Properties

Label 608.3.e.b.417.13
Level $608$
Weight $3$
Character 608.417
Analytic conductor $16.567$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,3,Mod(417,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.417"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,-52,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5668000731\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 196 x^{18} + 1676 x^{17} + 16346 x^{16} - 161824 x^{15} - 667200 x^{14} + \cdots + 1135285065792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 417.13
Root \(-4.46201 - 0.741526i\) of defining polynomial
Character \(\chi\) \(=\) 608.417
Dual form 608.3.e.b.417.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48305i q^{3} -4.43504 q^{5} -2.39163 q^{7} +6.80056 q^{9} +12.1358 q^{11} +3.28286i q^{13} -6.57739i q^{15} -7.93631 q^{17} +(18.4057 - 4.71509i) q^{19} -3.54691i q^{21} -22.6573 q^{23} -5.33045 q^{25} +23.4330i q^{27} +42.2757i q^{29} +6.86296i q^{31} +17.9980i q^{33} +10.6070 q^{35} +40.8256i q^{37} -4.86865 q^{39} +59.0876i q^{41} +1.93281 q^{43} -30.1607 q^{45} +12.5092 q^{47} -43.2801 q^{49} -11.7700i q^{51} +89.9311i q^{53} -53.8226 q^{55} +(6.99272 + 27.2965i) q^{57} -51.9117i q^{59} +14.1831 q^{61} -16.2644 q^{63} -14.5596i q^{65} +74.7176i q^{67} -33.6020i q^{69} -88.6362i q^{71} +8.33362 q^{73} -7.90534i q^{75} -29.0242 q^{77} -7.24915i q^{79} +26.4526 q^{81} +55.6631 q^{83} +35.1978 q^{85} -62.6970 q^{87} +11.8042i q^{89} -7.85137i q^{91} -10.1781 q^{93} +(-81.6297 + 20.9116i) q^{95} -20.8644i q^{97} +82.5300 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 52 q^{9} + 56 q^{17} + 36 q^{25} + 64 q^{45} + 332 q^{49} + 88 q^{57} - 32 q^{61} - 152 q^{73} + 360 q^{77} - 476 q^{81} - 552 q^{85} + 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.48305i 0.494351i 0.968971 + 0.247175i \(0.0795023\pi\)
−0.968971 + 0.247175i \(0.920498\pi\)
\(4\) 0 0
\(5\) −4.43504 −0.887007 −0.443504 0.896273i \(-0.646265\pi\)
−0.443504 + 0.896273i \(0.646265\pi\)
\(6\) 0 0
\(7\) −2.39163 −0.341661 −0.170831 0.985300i \(-0.554645\pi\)
−0.170831 + 0.985300i \(0.554645\pi\)
\(8\) 0 0
\(9\) 6.80056 0.755618
\(10\) 0 0
\(11\) 12.1358 1.10325 0.551626 0.834092i \(-0.314008\pi\)
0.551626 + 0.834092i \(0.314008\pi\)
\(12\) 0 0
\(13\) 3.28286i 0.252527i 0.991997 + 0.126264i \(0.0402986\pi\)
−0.991997 + 0.126264i \(0.959701\pi\)
\(14\) 0 0
\(15\) 6.57739i 0.438492i
\(16\) 0 0
\(17\) −7.93631 −0.466842 −0.233421 0.972376i \(-0.574992\pi\)
−0.233421 + 0.972376i \(0.574992\pi\)
\(18\) 0 0
\(19\) 18.4057 4.71509i 0.968718 0.248162i
\(20\) 0 0
\(21\) 3.54691i 0.168900i
\(22\) 0 0
\(23\) −22.6573 −0.985101 −0.492551 0.870284i \(-0.663935\pi\)
−0.492551 + 0.870284i \(0.663935\pi\)
\(24\) 0 0
\(25\) −5.33045 −0.213218
\(26\) 0 0
\(27\) 23.4330i 0.867890i
\(28\) 0 0
\(29\) 42.2757i 1.45778i 0.684630 + 0.728891i \(0.259964\pi\)
−0.684630 + 0.728891i \(0.740036\pi\)
\(30\) 0 0
\(31\) 6.86296i 0.221386i 0.993855 + 0.110693i \(0.0353070\pi\)
−0.993855 + 0.110693i \(0.964693\pi\)
\(32\) 0 0
\(33\) 17.9980i 0.545393i
\(34\) 0 0
\(35\) 10.6070 0.303056
\(36\) 0 0
\(37\) 40.8256i 1.10340i 0.834044 + 0.551698i \(0.186020\pi\)
−0.834044 + 0.551698i \(0.813980\pi\)
\(38\) 0 0
\(39\) −4.86865 −0.124837
\(40\) 0 0
\(41\) 59.0876i 1.44116i 0.693371 + 0.720581i \(0.256125\pi\)
−0.693371 + 0.720581i \(0.743875\pi\)
\(42\) 0 0
