276.977 0.771522 0.385761 0.922599i \(-0.373939\pi\)
0.385761 + 0.922599i \(0.373939\pi\)
\(360\) 0 0
\(361\) −255.980 + 254.549i −0.709087 + 0.705121i
\(362\) 0 0
\(363\) 79.0655i 0.217811i
\(364\) 0 0
\(365\) 471.762 1.29250
\(366\) 0 0
\(367\) 123.376 0.336174 0.168087 0.985772i \(-0.446241\pi\)
0.168087 + 0.985772i \(0.446241\pi\)
\(368\) 0 0
\(369\) 162.475i 0.440312i
\(370\) 0 0
\(371\) 70.3635i 0.189659i
\(372\) 0 0
\(373\) 276.569i 0.741472i −0.928738 0.370736i \(-0.879105\pi\)
0.928738 0.370736i \(-0.120895\pi\)
\(374\) 0 0
\(375\) 30.3756i 0.0810016i
\(376\) 0 0
\(377\) 947.005 2.51195
\(378\) 0 0
\(379\) 47.4253i 0.125133i −0.998041 0.0625664i \(-0.980071\pi\)
0.998041 0.0625664i \(-0.0199285\pi\)
\(380\) 0 0
\(381\) 150.747 0.395661
\(382\) 0 0
\(383\) 598.140i 1.56172i −0.624704 0.780862i \(-0.714780\pi\)
0.624704 0.780862i \(-0.285220\pi\)
\(384\) 0 0
\(385\) 125.740 0.326599
\(386\) 0 0
\(387\) 636.389 1.64442
\(388\) 0 0
\(389\) 579.247 1.48907 0.744534 0.667585i \(-0.232672\pi\)
0.744534 + 0.667585i \(0.232672\pi\)
\(390\) 0 0
\(391\) 213.903 0.547068
\(392\) 0 0
\(393\) 115.639i 0.294247i
\(394\) 0 0
\(395\) 970.024i 2.45576i
\(396\) 0 0
\(397\) 34.3786 0.0865960 0.0432980 0.999062i \(-0.486214\pi\)
0.0432980 + 0.999062i \(0.486214\pi\)
\(398\) 0 0
\(399\) −101.249 + 41.7723i −0.253756 + 0.104693i
\(400\) 0 0
\(401\) 498.060i 1.24204i 0.783793 + 0.621022i \(0.213282\pi\)
−0.783793 + 0.621022i \(0.786718\pi\)
\(402\) 0 0
\(403\) −356.309 −0.884142
\(404\) 0 0
\(405\) 451.342 1.11442
\(406\) 0 0
\(407\) 96.9911i 0.238307i
\(408\) 0 0
\(409\) 184.323i 0.450667i 0.974282 + 0.225334i \(0.0723472\pi\)
−0.974282 + 0.225334i \(0.927653\pi\)
\(410\) 0 0
\(411\) 38.1495i 0.0928211i
\(412\) 0 0
\(413\) 558.650i 1.35266i
\(414\) 0 0
\(415\) 681.771 1.64282
\(416\) 0 0
\(417\) 103.578i 0.248390i
\(418\) 0 0
\(419\) −389.280 −0.929068 −0.464534 0.885555i \(-0.653778\pi\)
−0.464534 + 0.885555i \(0.653778\pi\)
\(420\) 0 0
\(421\) 363.146i 0.862580i −0.902213 0.431290i \(-0.858059\pi\)
0.902213 0.431290i \(-0.141941\pi\)
\(422\) 0 0
\(423\) −325.328 −0.769096
\(424\) 0 0
\(425\) 141.546 0.333049
\(426\) 0 0
\(427\) −426.664 −0.999213
\(428\) 0 0
\(429\) −30.2569 −0.0705290
\(430\) 0 0
\(431\) 475.965i 1.10433i 0.833736 + 0.552164i \(0.186198\pi\)
−0.833736 + 0.552164i \(0.813802\pi\)
\(432\) 0 0
\(433\) 157.342i 0.363376i −0.983356 0.181688i \(-0.941844\pi\)
0.983356 0.181688i \(-0.0581560\pi\)
\(434\) 0 0
\(435\) −216.878 −0.498571
\(436\) 0 0
\(437\) 199.621 + 483.846i 0.456799 + 1.10720i
\(438\) 0 0
