Properties

Label 608.3.e.b.417.4
Level $608$
Weight $3$
Character 608.417
Analytic conductor $16.567$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,3,Mod(417,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.417"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,-52,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5668000731\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 196 x^{18} + 1676 x^{17} + 16346 x^{16} - 161824 x^{15} - 667200 x^{14} + \cdots + 1135285065792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 417.4
Root \(5.68070 + 2.14790i\) of defining polynomial
Character \(\chi\) \(=\) 608.417
Dual form 608.3.e.b.417.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.29580i q^{3} +2.32882 q^{5} +2.95740 q^{7} -9.45390 q^{9} -19.4859 q^{11} +14.0235i q^{13} -10.0041i q^{15} -22.2731 q^{17} +(10.5756 - 15.7847i) q^{19} -12.7044i q^{21} -41.7289 q^{23} -19.5766 q^{25} +1.94987i q^{27} +22.9343i q^{29} -30.9806i q^{31} +83.7075i q^{33} +6.88725 q^{35} -62.1601i q^{37} +60.2423 q^{39} +20.2283i q^{41} +53.2356 q^{43} -22.0164 q^{45} -21.3514 q^{47} -40.2538 q^{49} +95.6807i q^{51} -12.4978i q^{53} -45.3791 q^{55} +(-67.8080 - 45.4305i) q^{57} +19.2741i q^{59} +4.96429 q^{61} -27.9590 q^{63} +32.6583i q^{65} +58.9495i q^{67} +179.259i q^{69} +61.6822i q^{71} +14.5807 q^{73} +84.0972i q^{75} -57.6276 q^{77} -113.346i q^{79} -76.7089 q^{81} +48.9861 q^{83} -51.8699 q^{85} +98.5213 q^{87} -27.8155i q^{89} +41.4733i q^{91} -133.087 q^{93} +(24.6285 - 36.7597i) q^{95} +144.982i q^{97} +184.218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 52 q^{9} + 56 q^{17} + 36 q^{25} + 64 q^{45} + 332 q^{49} + 88 q^{57} - 32 q^{61} - 152 q^{73} + 360 q^{77} - 476 q^{81} - 552 q^{85} + 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.29580i 1.43193i −0.698134 0.715967i \(-0.745986\pi\)
0.698134 0.715967i \(-0.254014\pi\)
\(4\) 0 0
\(5\) 2.32882 0.465763 0.232882 0.972505i \(-0.425184\pi\)
0.232882 + 0.972505i \(0.425184\pi\)
\(6\) 0 0
\(7\) 2.95740 0.422486 0.211243 0.977434i \(-0.432249\pi\)
0.211243 + 0.977434i \(0.432249\pi\)
\(8\) 0 0
\(9\) −9.45390 −1.05043
\(10\) 0 0
\(11\) −19.4859 −1.77144 −0.885722 0.464216i \(-0.846336\pi\)
−0.885722 + 0.464216i \(0.846336\pi\)
\(12\) 0 0
\(13\) 14.0235i 1.07873i 0.842071 + 0.539367i \(0.181336\pi\)
−0.842071 + 0.539367i \(0.818664\pi\)
\(14\) 0 0
\(15\) 10.0041i 0.666942i
\(16\) 0 0
\(17\) −22.2731 −1.31018 −0.655090 0.755551i \(-0.727369\pi\)
−0.655090 + 0.755551i \(0.727369\pi\)
\(18\) 0 0
\(19\) 10.5756 15.7847i 0.556608 0.830775i
\(20\) 0 0
\(21\) 12.7044i 0.604972i
\(22\) 0 0
\(23\) −41.7289 −1.81430 −0.907150 0.420808i \(-0.861747\pi\)
−0.907150 + 0.420808i \(0.861747\pi\)
\(24\) 0 0
\(25\) −19.5766 −0.783064
\(26\) 0 0
\(27\) 1.94987i 0.0722174i
\(28\) 0 0
\(29\) 22.9343i 0.790839i 0.918501 + 0.395420i \(0.129401\pi\)
−0.918501 + 0.395420i \(0.870599\pi\)
\(30\) 0 0
\(31\) 30.9806i 0.999375i −0.866206 0.499688i \(-0.833448\pi\)
0.866206 0.499688i \(-0.166552\pi\)
\(32\) 0 0
\(33\) 83.7075i 2.53659i
\(34\) 0 0
\(35\) 6.88725 0.196779
\(36\) 0 0
\(37\) 62.1601i 1.68000i −0.542584 0.840001i \(-0.682554\pi\)
0.542584 0.840001i \(-0.317446\pi\)
\(38\) 0 0
\(39\) 60.2423 1.54468
\(40\) 0 0
\(41\) 20.2283i 0.493373i 0.969095 + 0.246686i \(0.0793417\pi\)
−0.969095 + 0.246686i \(0.920658\pi\)
\(42\) 0 0
\(43\) 53.2356 1.23804 0.619019 0.785376i \(-0.287530\pi\)
0.619019 + 0.785376i \(0.287530\pi\)
\(44\) 0 0
\(45\) −22.0164 −0.489254
\(46\) 0 0
\(47\) −21.3514 −0.454285 −0.227143 0.973861i \(-0.572938\pi\)
−0.227143 + 0.973861i \(0.572938\pi\)
\(48\) 0 0
\(49\) −40.2538 −0.821505
\(50\) 0 0
\(51\) 95.6807i 1.87609i
\(52\) 0 0
\(53\) 12.4978i 0.235808i −0.993025 0.117904i \(-0.962383\pi\)
0.993025 0.117904i \(-0.0376174\pi\)
\(54\) 0 0
\(55\) −45.3791 −0.825074
\(56\) 0 0
\(57\) −67.8080 45.4305i −1.18961 0.797026i
\(58\) 0 0
\(59\) 19.2741i 0.326680i 0.986570 + 0.163340i \(0.0522267\pi\)
−0.986570 + 0.163340i \(0.947773\pi\)
\(60\) 0 0
\(61\) 4.96429 0.0813817 0.0406909 0.999172i \(-0.487044\pi\)
0.0406909 + 0.999172i \(0.487044\pi\)
\(62\) 0 0
\(63\) −27.9590 −0.443794
\(64\) 0 0
\(65\) 32.6583i 0.502435i
\(66\) 0 0
\(67\) 58.9495i 0.879844i 0.898036 + 0.439922i \(0.144994\pi\)
−0.898036 + 0.439922i \(0.855006\pi\)
\(68\) 0 0