\(43\) 1.93281 0.0449492 0.0224746 0.999747i \(-0.492846\pi\)
0.0224746 + 0.999747i \(0.492846\pi\)
\(44\) 0 0
\(45\) −30.1607 −0.670238
\(46\) 0 0
\(47\) 12.5092 0.266153 0.133076 0.991106i \(-0.457514\pi\)
0.133076 + 0.991106i \(0.457514\pi\)
\(48\) 0 0
\(49\) −43.2801 −0.883268
\(50\) 0 0
\(51\) 11.7700i 0.230783i
\(52\) 0 0
\(53\) 89.9311i 1.69681i 0.529345 + 0.848406i \(0.322438\pi\)
−0.529345 + 0.848406i \(0.677562\pi\)
\(54\) 0 0
\(55\) −53.8226 −0.978592
\(56\) 0 0
\(57\) 6.99272 + 27.2965i 0.122679 + 0.478886i
\(58\) 0 0
\(59\) 51.9117i 0.879859i −0.898032 0.439930i \(-0.855003\pi\)
0.898032 0.439930i \(-0.144997\pi\)
\(60\) 0 0
\(61\) 14.1831 0.232510 0.116255 0.993219i \(-0.462911\pi\)
0.116255 + 0.993219i \(0.462911\pi\)
\(62\) 0 0
\(63\) −16.2644 −0.258165
\(64\) 0 0
\(65\) 14.5596i 0.223994i
\(66\) 0 0
\(67\) 74.7176i 1.11519i 0.830114 + 0.557594i \(0.188275\pi\)
−0.830114 + 0.557594i \(0.811725\pi\)
\(68\) 0 0
\(69\) 33.6020i 0.486985i
\(70\) 0 0
\(71\) 88.6362i 1.24840i −0.781265 0.624199i \(-0.785425\pi\)
0.781265 0.624199i \(-0.214575\pi\)
\(72\) 0 0
\(73\) 8.33362 0.114159 0.0570796 0.998370i \(-0.481821\pi\)
0.0570796 + 0.998370i \(0.481821\pi\)
\(74\) 0 0
\(75\) 7.90534i 0.105405i
\(76\) 0 0
\(77\) −29.0242 −0.376938
\(78\) 0 0
\(79\) 7.24915i 0.0917614i −0.998947 0.0458807i \(-0.985391\pi\)
0.998947 0.0458807i \(-0.0146094\pi\)
\(80\) 0 0
\(81\) 26.4526 0.326575
\(82\) 0 0
\(83\) 55.6631 0.670640 0.335320 0.942104i \(-0.391156\pi\)
0.335320 + 0.942104i \(0.391156\pi\)
\(84\) 0 0
\(85\) 35.1978 0.414092
\(86\) 0 0
\(87\) −62.6970 −0.720655
\(88\) 0 0
\(89\) 11.8042i 0.132632i 0.997799 + 0.0663158i \(0.0211245\pi\)
−0.997799 + 0.0663158i \(0.978876\pi\)
\(90\) 0 0
\(91\) 7.85137i 0.0862788i
\(92\) 0 0
\(93\) −10.1781 −0.109442
\(94\) 0 0
\(95\) −81.6297 + 20.9116i −0.859260 + 0.220122i
\(96\) 0 0
\(97\) 20.8644i 0.215097i −0.994200 0.107549i \(-0.965700\pi\)
0.994200 0.107549i \(-0.0343001\pi\)
\(98\) 0 0
\(99\) 82.5300 0.833636
\(100\) 0 0
\(101\) −72.5000 −0.717822 −0.358911 0.933372i \(-0.616852\pi\)
−0.358911 + 0.933372i \(0.616852\pi\)
\(102\) 0 0
\(103\) 139.063i 1.35013i 0.737759 + 0.675064i \(0.235884\pi\)
−0.737759 + 0.675064i \(0.764116\pi\)
\(104\) 0 0
\(105\) 15.7307i 0.149816i
\(106\) 0 0
\(107\) 88.9100i 0.830935i 0.909608 + 0.415467i \(0.136382\pi\)
−0.909608 + 0.415467i \(0.863618\pi\)
\(108\) 0 0
\(109\) 103.963i 0.953785i −0.878962 0.476892i \(-0.841763\pi\)
0.878962 0.476892i \(-0.158237\pi\)
\(110\) 0 0
\(111\) −60.5465 −0.545464
\(112\) 0 0
\(113\) 141.795i 1.25482i 0.778688 + 0.627412i \(0.215886\pi\)
−0.778688 + 0.627412i \(0.784114\pi\)
\(114\) 0 0
\(115\) 100.486 0.873792
\(116\) 0 0
\(117\) 22.3253i 0.190814i
\(118\) 0 0
\(119\) 18.9807 0.159502
\(120\) 0 0
\(121\) 26.2768 0.217164
\(122\) 0 0
\(123\) −87.6300 −0.712439
\(124\) 0 0
\(125\) 134.517 1.07613
\(126\) 0 0
\(127\) 127.343i 1.00270i −0.865243 0.501352i \(-0.832836\pi\)
0.865243 0.501352i \(-0.167164\pi\)
\(128\) 0 0
\(129\) 2.86646i 0.0222206i
\(130\) 0 0
\(131\) 199.741 1.52474 0.762369 0.647142i \(-0.224036\pi\)
0.762369 + 0.647142i \(0.224036\pi\)
\(132\) 0 0
\(133\) −44.0195 + 11.2767i −0.330973 + 0.0847875i
\(134\) 0 0
\(135\) 103.926i 0.769825i
\(136\) 0 0
\(137\) −153.434 −1.11996 −0.559979 0.828507i \(-0.689191\pi\)
−0.559979 + 0.828507i \(0.689191\pi\)
\(138\) 0 0
\(139\) 12.6618 0.0910920 0.0455460 0.998962i \(-0.485497\pi\)