\(439\) 438.927i 0.999835i −0.866073 0.499917i \(-0.833364\pi\)
0.866073 0.499917i \(-0.166636\pi\)
\(440\) 0 0
\(441\) 190.961 0.433018
\(442\) 0 0
\(443\) −406.102 −0.916709 −0.458354 0.888770i \(-0.651561\pi\)
−0.458354 + 0.888770i \(0.651561\pi\)
\(444\) 0 0
\(445\) 942.662i 2.11834i
\(446\) 0 0
\(447\) 105.434i 0.235871i
\(448\) 0 0
\(449\) 734.618i 1.63612i 0.575132 + 0.818060i \(0.304951\pi\)
−0.575132 + 0.818060i \(0.695049\pi\)
\(450\) 0 0
\(451\) 43.0948i 0.0955539i
\(452\) 0 0
\(453\) −22.5737 −0.0498316
\(454\) 0 0
\(455\) 1088.13i 2.39150i
\(456\) 0 0
\(457\) 259.189 0.567154 0.283577 0.958950i \(-0.408479\pi\)
0.283577 + 0.958950i \(0.408479\pi\)
\(458\) 0 0
\(459\) 92.9002i 0.202397i
\(460\) 0 0
\(461\) 236.836 0.513743 0.256872 0.966446i \(-0.417308\pi\)
0.256872 + 0.966446i \(0.417308\pi\)
\(462\) 0 0
\(463\) 130.707 0.282305 0.141153 0.989988i \(-0.454919\pi\)
0.141153 + 0.989988i \(0.454919\pi\)
\(464\) 0 0
\(465\) 81.6002 0.175484
\(466\) 0 0
\(467\) 442.841 0.948267 0.474134 0.880453i \(-0.342761\pi\)
0.474134 + 0.880453i \(0.342761\pi\)
\(468\) 0 0
\(469\) 586.841i 1.25126i
\(470\) 0 0
\(471\) 156.302i 0.331850i
\(472\) 0 0
\(473\) −168.796 −0.356862
\(474\) 0 0
\(475\) 132.095 + 320.175i 0.278095 + 0.674052i
\(476\) 0 0
\(477\) 71.0800i 0.149015i
\(478\) 0 0
\(479\) −316.258 −0.660246 −0.330123 0.943938i \(-0.607090\pi\)
−0.330123 + 0.943938i \(0.607090\pi\)
\(480\) 0 0
\(481\) −839.341 −1.74499
\(482\) 0 0
\(483\) 158.802i 0.328782i
\(484\) 0 0
\(485\) 324.372i 0.668807i
\(486\) 0 0
\(487\) 547.237i 1.12369i −0.827243 0.561845i \(-0.810092\pi\)
0.827243 0.561845i \(-0.189908\pi\)
\(488\) 0 0
\(489\) 61.0815i 0.124911i
\(490\) 0 0
\(491\) −543.520 −1.10697 −0.553483 0.832861i \(-0.686701\pi\)
−0.553483 + 0.832861i \(0.686701\pi\)
\(492\) 0 0
\(493\) 375.374i 0.761409i
\(494\) 0 0
\(495\) −127.021 −0.256608
\(496\) 0 0
\(497\) 407.190i 0.819295i
\(498\) 0 0
\(499\) 620.150 1.24279 0.621393 0.783499i \(-0.286567\pi\)
0.621393 + 0.783499i \(0.286567\pi\)
\(500\) 0 0
\(501\) −144.987 −0.289396
\(502\) 0 0
\(503\) 362.663 0.721000 0.360500 0.932759i \(-0.382606\pi\)
0.360500 + 0.932759i \(0.382606\pi\)
\(504\) 0 0
\(505\) 89.4264 0.177082
\(506\) 0 0
\(507\) 146.523i 0.289001i
\(508\) 0 0
\(509\) 209.519i 0.411629i −0.978591 0.205814i \(-0.934016\pi\)
0.978591 0.205814i \(-0.0659843\pi\)
\(510\) 0 0
\(511\) −606.190 −1.18628
\(512\) 0 0
\(513\) 210.139 86.6974i 0.409627 0.169001i
\(514\) 0 0
\(515\) 76.0300i 0.147631i
\(516\) 0 0
\(517\) 86.2897 0.166905
\(518\) 0 0
\(519\) −194.455 −0.374672
\(520\) 0 0