\(69\) 179.259i 2.59796i
\(70\) 0 0
\(71\) 61.6822i 0.868763i 0.900729 + 0.434382i \(0.143033\pi\)
−0.900729 + 0.434382i \(0.856967\pi\)
\(72\) 0 0
\(73\) 14.5807 0.199736 0.0998680 0.995001i \(-0.468158\pi\)
0.0998680 + 0.995001i \(0.468158\pi\)
\(74\) 0 0
\(75\) 84.0972i 1.12130i
\(76\) 0 0
\(77\) −57.6276 −0.748411
\(78\) 0 0
\(79\) 113.346i 1.43475i −0.696685 0.717377i \(-0.745342\pi\)
0.696685 0.717377i \(-0.254658\pi\)
\(80\) 0 0
\(81\) −76.7089 −0.947023
\(82\) 0 0
\(83\) 48.9861 0.590194 0.295097 0.955467i \(-0.404648\pi\)
0.295097 + 0.955467i \(0.404648\pi\)
\(84\) 0 0
\(85\) −51.8699 −0.610234
\(86\) 0 0
\(87\) 98.5213 1.13243
\(88\) 0 0
\(89\) 27.8155i 0.312534i −0.987715 0.156267i \(-0.950054\pi\)
0.987715 0.156267i \(-0.0499460\pi\)
\(90\) 0 0
\(91\) 41.4733i 0.455750i
\(92\) 0 0
\(93\) −133.087 −1.43104
\(94\) 0 0
\(95\) 24.6285 36.7597i 0.259248 0.386945i
\(96\) 0 0
\(97\) 144.982i 1.49466i 0.664452 + 0.747331i \(0.268665\pi\)
−0.664452 + 0.747331i \(0.731335\pi\)
\(98\) 0 0
\(99\) 184.218 1.86078
\(100\) 0 0
\(101\) 150.334 1.48845 0.744226 0.667927i \(-0.232818\pi\)
0.744226 + 0.667927i \(0.232818\pi\)
\(102\) 0 0
\(103\) 74.2695i 0.721063i −0.932747 0.360532i \(-0.882595\pi\)
0.932747 0.360532i \(-0.117405\pi\)
\(104\) 0 0
\(105\) 29.5863i 0.281774i
\(106\) 0 0
\(107\) 139.704i 1.30564i −0.757511 0.652822i \(-0.773585\pi\)
0.757511 0.652822i \(-0.226415\pi\)
\(108\) 0 0
\(109\) 42.5178i 0.390072i 0.980796 + 0.195036i \(0.0624823\pi\)
−0.980796 + 0.195036i \(0.937518\pi\)
\(110\) 0 0
\(111\) −267.027 −2.40565
\(112\) 0 0
\(113\) 109.368i 0.967862i −0.875106 0.483931i \(-0.839209\pi\)
0.875106 0.483931i \(-0.160791\pi\)
\(114\) 0 0
\(115\) −97.1790 −0.845034
\(116\) 0 0
\(117\) 132.577i 1.13314i
\(118\) 0 0
\(119\) −65.8705 −0.553533
\(120\) 0 0
\(121\) 258.700 2.13802
\(122\) 0 0
\(123\) 86.8966 0.706477
\(124\) 0 0
\(125\) −103.811 −0.830486
\(126\) 0 0
\(127\) 40.2362i 0.316821i 0.987373 + 0.158410i \(0.0506369\pi\)
−0.987373 + 0.158410i \(0.949363\pi\)
\(128\) 0 0
\(129\) 228.690i 1.77279i
\(130\) 0 0
\(131\) −65.6183 −0.500903 −0.250452 0.968129i \(-0.580579\pi\)
−0.250452 + 0.968129i \(0.580579\pi\)
\(132\) 0 0
\(133\) 31.2762 46.6818i 0.235159 0.350991i
\(134\) 0 0
\(135\) 4.54089i 0.0336362i
\(136\) 0 0
\(137\) 168.934 1.23310 0.616549 0.787316i \(-0.288530\pi\)
0.616549 + 0.787316i \(0.288530\pi\)
\(138\) 0 0
\(139\) −137.539 −0.989487 −0.494743 0.869039i \(-0.664738\pi\)
−0.494743 + 0.869039i \(0.664738\pi\)
\(140\) 0 0
\(141\) 91.7214i 0.650506i
\(142\) 0 0
\(143\) 273.261i 1.91092i
\(144\) 0 0
\(145\) 53.4099i 0.368344i
\(146\) 0 0
\(147\) 172.922i 1.17634i
\(148\) 0 0
\(149\) −50.0197 −0.335703 −0.167851 0.985812i \(-0.553683\pi\)
−0.167851 + 0.985812i \(0.553683\pi\)
\(150\) 0 0
\(151\) 204.762i 1.35604i −0.735045 0.678019i \(-0.762839\pi\)
0.735045 0.678019i \(-0.237161\pi\)
\(152\) 0 0
\(153\) 210.567 1.37626
\(154\) 0 0
\(155\) 72.1482i 0.465472i
\(156\) 0 0
\(157\) 57.6193 0.367002 0.183501 0.983020i \(-0.441257\pi\)
0.183501 + 0.983020i \(0.441257\pi\)
\(158\) 0 0
\(159\) −53.6881 −0.337661
\(160\) 0 0
\(161\) −123.409 −0.766517
\(162\) 0 0
\(163\) −97.9480 −0.600908 −0.300454 0.953796i \(-0.597138\pi\)
−0.300454 + 0.953796i \(0.597138\pi\)
\(164\) 0 0
\(165\) 194.939i 1.18145i
\(166\) 0 0
\(167\) 84.7060i 0.507222i 0.967306 + 0.253611i \(0.0816182\pi\)
−0.967306 + 0.253611i \(0.918382\pi\)
\(168\) 0 0
\(169\) −27.6597 −0.163667
\(170\) 0 0
\(171\) −99.9803 + 149.227i −0.584680 + 0.872674i
\(172\) 0 0
\(173\) 22.3618i 0.129259i 0.997909 + 0.0646294i \(0.0205865\pi\)
−0.997909 + 0.0646294i \(0.979413\pi\)
\(174\) 0 0
\(175\) −57.8959 −0.330834
\(176\) 0 0
\(177\) 82.7977 0.467784
\(178\) 0 0
\(179\) 72.7922i 0.406661i −0.979110 0.203330i \(-0.934823\pi\)
0.979110 0.203330i \(-0.0651765\pi\)
\(180\) 0 0
\(181\) 350.286i 1.93528i −0.252326 0.967642i \(-0.581196\pi\)
0.252326 0.967642i \(-0.418804\pi\)
\(182\) 0 0
\(183\) 21.3256i 0.116533i
\(184\) 0 0
\(185\) 144.760i 0.782484i
\(186\) 0 0
\(187\) 434.011 2.32091
\(188\) 0 0
\(189\) 5.76656i 0.0305109i
\(190\) 0 0
\(191\) 107.952 0.565194 0.282597 0.959239i \(-0.408804\pi\)
0.282597 + 0.959239i \(0.408804\pi\)
\(192\) 0 0
\(193\) 267.636i 1.38672i −0.720593 0.693359i \(-0.756130\pi\)
0.720593 0.693359i \(-0.243870\pi\)
\(194\) 0 0