0.0455460 + 0.998962i \(0.485497\pi\)
\(140\) 0 0
\(141\) 18.5518i 0.131573i
\(142\) 0 0
\(143\) 39.8400i 0.278601i
\(144\) 0 0
\(145\) 187.494i 1.29306i
\(146\) 0 0
\(147\) 64.1866i 0.436644i
\(148\) 0 0
\(149\) −4.06864 −0.0273063 −0.0136532 0.999907i \(-0.504346\pi\)
−0.0136532 + 0.999907i \(0.504346\pi\)
\(150\) 0 0
\(151\) 126.737i 0.839319i −0.907682 0.419660i \(-0.862149\pi\)
0.907682 0.419660i \(-0.137851\pi\)
\(152\) 0 0
\(153\) −53.9713 −0.352754
\(154\) 0 0
\(155\) 30.4375i 0.196371i
\(156\) 0 0
\(157\) 116.234 0.740343 0.370172 0.928963i \(-0.379299\pi\)
0.370172 + 0.928963i \(0.379299\pi\)
\(158\) 0 0
\(159\) −133.372 −0.838820
\(160\) 0 0
\(161\) 54.1879 0.336571
\(162\) 0 0
\(163\) 113.662 0.697315 0.348657 0.937250i \(-0.386638\pi\)
0.348657 + 0.937250i \(0.386638\pi\)
\(164\) 0 0
\(165\) 79.8216i 0.483767i
\(166\) 0 0
\(167\) 172.151i 1.03084i 0.856937 + 0.515421i \(0.172364\pi\)
−0.856937 + 0.515421i \(0.827636\pi\)
\(168\) 0 0
\(169\) 158.223 0.936230
\(170\) 0 0
\(171\) 125.169 32.0652i 0.731981 0.187516i
\(172\) 0 0
\(173\) 69.1853i 0.399915i −0.979805 0.199958i \(-0.935920\pi\)
0.979805 0.199958i \(-0.0640804\pi\)
\(174\) 0 0
\(175\) 12.7485 0.0728484
\(176\) 0 0
\(177\) 76.9877 0.434959
\(178\) 0 0
\(179\) 347.290i 1.94017i 0.242768 + 0.970084i \(0.421944\pi\)
−0.242768 + 0.970084i \(0.578056\pi\)
\(180\) 0 0
\(181\) 259.881i 1.43580i −0.696144 0.717902i \(-0.745103\pi\)
0.696144 0.717902i \(-0.254897\pi\)
\(182\) 0 0
\(183\) 21.0342i 0.114941i
\(184\) 0 0
\(185\) 181.063i 0.978719i
\(186\) 0 0
\(187\) −96.3132 −0.515044
\(188\) 0 0
\(189\) 56.0431i 0.296524i
\(190\) 0 0
\(191\) −214.253 −1.12174 −0.560872 0.827902i \(-0.689534\pi\)
−0.560872 + 0.827902i \(0.689534\pi\)
\(192\) 0 0
\(193\) 172.646i 0.894538i −0.894399 0.447269i \(-0.852397\pi\)
0.894399 0.447269i \(-0.147603\pi\)
\(194\) 0 0
\(195\) 21.5926 0.110731
\(196\) 0 0
\(197\) −170.446 −0.865207 −0.432603 0.901584i \(-0.642405\pi\)
−0.432603 + 0.901584i \(0.642405\pi\)
\(198\) 0 0
\(199\) 161.905 0.813593 0.406796 0.913519i \(-0.366646\pi\)
0.406796 + 0.913519i \(0.366646\pi\)
\(200\) 0 0
\(201\) −110.810 −0.551294
\(202\) 0 0
\(203\) 101.108i 0.498068i
\(204\) 0 0
\(205\) 262.056i 1.27832i
\(206\) 0 0
\(207\) −154.082 −0.744360
\(208\) 0 0
\(209\) 223.367 57.2212i 1.06874 0.273786i
\(210\) 0 0
\(211\) 76.9837i 0.364852i −0.983220 0.182426i \(-0.941605\pi\)
0.983220 0.182426i \(-0.0583949\pi\)
\(212\) 0 0
\(213\) 131.452 0.617146
\(214\) 0 0
\(215\) −8.57210 −0.0398702
\(216\) 0 0
\(217\) 16.4137i 0.0756390i
\(218\) 0 0
\(219\) 12.3592i 0.0564347i
\(220\) 0 0
\(221\) 26.0538i 0.117890i
\(222\) 0 0
\(223\) 124.863i 0.559922i −0.960011 0.279961i \(-0.909679\pi\)
0.960011 0.279961i \(-0.0903215\pi\)
\(224\) 0 0
\(225\) −36.2501 −0.161111
\(226\) 0 0
\(227\) 232.836i 1.02571i −0.858475 0.512855i \(-0.828588\pi\)
0.858475 0.512855i \(-0.171412\pi\)
\(228\) 0 0
\(229\) 76.6562 0.334743 0.167372 0.985894i \(-0.446472\pi\)
0.167372 + 0.985894i \(0.446472\pi\)
\(230\) 0 0
\(231\) 43.0444i 0.186340i
\(232\) 0 0
\(233\) −20.3112 −0.0871724 −0.0435862 0.999050i \(-0.513878\pi\)
−0.0435862 + 0.999050i \(0.513878\pi\)
\(234\) 0 0
\(235\) −55.4787 −0.236080
\(236\) 0 0
\(237\) 10.7509 0.0453623
\(238\) 0 0
\(239\) −112.228 −0.469573 −0.234787 0.972047i \(-0.575439\pi\)
−0.234787 + 0.972047i \(0.575439\pi\)
\(240\) 0 0
\(241\) 226.606i 0.940274i −0.882593 0.470137i \(-0.844204\pi\)