\(521\) 459.602i 0.882154i −0.897469 0.441077i \(-0.854597\pi\)
0.897469 0.441077i \(-0.145403\pi\)
\(522\) 0 0
\(523\) 286.558i 0.547912i 0.961742 + 0.273956i \(0.0883323\pi\)
−0.961742 + 0.273956i \(0.911668\pi\)
\(524\) 0 0
\(525\) 105.084i 0.200159i
\(526\) 0 0
\(527\) 141.234i 0.267997i
\(528\) 0 0
\(529\) 229.880 0.434556
\(530\) 0 0
\(531\) 564.338i 1.06278i
\(532\) 0 0
\(533\) −372.933 −0.699687
\(534\) 0 0
\(535\) 340.284i 0.636046i
\(536\) 0 0
\(537\) −127.307 −0.237071
\(538\) 0 0
\(539\) −50.6504 −0.0939710
\(540\) 0 0
\(541\) −462.578 −0.855042 −0.427521 0.904005i \(-0.640613\pi\)
−0.427521 + 0.904005i \(0.640613\pi\)
\(542\) 0 0
\(543\) −190.051 −0.350001
\(544\) 0 0
\(545\) 458.671i 0.841598i
\(546\) 0 0
\(547\) 672.215i 1.22891i 0.788951 + 0.614456i \(0.210624\pi\)
−0.788951 + 0.614456i \(0.789376\pi\)
\(548\) 0 0
\(549\) 431.009 0.785079
\(550\) 0 0
\(551\) 849.091 350.311i 1.54100 0.635773i
\(552\) 0 0
\(553\) 1246.43i 2.25394i
\(554\) 0 0
\(555\) 192.222 0.346345
\(556\) 0 0
\(557\) 705.453 1.26652 0.633262 0.773938i \(-0.281716\pi\)
0.633262 + 0.773938i \(0.281716\pi\)
\(558\) 0 0
\(559\) 1460.72i 2.61310i
\(560\) 0 0
\(561\) 11.9933i 0.0213784i
\(562\) 0 0
\(563\) 698.282i 1.24029i −0.784488 0.620144i \(-0.787074\pi\)
0.784488 0.620144i \(-0.212926\pi\)
\(564\) 0 0
\(565\) 21.8022i 0.0385879i
\(566\) 0 0
\(567\) −579.951 −1.02284
\(568\) 0 0
\(569\) 598.261i 1.05142i −0.850662 0.525712i \(-0.823799\pi\)
0.850662 0.525712i \(-0.176201\pi\)
\(570\) 0 0
\(571\) 1112.73 1.94874 0.974368 0.224959i \(-0.0722249\pi\)
0.974368 + 0.224959i \(0.0722249\pi\)
\(572\) 0 0
\(573\) 219.432i 0.382953i
\(574\) 0 0
\(575\) 502.173 0.873344
\(576\) 0 0
\(577\) −347.087 −0.601537 −0.300769 0.953697i \(-0.597243\pi\)
−0.300769 + 0.953697i \(0.597243\pi\)
\(578\) 0 0
\(579\) 108.044 0.186604
\(580\) 0 0
\(581\) −876.041 −1.50782
\(582\) 0 0
\(583\) 18.8532i 0.0323383i
\(584\) 0 0
\(585\) 1099.21i 1.87899i
\(586\) 0 0
\(587\) −633.519 −1.07925 −0.539625 0.841906i \(-0.681434\pi\)
−0.539625 + 0.841906i \(0.681434\pi\)
\(588\) 0 0
\(589\) −319.469 + 131.804i −0.542393 + 0.223776i
\(590\) 0 0
\(591\) 87.6217i 0.148260i
\(592\) 0 0
\(593\) −232.227 −0.391614 −0.195807 0.980642i \(-0.562733\pi\)
−0.195807 + 0.980642i \(0.562733\pi\)
\(594\) 0 0
\(595\) −431.314 −0.724898
\(596\) 0 0
\(597\) 56.0009i 0.0938038i
\(598\) 0 0
\(599\) 168.706i 0.281645i 0.990035 + 0.140823i \(0.0449748\pi\)
−0.990035 + 0.140823i \(0.955025\pi\)
\(600\) 0 0
\(601\) 823.410i 1.37007i 0.728512 + 0.685033i \(0.240212\pi\)
−0.728512 + 0.685033i \(0.759788\pi\)