\(195\) 140.293 0.719453
\(196\) 0 0
\(197\) 290.715 1.47571 0.737854 0.674960i \(-0.235839\pi\)
0.737854 + 0.674960i \(0.235839\pi\)
\(198\) 0 0
\(199\) −302.296 −1.51907 −0.759537 0.650464i \(-0.774574\pi\)
−0.759537 + 0.650464i \(0.774574\pi\)
\(200\) 0 0
\(201\) 253.235 1.25988
\(202\) 0 0
\(203\) 67.8261i 0.334119i
\(204\) 0 0
\(205\) 47.1080i 0.229795i
\(206\) 0 0
\(207\) 394.501 1.90580
\(208\) 0 0
\(209\) −206.074 + 307.579i −0.986001 + 1.47167i
\(210\) 0 0
\(211\) 73.5756i 0.348700i −0.984684 0.174350i \(-0.944218\pi\)
0.984684 0.174350i \(-0.0557824\pi\)
\(212\) 0 0
\(213\) 264.974 1.24401
\(214\) 0 0
\(215\) 123.976 0.576633
\(216\) 0 0
\(217\) 91.6222i 0.422222i
\(218\) 0 0
\(219\) 62.6359i 0.286009i
\(220\) 0 0
\(221\) 312.347i 1.41334i
\(222\) 0 0
\(223\) 225.342i 1.01050i 0.862973 + 0.505251i \(0.168600\pi\)
−0.862973 + 0.505251i \(0.831400\pi\)
\(224\) 0 0
\(225\) 185.075 0.822557
\(226\) 0 0
\(227\) 19.4056i 0.0854872i 0.999086 + 0.0427436i \(0.0136099\pi\)
−0.999086 + 0.0427436i \(0.986390\pi\)
\(228\) 0 0
\(229\) 285.505 1.24675 0.623374 0.781924i \(-0.285762\pi\)
0.623374 + 0.781924i \(0.285762\pi\)
\(230\) 0 0
\(231\) 247.557i 1.07167i
\(232\) 0 0
\(233\) −359.060 −1.54103 −0.770515 0.637422i \(-0.780001\pi\)
−0.770515 + 0.637422i \(0.780001\pi\)
\(234\) 0 0
\(235\) −49.7235 −0.211590
\(236\) 0 0
\(237\) −486.910 −2.05447
\(238\) 0 0
\(239\) −182.395 −0.763160 −0.381580 0.924336i \(-0.624620\pi\)
−0.381580 + 0.924336i \(0.624620\pi\)
\(240\) 0 0
\(241\) 119.880i 0.497429i −0.968577 0.248714i \(-0.919992\pi\)
0.968577 0.248714i \(-0.0800081\pi\)
\(242\) 0 0
\(243\) 347.075i 1.42829i
\(244\) 0 0
\(245\) −93.7437 −0.382627
\(246\) 0 0
\(247\) 221.358 + 148.307i 0.896185 + 0.600432i
\(248\) 0 0
\(249\) 210.434i 0.845118i
\(250\) 0 0
\(251\) −449.306 −1.79007 −0.895033 0.446000i \(-0.852848\pi\)
−0.895033 + 0.446000i \(0.852848\pi\)
\(252\) 0 0
\(253\) 813.125 3.21393
\(254\) 0 0
\(255\) 222.823i 0.873815i
\(256\) 0 0
\(257\) 469.173i 1.82558i 0.408432 + 0.912789i \(0.366076\pi\)
−0.408432 + 0.912789i \(0.633924\pi\)
\(258\) 0 0
\(259\) 183.833i 0.709778i
\(260\) 0 0
\(261\) 216.819i 0.830724i
\(262\) 0 0
\(263\) 265.109 1.00802 0.504010 0.863698i \(-0.331858\pi\)
0.504010 + 0.863698i \(0.331858\pi\)
\(264\) 0 0
\(265\) 29.1051i 0.109831i
\(266\) 0 0
\(267\) −119.490 −0.447528
\(268\) 0 0
\(269\) 303.491i 1.12822i 0.825700 + 0.564109i \(0.190780\pi\)
−0.825700 + 0.564109i \(0.809220\pi\)
\(270\) 0 0
\(271\) −200.301 −0.739117 −0.369559 0.929207i \(-0.620491\pi\)
−0.369559 + 0.929207i \(0.620491\pi\)
\(272\) 0 0
\(273\) 178.161 0.652604
\(274\) 0 0
\(275\) 381.468 1.38716
\(276\) 0 0
\(277\) −160.105 −0.577998 −0.288999 0.957329i \(-0.593322\pi\)
−0.288999 + 0.957329i \(0.593322\pi\)
\(278\) 0 0
\(279\) 292.888i 1.04978i
\(280\) 0 0
\(281\) 383.009i 1.36302i 0.731808 + 0.681511i \(0.238677\pi\)
−0.731808 + 0.681511i \(0.761323\pi\)
\(282\) 0 0
\(283\) −226.723 −0.801140 −0.400570 0.916266i \(-0.631188\pi\)
−0.400570 + 0.916266i \(0.631188\pi\)
\(284\) 0 0
\(285\) −157.913 105.799i −0.554079 0.371226i
\(286\) 0 0
\(287\) 59.8232i 0.208443i
\(288\) 0 0
\(289\) 207.090 0.716573
\(290\) 0 0
\(291\) 622.815 2.14026
\(292\) 0 0
\(293\) 429.962i 1.46745i −0.679447 0.733724i \(-0.737780\pi\)
0.679447 0.733724i \(-0.262220\pi\)
\(294\) 0 0
\(295\) 44.8859i 0.152155i
\(296\) 0 0
\(297\) 37.9950i 0.127929i
\(298\) 0 0
\(299\) 585.187i 1.95715i
\(300\) 0 0
\(301\) 157.439 0.523054
\(302\) 0 0
\(303\) 645.804i 2.13137i
\(304\) 0 0
\(305\) 11.5609 0.0379046
\(306\) 0 0
\(307\) 208.273i 0.678414i 0.940712 + 0.339207i \(0.110159\pi\)
−0.940712 + 0.339207i \(0.889841\pi\)
\(308\) 0 0
\(309\) −319.047 −1.03251
\(310\) 0 0
\(311\) 135.179 0.434659 0.217329 0.976098i \(-0.430265\pi\)
0.217329 + 0.976098i \(0.430265\pi\)
\(312\) 0 0
\(313\) −412.048 −1.31645 −0.658224 0.752823i \(-0.728692\pi\)
−0.658224 + 0.752823i \(0.728692\pi\)
\(314\) 0 0
\(315\) −65.1114 −0.206703
\(316\) 0 0
\(317\) 386.723i 1.21995i −0.792422 0.609973i \(-0.791180\pi\)
0.792422 0.609973i \(-0.208820\pi\)
\(318\) 0 0
\(319\) 446.896i 1.40093i
\(320\) 0 0
\(321\) −600.140 −1.86960
\(322\) 0 0
\(323\) −235.550 + 351.574i −0.729257 + 1.08847i
\(324\) 0 0
\(325\) 274.533i 0.844718i
\(326\) 0 0
\(327\) 182.648 0.558557
\(328\) 0 0
\(329\) −63.1447 −0.191929