0.882593 0.470137i \(-0.155796\pi\)
\(242\) 0 0
\(243\) 250.128i 1.02933i
\(244\) 0 0
\(245\) 191.949 0.783465
\(246\) 0 0
\(247\) 15.4790 + 60.4231i 0.0626678 + 0.244628i
\(248\) 0 0
\(249\) 82.5513i 0.331531i
\(250\) 0 0
\(251\) −268.070 −1.06801 −0.534004 0.845482i \(-0.679313\pi\)
−0.534004 + 0.845482i \(0.679313\pi\)
\(252\) 0 0
\(253\) −274.964 −1.08681
\(254\) 0 0
\(255\) 52.2002i 0.204707i
\(256\) 0 0
\(257\) 64.4086i 0.250617i −0.992118 0.125309i \(-0.960008\pi\)
0.992118 0.125309i \(-0.0399921\pi\)
\(258\) 0 0
\(259\) 97.6397i 0.376987i
\(260\) 0 0
\(261\) 287.498i 1.10153i
\(262\) 0 0
\(263\) 503.756 1.91542 0.957710 0.287735i \(-0.0929022\pi\)
0.957710 + 0.287735i \(0.0929022\pi\)
\(264\) 0 0
\(265\) 398.848i 1.50509i
\(266\) 0 0
\(267\) −17.5063 −0.0655665
\(268\) 0 0
\(269\) 86.2874i 0.320771i 0.987054 + 0.160386i \(0.0512737\pi\)
−0.987054 + 0.160386i \(0.948726\pi\)
\(270\) 0 0
\(271\) −1.14933 −0.00424108 −0.00212054 0.999998i \(-0.500675\pi\)
−0.00212054 + 0.999998i \(0.500675\pi\)
\(272\) 0 0
\(273\) 11.6440 0.0426520
\(274\) 0 0
\(275\) −64.6891 −0.235233
\(276\) 0 0
\(277\) 272.800 0.984838 0.492419 0.870358i \(-0.336113\pi\)
0.492419 + 0.870358i \(0.336113\pi\)
\(278\) 0 0
\(279\) 46.6720i 0.167283i
\(280\) 0 0
\(281\) 86.7076i 0.308568i 0.988027 + 0.154284i \(0.0493071\pi\)
−0.988027 + 0.154284i \(0.950693\pi\)
\(282\) 0 0
\(283\) −355.833 −1.25736 −0.628680 0.777664i \(-0.716405\pi\)
−0.628680 + 0.777664i \(0.716405\pi\)
\(284\) 0 0
\(285\) −31.0129 121.061i −0.108817 0.424776i
\(286\) 0 0
\(287\) 141.316i 0.492389i
\(288\) 0 0
\(289\) −226.015 −0.782059
\(290\) 0 0
\(291\) 30.9430 0.106333
\(292\) 0 0
\(293\) 10.2955i 0.0351381i −0.999846 0.0175691i \(-0.994407\pi\)
0.999846 0.0175691i \(-0.00559270\pi\)
\(294\) 0 0
\(295\) 230.230i 0.780442i
\(296\) 0 0
\(297\) 284.378i 0.957501i
\(298\) 0 0
\(299\) 74.3808i 0.248765i
\(300\) 0 0
\(301\) −4.62257 −0.0153574
\(302\) 0 0
\(303\) 107.521i 0.354856i
\(304\) 0 0
\(305\) −62.9025 −0.206238
\(306\) 0 0
\(307\) 402.839i 1.31218i −0.754683 0.656090i \(-0.772209\pi\)
0.754683 0.656090i \(-0.227791\pi\)
\(308\) 0 0
\(309\) −206.238 −0.667437
\(310\) 0 0
\(311\) 394.559 1.26868 0.634340 0.773055i \(-0.281272\pi\)
0.634340 + 0.773055i \(0.281272\pi\)
\(312\) 0 0
\(313\) 375.989 1.20124 0.600621 0.799534i \(-0.294920\pi\)
0.600621 + 0.799534i \(0.294920\pi\)
\(314\) 0 0
\(315\) 72.1332 0.228994
\(316\) 0 0
\(317\) 295.081i 0.930856i 0.885086 + 0.465428i \(0.154100\pi\)
−0.885086 + 0.465428i \(0.845900\pi\)
\(318\) 0 0
\(319\) 513.048i 1.60830i
\(320\) 0 0
\(321\) −131.858 −0.410773
\(322\) 0 0
\(323\) −146.073 + 37.4204i −0.452238 + 0.115853i
\(324\) 0 0
\(325\) 17.4991i 0.0538434i
\(326\) 0 0
\(327\) 154.182 0.471504
\(328\) 0 0
\(329\) −29.9173 −0.0909341
\(330\) 0 0
\(331\) 290.207i 0.876757i 0.898790 + 0.438378i \(0.144447\pi\)
−0.898790 + 0.438378i \(0.855553\pi\)
\(332\) 0 0
\(333\) 277.637i 0.833745i
\(334\) 0 0
\(335\) 331.375i 0.989180i
\(336\) 0 0
\(337\) 467.781i 1.38807i 0.719940 + 0.694037i \(0.244169\pi\)
−0.719940 + 0.694037i \(0.755831\pi\)
\(338\) 0 0
\(339\) −210.289 −0.620323
\(340\) 0 0
\(341\) 83.2873i 0.244244i
\(342\) 0 0
\(343\) 220.700 0.643439
\(344\) 0 0
\(345\) 149.026i 0.431960i
\(346\) 0 0
\(347\) −391.163 −1.12727 −0.563635 0.826024i \(-0.690598\pi\)
−0.563635 + 0.826024i \(0.690598\pi\)
\(348\) 0 0