\(602\) 0 0
\(603\) 592.817i 0.983113i
\(604\) 0 0
\(605\) −761.871 −1.25929
\(606\) 0 0
\(607\) 495.883i 0.816941i −0.912771 0.408471i \(-0.866062\pi\)
0.912771 0.408471i \(-0.133938\pi\)
\(608\) 0 0
\(609\) 278.677 0.457599
\(610\) 0 0
\(611\) 746.733i 1.22215i
\(612\) 0 0
\(613\) −312.047 −0.509049 −0.254524 0.967066i \(-0.581919\pi\)
−0.254524 + 0.967066i \(0.581919\pi\)
\(614\) 0 0
\(615\) 85.4073 0.138874
\(616\) 0 0
\(617\) 64.3994 0.104375 0.0521875 0.998637i \(-0.483381\pi\)
0.0521875 + 0.998637i \(0.483381\pi\)
\(618\) 0 0
\(619\) 259.565 0.419329 0.209665 0.977773i \(-0.432763\pi\)
0.209665 + 0.977773i \(0.432763\pi\)
\(620\) 0 0
\(621\) 329.589i 0.530739i
\(622\) 0 0
\(623\) 1211.27i 1.94426i
\(624\) 0 0
\(625\) −748.427 −1.19748
\(626\) 0 0
\(627\) −27.1286 + 11.1925i −0.0432673 + 0.0178509i
\(628\) 0 0
\(629\) 332.698i 0.528932i
\(630\) 0 0
\(631\) 1054.58 1.67128 0.835640 0.549277i \(-0.185097\pi\)
0.835640 + 0.549277i \(0.185097\pi\)
\(632\) 0 0
\(633\) −173.902 −0.274726
\(634\) 0 0
\(635\) 1452.59i 2.28754i
\(636\) 0 0
\(637\) 438.317i 0.688096i
\(638\) 0 0
\(639\) 411.336i 0.643719i
\(640\) 0 0
\(641\) 894.640i 1.39569i −0.716247 0.697847i \(-0.754141\pi\)
0.716247 0.697847i \(-0.245859\pi\)
\(642\) 0 0
\(643\) −24.9915 −0.0388671 −0.0194335 0.999811i \(-0.506186\pi\)
−0.0194335 + 0.999811i \(0.506186\pi\)
\(644\) 0 0
\(645\) 334.527i 0.518646i
\(646\) 0 0
\(647\) 147.497 0.227970 0.113985 0.993482i \(-0.463638\pi\)
0.113985 + 0.993482i \(0.463638\pi\)
\(648\) 0 0
\(649\) 149.685i 0.230639i
\(650\) 0 0
\(651\) −104.852 −0.161063
\(652\) 0 0
\(653\) 355.032 0.543694 0.271847 0.962340i \(-0.412366\pi\)
0.271847 + 0.962340i \(0.412366\pi\)
\(654\) 0 0
\(655\) −1114.29 −1.70121
\(656\) 0 0
\(657\) 612.363 0.932060
\(658\) 0 0
\(659\) 18.9531i 0.0287605i −0.999897 0.0143802i \(-0.995422\pi\)
0.999897 0.0143802i \(-0.00457753\pi\)
\(660\) 0 0
\(661\) 988.059i 1.49479i −0.664378 0.747397i \(-0.731303\pi\)
0.664378 0.747397i \(-0.268697\pi\)
\(662\) 0 0
\(663\) 103.787 0.156542
\(664\) 0 0
\(665\) −402.516 975.626i −0.605287 1.46711i
\(666\) 0 0
\(667\) 1331.74i 1.99662i
\(668\) 0 0
\(669\) 200.415 0.299574
\(670\) 0 0
\(671\) −114.320 −0.170373
\(672\) 0 0
\(673\) 330.989i 0.491811i −0.969294 0.245905i \(-0.920915\pi\)
0.969294 0.245905i \(-0.0790853\pi\)
\(674\) 0 0
\(675\) 218.098i 0.323109i
\(676\) 0 0
\(677\) 409.135i 0.604335i 0.953255 + 0.302168i \(0.0977103\pi\)
−0.953255 + 0.302168i \(0.902290\pi\)
\(678\) 0 0
\(679\) 416.801i 0.613845i
\(680\) 0 0
\(681\) −26.6486 −0.0391315
\(682\) 0 0