\(330\) 0 0
\(331\) 143.670i 0.434047i −0.976166 0.217024i \(-0.930365\pi\)
0.976166 0.217024i \(-0.0696349\pi\)
\(332\) 0 0
\(333\) 587.655i 1.76473i
\(334\) 0 0
\(335\) 137.283i 0.409799i
\(336\) 0 0
\(337\) 162.296i 0.481591i −0.970576 0.240795i \(-0.922592\pi\)
0.970576 0.240795i \(-0.0774082\pi\)
\(338\) 0 0
\(339\) −469.825 −1.38591
\(340\) 0 0
\(341\) 603.685i 1.77034i
\(342\) 0 0
\(343\) −263.959 −0.769561
\(344\) 0 0
\(345\) 417.461i 1.21003i
\(346\) 0 0
\(347\) −429.273 −1.23710 −0.618549 0.785746i \(-0.712279\pi\)
−0.618549 + 0.785746i \(0.712279\pi\)
\(348\) 0 0
\(349\) 463.869 1.32914 0.664568 0.747227i \(-0.268615\pi\)
0.664568 + 0.747227i \(0.268615\pi\)
\(350\) 0 0
\(351\) −27.3441 −0.0779034
\(352\) 0 0
\(353\) 78.3436 0.221937 0.110968 0.993824i \(-0.464605\pi\)
0.110968 + 0.993824i \(0.464605\pi\)
\(354\) 0 0
\(355\) 143.647i 0.404638i
\(356\) 0 0
\(357\) 282.966i 0.792623i
\(358\) 0 0
\(359\) −243.233 −0.677528 −0.338764 0.940871i \(-0.610009\pi\)
−0.338764 + 0.940871i \(0.610009\pi\)
\(360\) 0 0
\(361\) −137.315 333.865i −0.380374 0.924833i
\(362\) 0 0
\(363\) 1111.32i 3.06150i
\(364\) 0 0
\(365\) 33.9558 0.0930297
\(366\) 0 0
\(367\) −323.083 −0.880335 −0.440167 0.897916i \(-0.645081\pi\)
−0.440167 + 0.897916i \(0.645081\pi\)
\(368\) 0 0
\(369\) 191.236i 0.518255i
\(370\) 0 0
\(371\) 36.9610i 0.0996255i
\(372\) 0 0
\(373\) 86.8197i 0.232761i 0.993205 + 0.116380i \(0.0371291\pi\)
−0.993205 + 0.116380i \(0.962871\pi\)
\(374\) 0 0
\(375\) 445.950i 1.18920i
\(376\) 0 0
\(377\) −321.621 −0.853105
\(378\) 0 0
\(379\) 20.8856i 0.0551071i −0.999620 0.0275535i \(-0.991228\pi\)
0.999620 0.0275535i \(-0.00877168\pi\)
\(380\) 0 0
\(381\) 172.847 0.453666
\(382\) 0 0
\(383\) 310.036i 0.809492i −0.914429 0.404746i \(-0.867360\pi\)
0.914429 0.404746i \(-0.132640\pi\)
\(384\) 0 0
\(385\) −134.204 −0.348582
\(386\) 0 0
\(387\) −503.285 −1.30048
\(388\) 0 0
\(389\) −483.760 −1.24360 −0.621799 0.783177i \(-0.713598\pi\)
−0.621799 + 0.783177i \(0.713598\pi\)
\(390\) 0 0
\(391\) 929.430 2.37706
\(392\) 0 0
\(393\) 281.883i 0.717260i
\(394\) 0 0
\(395\) 263.961i 0.668256i
\(396\) 0 0
\(397\) −114.551 −0.288543 −0.144271 0.989538i \(-0.546084\pi\)
−0.144271 + 0.989538i \(0.546084\pi\)
\(398\) 0 0
\(399\) −200.536 134.356i −0.502596 0.336733i
\(400\) 0 0
\(401\) 20.2091i 0.0503968i 0.999682 + 0.0251984i \(0.00802175\pi\)
−0.999682 + 0.0251984i \(0.991978\pi\)
\(402\) 0 0
\(403\) 434.458 1.07806
\(404\) 0 0
\(405\) −178.641 −0.441089
\(406\) 0 0
\(407\) 1211.24i 2.97603i
\(408\) 0 0
\(409\) 137.213i 0.335485i −0.985831 0.167742i \(-0.946352\pi\)
0.985831 0.167742i \(-0.0536477\pi\)
\(410\) 0 0
\(411\) 725.709i 1.76571i
\(412\) 0 0
\(413\) 57.0013i 0.138018i
\(414\) 0 0
\(415\) 114.080 0.274891
\(416\) 0 0
\(417\) 590.839i 1.41688i
\(418\) 0 0
\(419\) −69.2314 −0.165230 −0.0826151 0.996582i \(-0.526327\pi\)
−0.0826151 + 0.996582i \(0.526327\pi\)
\(420\) 0 0
\(421\) 96.9103i 0.230191i 0.993354 + 0.115095i \(0.0367174\pi\)
−0.993354 + 0.115095i \(0.963283\pi\)
\(422\) 0 0
\(423\) 201.854 0.477197
\(424\) 0 0
\(425\) 436.031 1.02596
\(426\) 0 0
\(427\) 14.6814 0.0343827
\(428\) 0 0
\(429\) −1173.88 −2.73631
\(430\) 0 0
\(431\) 473.629i 1.09891i 0.835524 + 0.549453i \(0.185164\pi\)
−0.835524 + 0.549453i \(0.814836\pi\)
\(432\) 0 0
\(433\) 371.336i 0.857588i 0.903402 + 0.428794i \(0.141061\pi\)
−0.903402 + 0.428794i \(0.858939\pi\)
\(434\) 0 0
\(435\) 229.438 0.527444
\(436\) 0 0
\(437\) −441.306 + 658.679i −1.00985 + 1.50727i
\(438\) 0 0
\(439\) 576.675i 1.31361i −0.754060 0.656806i \(-0.771907\pi\)
0.754060 0.656806i \(-0.228093\pi\)
\(440\) 0 0
\(441\) 380.555 0.862937
\(442\) 0 0
\(443\) −436.152 −0.984542 −0.492271 0.870442i \(-0.663833\pi\)
−0.492271 + 0.870442i \(0.663833\pi\)
\(444\) 0 0
\(445\) 64.7773i 0.145567i
\(446\) 0 0
\(447\) 214.875i 0.480704i
\(448\) 0 0
\(449\) 875.653i 1.95023i −0.221699 0.975115i \(-0.571160\pi\)
0.221699 0.975115i \(-0.428840\pi\)
\(450\) 0 0
\(451\) 394.166i 0.873982i
\(452\) 0 0
\(453\) −879.615 −1.94176
\(454\) 0 0
\(455\) 96.5837i 0.212272i
\(456\) 0 0
\(457\) −135.889 −0.297350 −0.148675 0.988886i \(-0.547501\pi\)
−0.148675 + 0.988886i \(0.547501\pi\)
\(458\) 0 0
\(459\) 43.4296i 0.0946179i
\(460\) 0 0
\(461\) −258.134 −0.559943 −0.279972 0.960008i \(-0.590325\pi\)