\(349\) −485.699 −1.39169 −0.695844 0.718193i \(-0.744970\pi\)
−0.695844 + 0.718193i \(0.744970\pi\)
\(350\) 0 0
\(351\) −76.9273 −0.219166
\(352\) 0 0
\(353\) −227.668 −0.644950 −0.322475 0.946578i \(-0.604515\pi\)
−0.322475 + 0.946578i \(0.604515\pi\)
\(354\) 0 0
\(355\) 393.105i 1.10734i
\(356\) 0 0
\(357\) 28.1494i 0.0788497i
\(358\) 0 0
\(359\) 494.159 1.37649 0.688244 0.725479i \(-0.258382\pi\)
0.688244 + 0.725479i \(0.258382\pi\)
\(360\) 0 0
\(361\) 316.536 173.568i 0.876831 0.480799i
\(362\) 0 0
\(363\) 38.9698i 0.107355i
\(364\) 0 0
\(365\) −36.9599 −0.101260
\(366\) 0 0
\(367\) 195.737 0.533344 0.266672 0.963787i \(-0.414076\pi\)
0.266672 + 0.963787i \(0.414076\pi\)
\(368\) 0 0
\(369\) 401.829i 1.08897i
\(370\) 0 0
\(371\) 215.082i 0.579735i
\(372\) 0 0
\(373\) 257.888i 0.691390i 0.938347 + 0.345695i \(0.112357\pi\)
−0.938347 + 0.345695i \(0.887643\pi\)
\(374\) 0 0
\(375\) 199.495i 0.531987i
\(376\) 0 0
\(377\) −138.785 −0.368130
\(378\) 0 0
\(379\) 485.408i 1.28076i −0.768058 0.640380i \(-0.778777\pi\)
0.768058 0.640380i \(-0.221223\pi\)
\(380\) 0 0
\(381\) 188.857 0.495687
\(382\) 0 0
\(383\) 289.386i 0.755578i −0.925892 0.377789i \(-0.876685\pi\)
0.925892 0.377789i \(-0.123315\pi\)
\(384\) 0 0
\(385\) 128.724 0.334347
\(386\) 0 0
\(387\) 13.1442 0.0339644
\(388\) 0 0
\(389\) −90.1464 −0.231739 −0.115869 0.993264i \(-0.536965\pi\)
−0.115869 + 0.993264i \(0.536965\pi\)
\(390\) 0 0
\(391\) 179.816 0.459886
\(392\) 0 0
\(393\) 296.226i 0.753756i
\(394\) 0 0
\(395\) 32.1502i 0.0813930i
\(396\) 0 0
\(397\) 243.533 0.613433 0.306717 0.951801i \(-0.400770\pi\)
0.306717 + 0.951801i \(0.400770\pi\)
\(398\) 0 0
\(399\) −16.7240 65.2831i −0.0419147 0.163617i
\(400\) 0 0
\(401\) 42.6638i 0.106394i −0.998584 0.0531968i \(-0.983059\pi\)
0.998584 0.0531968i \(-0.0169411\pi\)
\(402\) 0 0
\(403\) −22.5301 −0.0559060
\(404\) 0 0
\(405\) −117.318 −0.289675
\(406\) 0 0
\(407\) 495.450i 1.21732i
\(408\) 0 0
\(409\) 118.559i 0.289874i 0.989441 + 0.144937i \(0.0462980\pi\)
−0.989441 + 0.144937i \(0.953702\pi\)
\(410\) 0 0
\(411\) 227.551i 0.553652i
\(412\) 0 0
\(413\) 124.153i 0.300614i
\(414\) 0 0
\(415\) −246.868 −0.594863
\(416\) 0 0
\(417\) 18.7781i 0.0450314i
\(418\) 0 0
\(419\) 246.145 0.587459 0.293729 0.955889i \(-0.405104\pi\)
0.293729 + 0.955889i \(0.405104\pi\)
\(420\) 0 0
\(421\) 135.369i 0.321542i −0.986992 0.160771i \(-0.948602\pi\)
0.986992 0.160771i \(-0.0513981\pi\)
\(422\) 0 0
\(423\) 85.0695 0.201110
\(424\) 0 0
\(425\) 42.3041 0.0995391
\(426\) 0 0
\(427\) −33.9207 −0.0794395
\(428\) 0 0
\(429\) −59.0847 −0.137727
\(430\) 0 0
\(431\) 526.311i 1.22114i 0.791962 + 0.610570i \(0.209060\pi\)
−0.791962 + 0.610570i \(0.790940\pi\)
\(432\) 0 0
\(433\) 340.306i 0.785926i −0.919554 0.392963i \(-0.871450\pi\)
0.919554 0.392963i \(-0.128550\pi\)
\(434\) 0 0
\(435\) 278.064 0.639227
\(436\) 0 0
\(437\) −417.023 + 106.831i −0.954286 + 0.244465i
\(438\) 0 0
\(439\) 482.555i 1.09921i −0.835423 0.549607i \(-0.814777\pi\)
0.835423 0.549607i \(-0.185223\pi\)
\(440\) 0 0
\(441\) −294.329 −0.667413
\(442\) 0 0
\(443\) −341.370 −0.770586 −0.385293 0.922794i \(-0.625900\pi\)
−0.385293 + 0.922794i \(0.625900\pi\)
\(444\) 0 0
\(445\) 52.3521i 0.117645i
\(446\) 0 0
\(447\) 6.03401i 0.0134989i
\(448\) 0 0
\(449\) 605.183i 1.34785i 0.738802 + 0.673923i \(0.235392\pi\)
−0.738802 + 0.673923i \(0.764608\pi\)
\(450\) 0 0
\(451\) 717.074i 1.58996i
\(452\) 0 0