\(683\) 599.751i 0.878112i −0.898460 0.439056i \(-0.855313\pi\)
0.898460 0.439056i \(-0.144687\pi\)
\(684\) 0 0
\(685\) −367.606 −0.536651
\(686\) 0 0
\(687\) 229.538i 0.334117i
\(688\) 0 0
\(689\) −163.152 −0.236795
\(690\) 0 0
\(691\) −709.461 −1.02672 −0.513358 0.858174i \(-0.671599\pi\)
−0.513358 + 0.858174i \(0.671599\pi\)
\(692\) 0 0
\(693\) 163.215 0.235520
\(694\) 0 0
\(695\) −998.076 −1.43608
\(696\) 0 0
\(697\) 147.824i 0.212085i
\(698\) 0 0
\(699\) 0.102742i 0.000146985i
\(700\) 0 0
\(701\) −328.829 −0.469085 −0.234543 0.972106i \(-0.575359\pi\)
−0.234543 + 0.972106i \(0.575359\pi\)
\(702\) 0 0
\(703\) −752.559 + 310.485i −1.07050 + 0.441657i
\(704\) 0 0
\(705\) 171.013i 0.242572i
\(706\) 0 0
\(707\) −114.908 −0.162529
\(708\) 0 0
\(709\) 222.996 0.314522 0.157261 0.987557i \(-0.449734\pi\)
0.157261 + 0.987557i \(0.449734\pi\)
\(710\) 0 0
\(711\) 1259.12i 1.77092i
\(712\) 0 0
\(713\) 501.066i 0.702758i
\(714\) 0 0
\(715\) 291.554i 0.407768i
\(716\) 0 0
\(717\) 69.2930i 0.0966429i
\(718\) 0 0
\(719\) −1268.76 −1.76462 −0.882312 0.470666i \(-0.844014\pi\)
−0.882312 + 0.470666i \(0.844014\pi\)
\(720\) 0 0
\(721\) 97.6946i 0.135499i
\(722\) 0 0
\(723\) 15.1553 0.0209617
\(724\) 0 0
\(725\) 881.252i 1.21552i
\(726\) 0 0
\(727\) 818.050 1.12524 0.562620 0.826715i \(-0.309793\pi\)
0.562620 + 0.826715i \(0.309793\pi\)
\(728\) 0 0
\(729\) 512.385 0.702859
\(730\) 0 0
\(731\) 579.001 0.792067
\(732\) 0 0
\(733\) −973.604 −1.32825 −0.664123 0.747623i \(-0.731195\pi\)
−0.664123 + 0.747623i \(0.731195\pi\)
\(734\) 0 0
\(735\) 100.381i 0.136573i
\(736\) 0 0
\(737\) 157.238i 0.213349i
\(738\) 0 0
\(739\) 907.317 1.22776 0.613882 0.789398i \(-0.289607\pi\)
0.613882 + 0.789398i \(0.289607\pi\)
\(740\) 0 0
\(741\) 96.8575 + 234.765i 0.130712 + 0.316822i
\(742\) 0 0
\(743\) 1106.90i 1.48978i −0.667189 0.744888i \(-0.732503\pi\)
0.667189 0.744888i \(-0.267497\pi\)
\(744\) 0 0
\(745\) −1015.96 −1.36371
\(746\) 0 0
\(747\) 884.962 1.18469
\(748\) 0 0
\(749\) 437.248i 0.583776i
\(750\) 0 0
\(751\) 939.575i 1.25110i 0.780185 + 0.625549i \(0.215125\pi\)
−0.780185 + 0.625549i \(0.784875\pi\)
\(752\) 0 0
\(753\) 190.382i 0.252831i
\(754\) 0 0
\(755\) 217.519i 0.288105i
\(756\) 0 0
\(757\) −460.148 −0.607857 −0.303928 0.952695i \(-0.598298\pi\)
−0.303928 + 0.952695i \(0.598298\pi\)
\(758\) 0 0
\(759\) 42.5494i 0.0560598i
\(760\) 0 0
\(761\) −910.830 −1.19689 −0.598443 0.801165i \(-0.704214\pi\)
−0.598443 + 0.801165i \(0.704214\pi\)
\(762\) 0 0
\(763\) 589.368i 0.772436i
\(764\) 0 0
\(765\) 435.706 0.569551
\(766\) 0 0
\(767\) 1295.34 1.68884