−0.279972 + 0.960008i \(0.590325\pi\)
\(462\) 0 0
\(463\) 83.7030 0.180784 0.0903920 0.995906i \(-0.471188\pi\)
0.0903920 + 0.995906i \(0.471188\pi\)
\(464\) 0 0
\(465\) −309.934 −0.666526
\(466\) 0 0
\(467\) 210.142 0.449984 0.224992 0.974361i \(-0.427764\pi\)
0.224992 + 0.974361i \(0.427764\pi\)
\(468\) 0 0
\(469\) 174.338i 0.371722i
\(470\) 0 0
\(471\) 247.521i 0.525522i
\(472\) 0 0
\(473\) −1037.34 −2.19312
\(474\) 0 0
\(475\) −207.034 + 309.011i −0.435860 + 0.650550i
\(476\) 0 0
\(477\) 118.153i 0.247700i
\(478\) 0 0
\(479\) 226.280 0.472400 0.236200 0.971704i \(-0.424098\pi\)
0.236200 + 0.971704i \(0.424098\pi\)
\(480\) 0 0
\(481\) 871.705 1.81228
\(482\) 0 0
\(483\) 530.141i 1.09760i
\(484\) 0 0
\(485\) 337.637i 0.696159i
\(486\) 0 0
\(487\) 899.572i 1.84717i 0.383394 + 0.923585i \(0.374755\pi\)
−0.383394 + 0.923585i \(0.625245\pi\)
\(488\) 0 0
\(489\) 420.765i 0.860460i
\(490\) 0 0
\(491\) −405.337 −0.825533 −0.412767 0.910837i \(-0.635438\pi\)
−0.412767 + 0.910837i \(0.635438\pi\)
\(492\) 0 0
\(493\) 510.818i 1.03614i
\(494\) 0 0
\(495\) 429.009 0.866686
\(496\) 0 0
\(497\) 182.419i 0.367041i
\(498\) 0 0
\(499\) 194.024 0.388825 0.194413 0.980920i \(-0.437720\pi\)
0.194413 + 0.980920i \(0.437720\pi\)
\(500\) 0 0
\(501\) 363.880 0.726308
\(502\) 0 0
\(503\) 623.065 1.23870 0.619348 0.785116i \(-0.287397\pi\)
0.619348 + 0.785116i \(0.287397\pi\)
\(504\) 0 0
\(505\) 350.100 0.693267
\(506\) 0 0
\(507\) 118.821i 0.234360i
\(508\) 0 0
\(509\) 321.176i 0.630995i −0.948926 0.315497i \(-0.897829\pi\)
0.948926 0.315497i \(-0.102171\pi\)
\(510\) 0 0
\(511\) 43.1211 0.0843857
\(512\) 0 0
\(513\) 30.7782 + 20.6210i 0.0599964 + 0.0401968i
\(514\) 0 0
\(515\) 172.960i 0.335845i
\(516\) 0 0
\(517\) 416.051 0.804741
\(518\) 0 0
\(519\) 96.0618 0.185090
\(520\) 0 0
\(521\) 535.331i 1.02751i 0.857938 + 0.513753i \(0.171745\pi\)
−0.857938 + 0.513753i \(0.828255\pi\)
\(522\) 0 0
\(523\) 873.472i 1.67012i 0.550160 + 0.835059i \(0.314567\pi\)
−0.550160 + 0.835059i \(0.685433\pi\)
\(524\) 0 0
\(525\) 248.709i 0.473732i
\(526\) 0 0
\(527\) 690.034i 1.30936i
\(528\) 0 0
\(529\) 1212.30 2.29168
\(530\) 0 0
\(531\) 182.215i 0.343155i
\(532\) 0 0
\(533\) −283.672 −0.532218
\(534\) 0 0
\(535\) 325.345i 0.608122i
\(536\) 0 0
\(537\) −312.701 −0.582311
\(538\) 0 0
\(539\) 784.380 1.45525
\(540\) 0 0
\(541\) 302.002 0.558229 0.279114 0.960258i \(-0.409959\pi\)
0.279114 + 0.960258i \(0.409959\pi\)
\(542\) 0 0
\(543\) −1504.76 −2.77120
\(544\) 0 0
\(545\) 99.0162i 0.181681i
\(546\) 0 0
\(547\) 1004.10i 1.83564i 0.396994 + 0.917821i \(0.370054\pi\)
−0.396994 + 0.917821i \(0.629946\pi\)
\(548\) 0 0
\(549\) −46.9319 −0.0854861
\(550\) 0 0
\(551\) 362.012 + 242.543i 0.657009 + 0.440188i
\(552\) 0 0
\(553\) 335.209i 0.606164i
\(554\) 0 0
\(555\) −621.858 −1.12046
\(556\) 0 0
\(557\) 449.650 0.807271 0.403635 0.914920i \(-0.367746\pi\)
0.403635 + 0.914920i \(0.367746\pi\)
\(558\) 0 0
\(559\) 746.552i 1.33551i
\(560\) 0 0
\(561\) 1864.42i 3.32339i
\(562\) 0 0
\(563\) 829.613i 1.47356i −0.676133 0.736779i \(-0.736346\pi\)
0.676133 0.736779i \(-0.263654\pi\)
\(564\) 0 0
\(565\) 254.699i 0.450795i
\(566\) 0 0
\(567\) −226.859 −0.400104
\(568\) 0 0
\(569\) 46.4574i 0.0816475i −0.999166 0.0408238i \(-0.987002\pi\)
0.999166 0.0408238i \(-0.0129982\pi\)
\(570\) 0 0
\(571\) 788.963 1.38172 0.690860 0.722988i \(-0.257232\pi\)
0.690860 + 0.722988i \(0.257232\pi\)
\(572\) 0 0
\(573\) 463.740i 0.809320i
\(574\) 0 0
\(575\) 816.910 1.42071
\(576\) 0 0
\(577\) −25.1604 −0.0436055 −0.0218028 0.999762i \(-0.506941\pi\)
−0.0218028 + 0.999762i \(0.506941\pi\)
\(578\) 0 0
\(579\) −1149.71 −1.98569
\(580\) 0 0
\(581\) 144.872 0.249349
\(582\) 0 0
\(583\) 243.531i 0.417720i
\(584\) 0 0
\(585\) 308.748i 0.527774i
\(586\) 0 0
\(587\) 779.591 1.32809 0.664047 0.747691i \(-0.268838\pi\)
0.664047 + 0.747691i \(0.268838\pi\)
\(588\) 0 0
\(589\) −489.021 327.638i −0.830256 0.556261i
\(590\) 0 0
\(591\) 1248.85i 2.11312i
\(592\) 0 0
\(593\) −657.878 −1.10941 −0.554703 0.832048i \(-0.687168\pi\)
−0.554703 + 0.832048i \(0.687168\pi\)
\(594\) 0 0
\(595\) −153.400 −0.257816
\(596\) 0 0
\(597\) 1298.60i 2.17521i
\(598\) 0 0
\(599\) 761.121i 1.27065i −0.772244 0.635326i \(-0.780866\pi\)
0.772244 0.635326i \(-0.219134\pi\)
\(600\) 0 0
\(601\) 798.347i 1.32837i 0.747570 + 0.664183i \(0.231220\pi\)