\(453\) 187.958 0.414918
\(454\) 0 0
\(455\) 34.8211i 0.0765299i
\(456\) 0 0
\(457\) −671.856 −1.47015 −0.735073 0.677988i \(-0.762852\pi\)
−0.735073 + 0.677988i \(0.762852\pi\)
\(458\) 0 0
\(459\) 185.972i 0.405167i
\(460\) 0 0
\(461\) 768.509 1.66705 0.833524 0.552483i \(-0.186320\pi\)
0.833524 + 0.552483i \(0.186320\pi\)
\(462\) 0 0
\(463\) −507.242 −1.09555 −0.547777 0.836624i \(-0.684526\pi\)
−0.547777 + 0.836624i \(0.684526\pi\)
\(464\) 0 0
\(465\) 45.1404 0.0970761
\(466\) 0 0
\(467\) −538.017 −1.15207 −0.576035 0.817425i \(-0.695401\pi\)
−0.576035 + 0.817425i \(0.695401\pi\)
\(468\) 0 0
\(469\) 178.697i 0.381017i
\(470\) 0 0
\(471\) 172.381i 0.365989i
\(472\) 0 0
\(473\) 23.4562 0.0495902
\(474\) 0 0
\(475\) −98.1105 + 25.1336i −0.206548 + 0.0529127i
\(476\) 0 0
\(477\) 611.581i 1.28214i
\(478\) 0 0
\(479\) 221.728 0.462897 0.231448 0.972847i \(-0.425654\pi\)
0.231448 + 0.972847i \(0.425654\pi\)
\(480\) 0 0
\(481\) −134.025 −0.278638
\(482\) 0 0
\(483\) 80.3635i 0.166384i
\(484\) 0 0
\(485\) 92.5345i 0.190793i
\(486\) 0 0
\(487\) 771.461i 1.58411i −0.610450 0.792055i \(-0.709012\pi\)
0.610450 0.792055i \(-0.290988\pi\)
\(488\) 0 0
\(489\) 168.567i 0.344718i
\(490\) 0 0
\(491\) −302.331 −0.615745 −0.307873 0.951428i \(-0.599617\pi\)
−0.307873 + 0.951428i \(0.599617\pi\)
\(492\) 0 0
\(493\) 335.513i 0.680554i
\(494\) 0 0
\(495\) −366.023 −0.739441
\(496\) 0 0
\(497\) 211.985i 0.426529i
\(498\) 0 0
\(499\) 663.715 1.33009 0.665045 0.746803i \(-0.268412\pi\)
0.665045 + 0.746803i \(0.268412\pi\)
\(500\) 0 0
\(501\) −255.308 −0.509597
\(502\) 0 0
\(503\) 274.172 0.545073 0.272537 0.962145i \(-0.412137\pi\)
0.272537 + 0.962145i \(0.412137\pi\)
\(504\) 0 0
\(505\) 321.540 0.636713
\(506\) 0 0
\(507\) 234.653i 0.462826i
\(508\) 0 0
\(509\) 710.634i 1.39614i 0.716030 + 0.698069i \(0.245957\pi\)
−0.716030 + 0.698069i \(0.754043\pi\)
\(510\) 0 0
\(511\) −19.9309 −0.0390038
\(512\) 0 0
\(513\) 110.489 + 431.300i 0.215378 + 0.840742i
\(514\) 0 0
\(515\) 616.750i 1.19757i
\(516\) 0 0
\(517\) 151.809 0.293634
\(518\) 0 0
\(519\) 102.605 0.197698
\(520\) 0 0
\(521\) 189.532i 0.363784i −0.983318 0.181892i \(-0.941778\pi\)
0.983318 0.181892i \(-0.0582222\pi\)
\(522\) 0 0
\(523\) 267.270i 0.511032i −0.966805 0.255516i \(-0.917755\pi\)
0.966805 0.255516i \(-0.0822454\pi\)
\(524\) 0 0
\(525\) 18.9066i 0.0360126i
\(526\) 0 0
\(527\) 54.4666i 0.103352i
\(528\) 0 0
\(529\) −15.6453 −0.0295752
\(530\) 0 0
\(531\) 353.029i 0.664837i
\(532\) 0 0
\(533\) −193.976 −0.363933
\(534\) 0 0
\(535\) 394.319i 0.737045i
\(536\) 0 0
\(537\) −515.049 −0.959123
\(538\) 0 0
\(539\) −525.237 −0.974466
\(540\) 0 0
\(541\) −53.1260 −0.0981996 −0.0490998 0.998794i \(-0.515635\pi\)
−0.0490998 + 0.998794i \(0.515635\pi\)
\(542\) 0 0
\(543\) 385.416 0.709791
\(544\) 0 0
\(545\) 461.078i 0.846014i
\(546\) 0 0
\(547\) 277.407i 0.507143i 0.967317 + 0.253572i \(0.0816054\pi\)
−0.967317 + 0.253572i \(0.918395\pi\)
\(548\) 0 0
\(549\) 96.4529 0.175688
\(550\) 0 0
\(551\) 199.334 + 778.112i 0.361767 + 1.41218i
\(552\) 0 0
\(553\) 17.3373i 0.0313513i
\(554\) 0 0
\(555\) 268.526 0.483831
\(556\) 0 0
\(557\) −469.822 −0.843487 −0.421744 0.906715i \(-0.638582\pi\)
−0.421744 + 0.906715i \(0.638582\pi\)
\(558\) 0 0
\(559\) 6.34515i 0.0113509i
\(560\) 0 0
\(561\) 142.837i 0.254612i
\(562\) 0 0
\(563\) 351.584i 0.624483i −0.950003 0.312242i \(-0.898920\pi\)
0.950003 0.312242i \(-0.101080\pi\)