\(768\) 0 0
\(769\) 177.692 0.231068 0.115534 0.993304i \(-0.463142\pi\)
0.115534 + 0.993304i \(0.463142\pi\)
\(770\) 0 0
\(771\) −85.0578 −0.110321
\(772\) 0 0
\(773\) 1025.65i 1.32684i −0.748246 0.663421i \(-0.769104\pi\)
0.748246 0.663421i \(-0.230896\pi\)
\(774\) 0 0
\(775\) 331.570i 0.427832i
\(776\) 0 0
\(777\) −246.995 −0.317883
\(778\) 0 0
\(779\) −334.375 + 137.954i −0.429236 + 0.177091i
\(780\) 0 0
\(781\) 109.103i 0.139696i
\(782\) 0 0
\(783\) −578.388 −0.738682
\(784\) 0 0
\(785\) −1506.11 −1.91862
\(786\) 0 0
\(787\) 1380.31i 1.75389i 0.480591 + 0.876945i \(0.340422\pi\)
−0.480591 + 0.876945i \(0.659578\pi\)
\(788\) 0 0
\(789\) 90.6496i 0.114892i
\(790\) 0 0
\(791\) 28.0147i 0.0354168i
\(792\) 0 0
\(793\) 989.305i 1.24755i
\(794\) 0 0
\(795\) 37.3642 0.0469990
\(796\) 0 0
\(797\) 332.943i 0.417745i −0.977943 0.208873i \(-0.933021\pi\)
0.977943 0.208873i \(-0.0669794\pi\)
\(798\) 0 0
\(799\) −295.990 −0.370451
\(800\) 0 0
\(801\) 1223.61i 1.52760i
\(802\) 0 0
\(803\) −162.423 −0.202270
\(804\) 0 0
\(805\) −1530.20 −1.90087
\(806\) 0 0
\(807\) −66.3669 −0.0822391
\(808\) 0 0
\(809\) 865.271 1.06956 0.534778 0.844993i \(-0.320395\pi\)
0.534778 + 0.844993i \(0.320395\pi\)
\(810\) 0 0
\(811\) 188.051i 0.231876i −0.993256 0.115938i \(-0.963013\pi\)
0.993256 0.115938i \(-0.0369874\pi\)
\(812\) 0 0
\(813\) 195.717i 0.240735i
\(814\) 0 0
\(815\) 588.578 0.722182
\(816\) 0 0
\(817\) 540.342 + 1309.69i 0.661374 + 1.60305i
\(818\) 0 0
\(819\) 1412.43i 1.72458i
\(820\) 0 0
\(821\) −511.728 −0.623298 −0.311649 0.950197i \(-0.600881\pi\)
−0.311649 + 0.950197i \(0.600881\pi\)
\(822\) 0 0
\(823\) −1373.85 −1.66932 −0.834661 0.550765i \(-0.814336\pi\)
−0.834661 + 0.550765i \(0.814336\pi\)
\(824\) 0 0
\(825\) 28.1561i 0.0341287i
\(826\) 0 0
\(827\) 897.171i 1.08485i 0.840104 + 0.542425i \(0.182494\pi\)
−0.840104 + 0.542425i \(0.817506\pi\)
\(828\) 0 0
\(829\) 868.594i 1.04776i −0.851792 0.523880i \(-0.824484\pi\)
0.851792 0.523880i \(-0.175516\pi\)
\(830\) 0 0
\(831\) 127.486i 0.153412i
\(832\) 0 0
\(833\) 173.741 0.208572
\(834\) 0 0
\(835\) 1397.09i 1.67316i
\(836\) 0 0
\(837\) 217.618 0.259997
\(838\) 0 0
\(839\) 1252.04i 1.49230i −0.665780 0.746148i \(-0.731901\pi\)
0.665780 0.746148i \(-0.268099\pi\)
\(840\) 0 0
\(841\) −1496.05 −1.77889
\(842\) 0 0
\(843\) −46.1172 −0.0547060
\(844\) 0 0
\(845\) −1411.89 −1.67088
\(846\) 0 0
\(847\) 978.965 1.15580
\(848\) 0 0
\(849\) 122.017i 0.143719i
\(850\) 0 0
\(851\) 1180.34i 1.38700i
\(852\) 0 0
\(853\) 1430.27 1.67675 0.838375 0.545094i \(-0.183506\pi\)