−0.747570 + 0.664183i \(0.768780\pi\)
\(602\) 0 0
\(603\) 557.303i 0.924218i
\(604\) 0 0
\(605\) 602.465 0.995810
\(606\) 0 0
\(607\) 752.935i 1.24042i −0.784436 0.620210i \(-0.787047\pi\)
0.784436 0.620210i \(-0.212953\pi\)
\(608\) 0 0
\(609\) 291.367 0.478436
\(610\) 0 0
\(611\) 299.422i 0.490053i
\(612\) 0 0
\(613\) 536.480 0.875171 0.437586 0.899177i \(-0.355834\pi\)
0.437586 + 0.899177i \(0.355834\pi\)
\(614\) 0 0
\(615\) 202.366 0.329051
\(616\) 0 0
\(617\) −317.064 −0.513879 −0.256940 0.966427i \(-0.582714\pi\)
−0.256940 + 0.966427i \(0.582714\pi\)
\(618\) 0 0
\(619\) −351.867 −0.568445 −0.284222 0.958758i \(-0.591735\pi\)
−0.284222 + 0.958758i \(0.591735\pi\)
\(620\) 0 0
\(621\) 81.3660i 0.131024i
\(622\) 0 0
\(623\) 82.2617i 0.132041i
\(624\) 0 0
\(625\) 247.659 0.396254
\(626\) 0 0
\(627\) 1321.30 + 885.254i 2.10734 + 1.41189i
\(628\) 0 0
\(629\) 1384.50i 2.20111i
\(630\) 0 0
\(631\) −371.411 −0.588606 −0.294303 0.955712i \(-0.595088\pi\)
−0.294303 + 0.955712i \(0.595088\pi\)
\(632\) 0 0
\(633\) −316.066 −0.499315
\(634\) 0 0
\(635\) 93.7029i 0.147564i
\(636\) 0 0
\(637\) 564.500i 0.886186i
\(638\) 0 0
\(639\) 583.137i 0.912578i
\(640\) 0 0
\(641\) 256.605i 0.400319i −0.979763 0.200160i \(-0.935854\pi\)
0.979763 0.200160i \(-0.0641461\pi\)
\(642\) 0 0
\(643\) 759.280 1.18084 0.590420 0.807096i \(-0.298962\pi\)
0.590420 + 0.807096i \(0.298962\pi\)
\(644\) 0 0
\(645\) 532.577i 0.825700i
\(646\) 0 0
\(647\) −398.410 −0.615780 −0.307890 0.951422i \(-0.599623\pi\)
−0.307890 + 0.951422i \(0.599623\pi\)
\(648\) 0 0
\(649\) 375.573i 0.578695i
\(650\) 0 0
\(651\) −393.591 −0.604594
\(652\) 0 0
\(653\) −453.692 −0.694781 −0.347391 0.937721i \(-0.612932\pi\)
−0.347391 + 0.937721i \(0.612932\pi\)
\(654\) 0 0
\(655\) −152.813 −0.233302
\(656\) 0 0
\(657\) −137.845 −0.209809
\(658\) 0 0
\(659\) 193.340i 0.293383i 0.989182 + 0.146692i \(0.0468625\pi\)
−0.989182 + 0.146692i \(0.953138\pi\)
\(660\) 0 0
\(661\) 902.276i 1.36502i −0.730878 0.682508i \(-0.760889\pi\)
0.730878 0.682508i \(-0.239111\pi\)
\(662\) 0 0
\(663\) −1341.78 −2.02380
\(664\) 0 0
\(665\) 72.8366 108.713i 0.109529 0.163479i
\(666\) 0 0
\(667\) 957.024i 1.43482i
\(668\) 0 0
\(669\) 968.023 1.44697
\(670\) 0 0
\(671\) −96.7335 −0.144163
\(672\) 0 0
\(673\) 486.217i 0.722463i 0.932476 + 0.361231i \(0.117644\pi\)
−0.932476 + 0.361231i \(0.882356\pi\)
\(674\) 0 0
\(675\) 38.1719i 0.0565509i
\(676\) 0 0
\(677\) 1034.98i 1.52877i −0.644759 0.764386i \(-0.723042\pi\)
0.644759 0.764386i \(-0.276958\pi\)
\(678\) 0 0
\(679\) 428.771i 0.631474i
\(680\) 0 0
\(681\) 83.3626 0.122412
\(682\) 0 0
\(683\) 100.984i 0.147853i −0.997264 0.0739267i \(-0.976447\pi\)
0.997264 0.0739267i \(-0.0235531\pi\)
\(684\) 0 0
\(685\) 393.417 0.574332
\(686\) 0 0
\(687\) 1226.47i 1.78526i
\(688\) 0 0
\(689\) 175.263 0.254374
\(690\) 0 0
\(691\) −774.181 −1.12038 −0.560189 0.828365i \(-0.689272\pi\)
−0.560189 + 0.828365i \(0.689272\pi\)
\(692\) 0 0
\(693\) 544.806 0.786156
\(694\) 0 0
\(695\) −320.302 −0.460867
\(696\) 0 0
\(697\) 450.546i 0.646407i
\(698\) 0 0
\(699\) 1542.45i 2.20665i
\(700\) 0 0
\(701\) 1010.71 1.44181 0.720906 0.693033i \(-0.243726\pi\)
0.720906 + 0.693033i \(0.243726\pi\)
\(702\) 0 0
\(703\) −981.180 657.378i −1.39570 0.935104i
\(704\) 0 0
\(705\) 213.602i 0.302982i
\(706\) 0 0
\(707\) 444.598 0.628851
\(708\) 0 0
\(709\) −542.239 −0.764794 −0.382397 0.923998i \(-0.624901\pi\)
−0.382397 + 0.923998i \(0.624901\pi\)
\(710\) 0 0
\(711\) 1071.56i 1.50711i
\(712\) 0 0
\(713\) 1292.79i 1.81317i
\(714\) 0 0
\(715\) 636.375i 0.890035i
\(716\) 0 0
\(717\) 783.534i 1.09280i
\(718\) 0 0
\(719\) 105.476 0.146699 0.0733493 0.997306i \(-0.476631\pi\)
0.0733493 + 0.997306i \(0.476631\pi\)
\(720\) 0 0
\(721\) 219.645i 0.304639i
\(722\) 0 0
\(723\) −514.982 −0.712285
\(724\) 0 0
\(725\) 448.977i 0.619278i
\(726\) 0 0
\(727\) 859.614 1.18241 0.591206 0.806520i \(-0.298652\pi\)
0.591206 + 0.806520i \(0.298652\pi\)
\(728\) 0 0
\(729\) 800.584 1.09820
\(730\) 0 0
\(731\) −1185.72 −1.62205
\(732\) 0 0
\(733\) 1170.01 1.59619 0.798097 0.602528i \(-0.205840\pi\)
0.798097 + 0.602528i \(0.205840\pi\)
\(734\) 0 0
\(735\) 402.704i 0.547897i
\(736\) 0 0
\(737\) 1148.68i 1.55859i
\(738\) 0 0
\(739\) −742.350 −1.00453 −0.502267 0.864713i \(-0.667500\pi\)