\(564\) 0 0
\(565\) 628.866i 1.11304i
\(566\) 0 0
\(567\) −63.2648 −0.111578
\(568\) 0 0
\(569\) 684.643i 1.20324i 0.798782 + 0.601620i \(0.205478\pi\)
−0.798782 + 0.601620i \(0.794522\pi\)
\(570\) 0 0
\(571\) −773.542 −1.35471 −0.677357 0.735654i \(-0.736875\pi\)
−0.677357 + 0.735654i \(0.736875\pi\)
\(572\) 0 0
\(573\) 317.749i 0.554535i
\(574\) 0 0
\(575\) 120.774 0.210042
\(576\) 0 0
\(577\) 846.880 1.46773 0.733865 0.679296i \(-0.237715\pi\)
0.733865 + 0.679296i \(0.237715\pi\)
\(578\) 0 0
\(579\) 256.043 0.442215
\(580\) 0 0
\(581\) −133.126 −0.229132
\(582\) 0 0
\(583\) 1091.38i 1.87201i
\(584\) 0 0
\(585\) 99.0133i 0.169254i
\(586\) 0 0
\(587\) −906.841 −1.54487 −0.772437 0.635091i \(-0.780963\pi\)
−0.772437 + 0.635091i \(0.780963\pi\)
\(588\) 0 0
\(589\) 32.3595 + 126.317i 0.0549397 + 0.214461i
\(590\) 0 0
\(591\) 252.780i 0.427715i
\(592\) 0 0
\(593\) −234.274 −0.395066 −0.197533 0.980296i \(-0.563293\pi\)
−0.197533 + 0.980296i \(0.563293\pi\)
\(594\) 0 0
\(595\) −84.1801 −0.141479
\(596\) 0 0
\(597\) 240.113i 0.402200i
\(598\) 0 0
\(599\) 113.042i 0.188718i −0.995538 0.0943589i \(-0.969920\pi\)
0.995538 0.0943589i \(-0.0300801\pi\)
\(600\) 0 0
\(601\) 1107.97i 1.84355i −0.387730 0.921773i \(-0.626741\pi\)
0.387730 0.921773i \(-0.373259\pi\)
\(602\) 0 0
\(603\) 508.122i 0.842656i
\(604\) 0 0
\(605\) −116.538 −0.192626
\(606\) 0 0
\(607\) 185.612i 0.305786i −0.988243 0.152893i \(-0.951141\pi\)
0.988243 0.152893i \(-0.0488590\pi\)
\(608\) 0 0
\(609\) 149.948 0.246220
\(610\) 0 0
\(611\) 41.0659i 0.0672109i
\(612\) 0 0
\(613\) 472.424 0.770675 0.385337 0.922776i \(-0.374085\pi\)
0.385337 + 0.922776i \(0.374085\pi\)
\(614\) 0 0
\(615\) 388.642 0.631939
\(616\) 0 0
\(617\) 826.340 1.33929 0.669643 0.742683i \(-0.266447\pi\)
0.669643 + 0.742683i \(0.266447\pi\)
\(618\) 0 0
\(619\) −0.726144 −0.00117309 −0.000586546 1.00000i \(-0.500187\pi\)
−0.000586546 1.00000i \(0.500187\pi\)
\(620\) 0 0
\(621\) 530.930i 0.854960i
\(622\) 0 0
\(623\) 28.2313i 0.0453151i
\(624\) 0 0
\(625\) −463.325 −0.741320
\(626\) 0 0
\(627\) 84.8620 + 331.264i 0.135346 + 0.528332i
\(628\) 0 0
\(629\) 324.005i 0.515111i
\(630\) 0 0
\(631\) −521.942 −0.827166 −0.413583 0.910466i \(-0.635723\pi\)
−0.413583 + 0.910466i \(0.635723\pi\)
\(632\) 0 0
\(633\) 114.171 0.180365
\(634\) 0 0
\(635\) 564.773i 0.889406i
\(636\) 0 0
\(637\) 142.082i 0.223049i
\(638\) 0 0
\(639\) 602.776i 0.943311i
\(640\) 0 0
\(641\) 1225.37i 1.91165i −0.293942 0.955823i \(-0.594967\pi\)
0.293942 0.955823i \(-0.405033\pi\)
\(642\) 0 0
\(643\) 1075.09 1.67200 0.835999 0.548731i \(-0.184889\pi\)
0.835999 + 0.548731i \(0.184889\pi\)
\(644\) 0 0
\(645\) 12.7129i 0.0197099i
\(646\) 0 0
\(647\) 1026.31 1.58627 0.793133 0.609048i \(-0.208448\pi\)
0.793133 + 0.609048i \(0.208448\pi\)
\(648\) 0 0
\(649\) 629.988i 0.970706i
\(650\) 0 0
\(651\) 24.3423 0.0373922
\(652\) 0 0
\(653\) −668.344 −1.02350 −0.511749 0.859135i \(-0.671002\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(654\) 0 0
\(655\) −885.858 −1.35245
\(656\) 0 0
\(657\) 56.6733 0.0862607
\(658\) 0 0
\(659\) 928.692i 1.40924i 0.709582 + 0.704622i \(0.248884\pi\)
−0.709582 + 0.704622i \(0.751116\pi\)
\(660\) 0 0
\(661\) 937.827i 1.41880i −0.704806 0.709400i \(-0.748966\pi\)
0.704806 0.709400i \(-0.251034\pi\)
\(662\) 0 0
\(663\) 38.6391 0.0582792
\(664\) 0 0
\(665\) 195.228 50.0127i 0.293576 0.0752071i
\(666\) 0 0