0.838375 + 0.545094i \(0.183506\pi\)
\(854\) 0 0
\(855\) 406.615 + 985.561i 0.475573 + 1.15270i
\(856\) 0 0
\(857\) 1296.98i 1.51339i 0.653768 + 0.756695i \(0.273187\pi\)
−0.653768 + 0.756695i \(0.726813\pi\)
\(858\) 0 0
\(859\) 66.2630 0.0771396 0.0385698 0.999256i \(-0.487720\pi\)
0.0385698 + 0.999256i \(0.487720\pi\)
\(860\) 0 0
\(861\) −109.744 −0.127461
\(862\) 0 0
\(863\) 1187.91i 1.37648i 0.725481 + 0.688242i \(0.241617\pi\)
−0.725481 + 0.688242i \(0.758383\pi\)
\(864\) 0 0
\(865\) 1873.75i 2.16619i
\(866\) 0 0
\(867\) 156.054i 0.179993i
\(868\) 0 0
\(869\) 333.969i 0.384314i
\(870\) 0 0
\(871\) 1360.71 1.56224
\(872\) 0 0
\(873\) 421.045i 0.482297i
\(874\) 0 0
\(875\) 376.102 0.429830
\(876\) 0 0
\(877\) 1159.25i 1.32184i 0.750458 + 0.660918i \(0.229833\pi\)
−0.750458 + 0.660918i \(0.770167\pi\)
\(878\) 0 0
\(879\) 267.169 0.303947
\(880\) 0 0
\(881\) 106.538 0.120928 0.0604642 0.998170i \(-0.480742\pi\)
0.0604642 + 0.998170i \(0.480742\pi\)
\(882\) 0 0
\(883\) −236.402 −0.267726 −0.133863 0.991000i \(-0.542738\pi\)
−0.133863 + 0.991000i \(0.542738\pi\)
\(884\) 0 0
\(885\) −296.652 −0.335200
\(886\) 0 0
\(887\) 450.343i 0.507714i 0.967242 + 0.253857i \(0.0816993\pi\)
−0.967242 + 0.253857i \(0.918301\pi\)
\(888\) 0 0
\(889\) 1866.50i 2.09955i
\(890\) 0 0
\(891\) −155.392 −0.174402
\(892\) 0 0
\(893\) −276.228 669.526i −0.309325 0.749749i
\(894\) 0 0
\(895\) 1226.72i 1.37064i
\(896\) 0 0
\(897\) 368.213 0.410494
\(898\) 0 0
\(899\) 879.311 0.978099
\(900\) 0 0
\(901\) 64.6702i 0.0717760i
\(902\) 0 0
\(903\) 429.850i 0.476024i
\(904\) 0 0
\(905\) 1831.32i 2.02356i
\(906\) 0 0
\(907\) 1191.72i 1.31391i −0.753930 0.656955i \(-0.771844\pi\)
0.753930 0.656955i \(-0.228156\pi\)
\(908\) 0 0
\(909\) 116.078 0.127699
\(910\) 0 0
\(911\) 1211.92i 1.33031i −0.746704 0.665157i \(-0.768365\pi\)
0.746704 0.665157i \(-0.231635\pi\)
\(912\) 0 0
\(913\) −234.727 −0.257094
\(914\) 0 0
\(915\) 226.566i 0.247613i
\(916\) 0 0
\(917\) 1431.81 1.56141
\(918\) 0 0
\(919\) −1360.64 −1.48056 −0.740282 0.672297i \(-0.765308\pi\)
−0.740282 + 0.672297i \(0.765308\pi\)
\(920\) 0 0
\(921\) −55.1064 −0.0598332
\(922\) 0 0
\(923\) −944.150 −1.02291
\(924\) 0 0
\(925\) 781.063i 0.844393i
\(926\) 0 0
\(927\) 98.6895i 0.106461i
\(928\) 0 0
\(929\) 198.540 0.213714 0.106857 0.994274i \(-0.465921\pi\)
0.106857 + 0.994274i \(0.465921\pi\)
\(930\) 0 0
\(931\) 162.140 + 392.998i 0.174157 + 0.422125i
\(932\) 0 0
\(933\) 265.965i 0.285064i
\(934\) 0 0
\(935\) −115.566 −0.123601
\(936\) 0 0
\(937\) 1537.12 1.64047 0.820237 0.572023i \(-0.193841\pi\)