−0.502267 + 0.864713i \(0.667500\pi\)
\(740\) 0 0
\(741\) 637.096 950.909i 0.859779 1.28328i
\(742\) 0 0
\(743\) 1306.08i 1.75784i 0.476967 + 0.878921i \(0.341736\pi\)
−0.476967 + 0.878921i \(0.658264\pi\)
\(744\) 0 0
\(745\) −116.487 −0.156358
\(746\) 0 0
\(747\) −463.109 −0.619959
\(748\) 0 0
\(749\) 413.161i 0.551617i
\(750\) 0 0
\(751\) 324.212i 0.431707i −0.976426 0.215853i \(-0.930747\pi\)
0.976426 0.215853i \(-0.0692533\pi\)
\(752\) 0 0
\(753\) 1930.13i 2.56325i
\(754\) 0 0
\(755\) 476.853i 0.631593i
\(756\) 0 0
\(757\) −1118.35 −1.47734 −0.738672 0.674065i \(-0.764547\pi\)
−0.738672 + 0.674065i \(0.764547\pi\)
\(758\) 0 0
\(759\) 3493.02i 4.60214i
\(760\) 0 0
\(761\) 696.142 0.914772 0.457386 0.889268i \(-0.348786\pi\)
0.457386 + 0.889268i \(0.348786\pi\)
\(762\) 0 0
\(763\) 125.742i 0.164800i
\(764\) 0 0
\(765\) 490.373 0.641010
\(766\) 0 0
\(767\) −270.291 −0.352400
\(768\) 0 0
\(769\) 55.8346 0.0726067 0.0363034 0.999341i \(-0.488442\pi\)
0.0363034 + 0.999341i \(0.488442\pi\)
\(770\) 0 0
\(771\) 2015.48 2.61411
\(772\) 0 0
\(773\) 1113.47i 1.44045i −0.693740 0.720226i \(-0.744038\pi\)
0.693740 0.720226i \(-0.255962\pi\)
\(774\) 0 0
\(775\) 606.496i 0.782575i
\(776\) 0 0
\(777\) −789.708 −1.01635
\(778\) 0 0
\(779\) 319.298 + 213.925i 0.409882 + 0.274615i
\(780\) 0 0
\(781\) 1201.93i 1.53897i
\(782\) 0 0
\(783\) −44.7190 −0.0571124
\(784\) 0 0
\(785\) 134.185 0.170936
\(786\) 0 0
\(787\) 104.121i 0.132301i 0.997810 + 0.0661504i \(0.0210717\pi\)
−0.997810 + 0.0661504i \(0.978928\pi\)
\(788\) 0 0
\(789\) 1138.86i 1.44342i
\(790\) 0 0
\(791\) 323.447i 0.408908i
\(792\) 0 0
\(793\) 69.6169i 0.0877892i
\(794\) 0 0
\(795\) −125.030 −0.157270
\(796\) 0 0
\(797\) 292.129i 0.366536i −0.983063 0.183268i \(-0.941332\pi\)
0.983063 0.183268i \(-0.0586677\pi\)
\(798\) 0 0
\(799\) 475.561 0.595196
\(800\) 0 0
\(801\) 262.965i 0.328296i
\(802\) 0 0
\(803\) −284.118 −0.353821
\(804\) 0 0
\(805\) −287.397 −0.357015
\(806\) 0 0
\(807\) 1303.74 1.61553
\(808\) 0 0
\(809\) −304.463 −0.376344 −0.188172 0.982136i \(-0.560256\pi\)
−0.188172 + 0.982136i \(0.560256\pi\)
\(810\) 0 0
\(811\) 816.016i 1.00618i 0.864233 + 0.503092i \(0.167804\pi\)
−0.864233 + 0.503092i \(0.832196\pi\)
\(812\) 0 0
\(813\) 860.452i 1.05837i
\(814\) 0 0
\(815\) −228.103 −0.279881
\(816\) 0 0
\(817\) 562.997 840.310i 0.689102 1.02853i
\(818\) 0 0
\(819\) 392.084i 0.478735i
\(820\) 0 0
\(821\) 721.591 0.878917 0.439458 0.898263i \(-0.355170\pi\)
0.439458 + 0.898263i \(0.355170\pi\)
\(822\) 0 0
\(823\) 414.065 0.503117 0.251558 0.967842i \(-0.419057\pi\)
0.251558 + 0.967842i \(0.419057\pi\)
\(824\) 0 0
\(825\) 1638.71i 1.98631i
\(826\) 0 0
\(827\) 100.878i 0.121981i −0.998138 0.0609903i \(-0.980574\pi\)
0.998138 0.0609903i \(-0.0194259\pi\)
\(828\) 0 0
\(829\) 621.755i 0.750006i 0.927024 + 0.375003i \(0.122358\pi\)
−0.927024 + 0.375003i \(0.877642\pi\)
\(830\) 0 0
\(831\) 687.781i 0.827655i
\(832\) 0 0
\(833\) 896.575 1.07632
\(834\) 0 0
\(835\) 197.265i 0.236245i
\(836\) 0 0
\(837\) 60.4082 0.0721723
\(838\) 0 0
\(839\) 115.138i 0.137232i 0.997643 + 0.0686160i \(0.0218583\pi\)
−0.997643 + 0.0686160i \(0.978142\pi\)
\(840\) 0 0
\(841\) 315.016 0.374573
\(842\) 0 0
\(843\) 1645.33 1.95176
\(844\) 0 0
\(845\) −64.4144 −0.0762300
\(846\) 0 0
\(847\) 765.080 0.903282
\(848\) 0 0
\(849\) 973.956i 1.14718i
\(850\) 0 0
\(851\) 2593.87i 3.04803i
\(852\) 0 0
\(853\) 762.387 0.893772 0.446886 0.894591i \(-0.352533\pi\)
0.446886 + 0.894591i \(0.352533\pi\)
\(854\) 0 0
\(855\) −232.836 + 347.523i −0.272323 + 0.406460i
\(856\) 0 0
\(857\) 537.227i 0.626869i 0.949610 + 0.313435i \(0.101480\pi\)
−0.949610 + 0.313435i \(0.898520\pi\)
\(858\) 0 0
\(859\) 645.182 0.751084 0.375542 0.926805i \(-0.377456\pi\)
0.375542 + 0.926805i \(0.377456\pi\)
\(860\) 0 0
\(861\) 256.988 0.298477
\(862\) 0 0
\(863\) 892.080i 1.03370i 0.856077 + 0.516848i \(0.172895\pi\)
−0.856077 + 0.516848i \(0.827105\pi\)
\(864\) 0 0
\(865\) 52.0765i 0.0602041i
\(866\) 0 0
\(867\) 889.615i 1.02608i
\(868\) 0 0
\(869\) 2208.64i 2.54159i
\(870\) 0 0
\(871\) −826.681 −0.949118
\(872\) 0 0
\(873\) 1370.65i 1.57004i
\(874\) 0 0
\(875\) −307.010 −0.350869
\(876\) 0 0
\(877\) 873.903i 0.996469i 0.867042 + 0.498235i \(0.166018\pi\)
−0.867042 + 0.498235i \(0.833982\pi\)
\(878\) 0 0
\(879\) −1847.03 −2.10129
\(880\) 0 0
\(881\) −687.622 −0.780502 −0.390251 0.920709i \(-0.627612\pi\)
−0.390251 + 0.920709i \(0.627612\pi\)
\(882\) 0 0
\(883\) 1305.56 1.47855 0.739276 0.673403i \(-0.235168\pi\)
0.739276 + 0.673403i \(0.235168\pi\)
\(884\) 0 0
\(885\) 192.821 0.217876
\(886\) 0 0
\(887\) 57.7531i 0.0651106i 0.999470 + 0.0325553i \(0.0103645\pi\)
−0.999470 + 0.0325553i \(0.989635\pi\)
\(888\) 0 0
\(889\) 118.995i 0.133852i
\(890\) 0 0
\(891\) 1494.74 1.67760
\(892\) 0 0
\(893\) −225.803 + 337.026i −0.252859 + 0.377409i
\(894\) 0 0
\(895\) 169.520i 0.189408i
\(896\) 0 0
\(897\) −2513.85 −2.80250
\(898\) 0 0
\(899\) 710.520 0.790345
\(900\) 0 0
\(901\) 278.364i 0.308951i
\(902\) 0 0
\(903\) 676.328i 0.748979i
\(904\) 0 0
\(905\) 815.753i 0.901385i
\(906\) 0 0
\(907\) 837.489i 0.923362i 0.887046 + 0.461681i \(0.152753\pi\)
−0.887046 + 0.461681i \(0.847247\pi\)
\(908\) 0 0
\(909\) −1421.24 −1.56352
\(910\) 0 0
\(911\) 662.892i 0.727653i −0.931467 0.363826i \(-0.881470\pi\)
0.931467 0.363826i \(-0.118530\pi\)
\(912\) 0 0
\(913\) −954.537 −1.04550
\(914\) 0 0
\(915\) 49.6634i 0.0542769i
\(916\) 0 0
\(917\) −194.060 −0.211625
\(918\) 0 0
\(919\) −1000.18 −1.08834 −0.544169 0.838976i \(-0.683155\pi\)
−0.544169 + 0.838976i \(0.683155\pi\)
\(920\) 0 0
\(921\) 894.699 0.971443
\(922\) 0 0
\(923\) −865.003 −0.937164
\(924\) 0 0
\(925\) 1216.88i 1.31555i
\(926\) 0 0
\(927\) 702.137i 0.757429i
\(928\) 0 0
\(929\) 1504.37 1.61934 0.809671 0.586885i \(-0.199646\pi\)
0.809671 + 0.586885i \(0.199646\pi\)
\(930\) 0 0
\(931\) −425.706 + 635.395i −0.457257 + 0.682486i
\(932\) 0 0
\(933\) 580.701i 0.622402i
\(934\) 0 0
\(935\) 1010.73 1.08100
\(936\) 0 0
\(937\) −961.503 −1.02615 −0.513075 0.858344i \(-0.671494\pi\)
−0.513075 + 0.858344i \(0.671494\pi\)
\(938\) 0 0
\(939\) 1770.08i 1.88506i
\(940\) 0 0
\(941\) 681.880i 0.724633i 0.932055 + 0.362317i \(0.118014\pi\)
−0.932055 + 0.362317i \(0.881986\pi\)
\(942\) 0 0
\(943\) 844.103i 0.895126i
\(944\) 0 0
\(945\) 13.4293i 0.0142109i
\(946\) 0 0
\(947\) −1441.83 −1.52253 −0.761263 0.648443i \(-0.775420\pi\)
−0.761263 + 0.648443i \(0.775420\pi\)
\(948\) 0 0
\(949\) 204.473i 0.215462i
\(950\) 0 0
\(951\) −1661.29 −1.74688
\(952\) 0 0
\(953\) 495.317i 0.519745i −0.965643 0.259872i \(-0.916320\pi\)
0.965643 0.259872i \(-0.0836805\pi\)
\(954\) 0 0
\(955\) 251.400 0.263247
\(956\) 0 0
\(957\) −1919.78 −2.00604
\(958\) 0 0
\(959\) 499.607 0.520967
\(960\) 0 0
\(961\) 1.20041 0.00124912
\(962\) 0 0
\(963\) 1320.75i 1.37149i
\(964\) 0 0
\(965\) 623.276i 0.645882i
\(966\) 0 0
\(967\) 1020.51 1.05534 0.527670 0.849449i \(-0.323066\pi\)
0.527670 + 0.849449i \(0.323066\pi\)
\(968\) 0 0
\(969\) 1510.29 + 1011.88i 1.55861 + 1.04425i
\(970\) 0 0
\(971\) 563.750i 0.580587i −0.956938 0.290293i \(-0.906247\pi\)
0.956938 0.290293i \(-0.0937529\pi\)
\(972\) 0 0
\(973\) −406.757 −0.418045
\(974\) 0 0
\(975\) −1179.34 −1.20958
\(976\) 0 0
\(977\) 786.557i 0.805073i 0.915404 + 0.402537i \(0.131871\pi\)
−0.915404 + 0.402537i \(0.868129\pi\)
\(978\) 0 0
\(979\) 542.010i 0.553636i
\(980\) 0 0
\(981\) 401.959i 0.409744i
\(982\) 0 0
\(983\) 337.555i 0.343393i 0.985150 + 0.171696i \(0.0549248\pi\)
−0.985150 + 0.171696i \(0.945075\pi\)
\(984\) 0 0
\(985\) 677.021 0.687331
\(986\) 0 0
\(987\) 271.257i 0.274830i
\(988\) 0 0
\(989\) −2221.46 −2.24617
\(990\) 0 0
\(991\) 1048.22i 1.05774i −0.848703 0.528870i \(-0.822616\pi\)
0.848703 0.528870i \(-0.177384\pi\)
\(992\) 0 0
\(993\) −617.176 −0.621527
\(994\) 0 0
\(995\) −703.991 −0.707529
\(996\) 0 0
\(997\) 1041.54 1.04467 0.522335 0.852741i \(-0.325061\pi\)
0.522335 + 0.852741i \(0.325061\pi\)
\(998\) 0 0
\(999\) 121.204 0.121325
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.3.e.b.417.4 yes 20
4.3 odd 2 inner 608.3.e.b.417.17 yes 20
8.3 odd 2 1216.3.e.p.1025.3 20
8.5 even 2 1216.3.e.p.1025.18 20
19.18 odd 2 inner 608.3.e.b.417.18 yes 20
76.75 even 2 inner 608.3.e.b.417.3 20
152.37 odd 2 1216.3.e.p.1025.4 20
152.75 even 2 1216.3.e.p.1025.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.e.b.417.3 20 76.75 even 2 inner
608.3.e.b.417.4 yes 20 1.1 even 1 trivial
608.3.e.b.417.17 yes 20 4.3 odd 2 inner
608.3.e.b.417.18 yes 20 19.18 odd 2 inner
1216.3.e.p.1025.3 20 8.3 odd 2
1216.3.e.p.1025.4 20 152.37 odd 2
1216.3.e.p.1025.17 20 152.75 even 2
1216.3.e.p.1025.18 20 8.5 even 2