0.820237 + 0.572023i \(0.193841\pi\)
\(938\) 0 0
\(939\) 306.156i 0.326045i
\(940\) 0 0
\(941\) 30.8049i 0.0327363i −0.999866 0.0163681i \(-0.994790\pi\)
0.999866 0.0163681i \(-0.00521038\pi\)
\(942\) 0 0
\(943\) 524.444i 0.556144i
\(944\) 0 0
\(945\) 664.581i 0.703261i
\(946\) 0 0
\(947\) 1205.66 1.27313 0.636567 0.771221i \(-0.280354\pi\)
0.636567 + 0.771221i \(0.280354\pi\)
\(948\) 0 0
\(949\) 1405.57i 1.48111i
\(950\) 0 0
\(951\) −130.381 −0.137099
\(952\) 0 0
\(953\) 1851.45i 1.94276i 0.237538 + 0.971378i \(0.423660\pi\)
−0.237538 + 0.971378i \(0.576340\pi\)
\(954\) 0 0
\(955\) −2114.43 −2.21407
\(956\) 0 0
\(957\) 74.6690 0.0780240
\(958\) 0 0
\(959\) 472.355 0.492550
\(960\) 0 0
\(961\) 630.160 0.655734
\(962\) 0 0
\(963\) 441.701i 0.458672i
\(964\) 0 0
\(965\) 1041.10i 1.07886i
\(966\) 0 0
\(967\) −1472.55 −1.52281 −0.761404 0.648278i \(-0.775489\pi\)
−0.761404 + 0.648278i \(0.775489\pi\)
\(968\) 0 0
\(969\) 93.0563 38.3924i 0.0960333 0.0396207i
\(970\) 0 0
\(971\) 773.553i 0.796656i −0.917243 0.398328i \(-0.869591\pi\)
0.917243 0.398328i \(-0.130409\pi\)
\(972\) 0 0
\(973\) 1282.48 1.31806
\(974\) 0 0
\(975\) 243.657 0.249905
\(976\) 0 0
\(977\) 1073.46i 1.09873i 0.835582 + 0.549366i \(0.185131\pi\)
−0.835582 + 0.549366i \(0.814869\pi\)
\(978\) 0 0
\(979\) 324.549i 0.331510i
\(980\) 0 0
\(981\) 595.370i 0.606901i
\(982\) 0 0
\(983\) 600.675i 0.611063i 0.952182 + 0.305532i \(0.0988342\pi\)
−0.952182 + 0.305532i \(0.901166\pi\)
\(984\) 0 0
\(985\) 844.318 0.857175
\(986\) 0 0
\(987\) 219.743i 0.222637i
\(988\) 0 0
\(989\) 2054.16 2.07701
\(990\) 0 0
\(991\) 91.1601i 0.0919880i −0.998942 0.0459940i \(-0.985354\pi\)
0.998942 0.0459940i \(-0.0146455\pi\)
\(992\) 0 0
\(993\) 194.831 0.196204
\(994\) 0 0
\(995\) 539.621 0.542333
\(996\) 0 0
\(997\) 863.571 0.866170 0.433085 0.901353i \(-0.357425\pi\)
0.433085 + 0.901353i \(0.357425\pi\)
\(998\) 0 0
\(999\) 512.632 0.513145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.3.e.b.417.9 20
4.3 odd 2 inner 608.3.e.b.417.12 yes 20
8.3 odd 2 1216.3.e.p.1025.10 20
8.5 even 2 1216.3.e.p.1025.11 20
19.18 odd 2 inner 608.3.e.b.417.11 yes 20
76.75 even 2 inner 608.3.e.b.417.10 yes 20
152.37 odd 2 1216.3.e.p.1025.9 20
152.75 even 2 1216.3.e.p.1025.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.e.b.417.9 20 1.1 even 1 trivial
608.3.e.b.417.10 yes 20 76.75 even 2 inner
608.3.e.b.417.11 yes 20 19.18 odd 2 inner
608.3.e.b.417.12 yes 20 4.3 odd 2 inner
1216.3.e.p.1025.9 20 152.37 odd 2
1216.3.e.p.1025.10 20 8.3 odd 2
1216.3.e.p.1025.11 20 8.5 even 2
1216.3.e.p.1025.12 20 152.75 even 2