\(667\) 957.854i 1.43606i
\(668\) 0 0
\(669\) 185.178 0.276798
\(670\) 0 0
\(671\) 172.123 0.256517
\(672\) 0 0
\(673\) 1155.00i 1.71620i −0.513485 0.858098i \(-0.671646\pi\)
0.513485 0.858098i \(-0.328354\pi\)
\(674\) 0 0
\(675\) 124.909i 0.185050i
\(676\) 0 0
\(677\) 133.721i 0.197520i −0.995111 0.0987600i \(-0.968512\pi\)
0.995111 0.0987600i \(-0.0314876\pi\)
\(678\) 0 0
\(679\) 49.9000i 0.0734904i
\(680\) 0 0
\(681\) 345.308 0.507061
\(682\) 0 0
\(683\) 1232.57i 1.80464i −0.431069 0.902319i \(-0.641864\pi\)
0.431069 0.902319i \(-0.358136\pi\)
\(684\) 0 0
\(685\) 680.487 0.993412
\(686\) 0 0
\(687\) 113.685i 0.165481i
\(688\) 0 0
\(689\) −295.231 −0.428492
\(690\) 0 0
\(691\) 1205.13 1.74404 0.872020 0.489470i \(-0.162810\pi\)
0.872020 + 0.489470i \(0.162810\pi\)
\(692\) 0 0
\(693\) −197.381 −0.284821
\(694\) 0 0
\(695\) −56.1555 −0.0807993
\(696\) 0 0
\(697\) 468.938i 0.672794i
\(698\) 0 0
\(699\) 30.1225i 0.0430937i
\(700\) 0 0
\(701\) 329.414 0.469920 0.234960 0.972005i \(-0.424504\pi\)
0.234960 + 0.972005i \(0.424504\pi\)
\(702\) 0 0
\(703\) 192.496 + 751.422i 0.273821 + 1.06888i
\(704\) 0 0
\(705\) 82.2778i 0.116706i
\(706\) 0 0
\(707\) 173.393 0.245252
\(708\) 0 0
\(709\) 1113.70 1.57080 0.785401 0.618988i \(-0.212457\pi\)
0.785401 + 0.618988i \(0.212457\pi\)
\(710\) 0 0
\(711\) 49.2983i 0.0693365i
\(712\) 0 0
\(713\) 155.496i 0.218088i
\(714\) 0 0
\(715\) 176.692i 0.247121i
\(716\) 0 0
\(717\) 166.440i 0.232134i
\(718\) 0 0
\(719\) −715.341 −0.994911 −0.497456 0.867489i \(-0.665732\pi\)
−0.497456 + 0.867489i \(0.665732\pi\)
\(720\) 0 0
\(721\) 332.588i 0.461286i
\(722\) 0 0
\(723\) 336.069 0.464825
\(724\) 0 0
\(725\) 225.349i 0.310826i
\(726\) 0 0
\(727\) −1282.98 −1.76476 −0.882381 0.470536i \(-0.844061\pi\)
−0.882381 + 0.470536i \(0.844061\pi\)
\(728\) 0 0
\(729\) −132.879 −0.182276
\(730\) 0 0
\(731\) −15.3394 −0.0209841
\(732\) 0 0
\(733\) −481.707 −0.657171 −0.328586 0.944474i \(-0.606572\pi\)
−0.328586 + 0.944474i \(0.606572\pi\)
\(734\) 0 0
\(735\) 284.670i 0.387306i
\(736\) 0 0
\(737\) 906.756i 1.23033i
\(738\) 0 0
\(739\) 580.859 0.786007 0.393003 0.919537i \(-0.371436\pi\)
0.393003 + 0.919537i \(0.371436\pi\)
\(740\) 0 0
\(741\) −89.6106 + 22.9561i −0.120932 + 0.0309799i
\(742\) 0 0
\(743\) 1280.64i 1.72361i −0.507242 0.861804i \(-0.669335\pi\)
0.507242 0.861804i \(-0.330665\pi\)
\(744\) 0 0
\(745\) 18.0446 0.0242209
\(746\) 0 0
\(747\) 378.540 0.506747
\(748\) 0 0
\(749\) 212.640i 0.283898i
\(750\) 0 0
\(751\) 611.873i 0.814745i −0.913262 0.407372i \(-0.866445\pi\)
0.913262 0.407372i \(-0.133555\pi\)
\(752\) 0 0
\(753\) 397.561i 0.527970i
\(754\) 0 0
\(755\) 562.084i 0.744482i
\(756\) 0 0
\(757\) −322.424 −0.425923 −0.212962 0.977061i \(-0.568311\pi\)
−0.212962 + 0.977061i \(0.568311\pi\)
\(758\) 0 0
\(759\) 407.786i 0.537267i
\(760\) 0 0
\(761\) −53.2368 −0.0699563 −0.0349782 0.999388i \(-0.511136\pi\)
−0.0349782 + 0.999388i \(0.511136\pi\)
\(762\) 0 0
\(763\) 248.640i 0.325871i
\(764\) 0 0
\(765\) 239.365 0.312895
\(766\) 0 0
\(767\) 170.419 0.222189
\(768\) 0 0
\(769\) −272.155 −0.353908 −0.176954 0.984219i \(-0.556624\pi\)
−0.176954 + 0.984219i \(0.556624\pi\)
\(770\) 0 0
\(771\) 95.5213 0.123893
\(772\) 0 0
\(773\) 601.659i 0.778343i 0.921165 + 0.389172i \(0.127239\pi\)
−0.921165 + 0.389172i \(0.872761\pi\)
\(774\) 0 0
\(775\) 36.5827i 0.0472035i
\(776\) 0 0
\(777\) 144.805 0.186364
\(778\) 0 0
\(779\) 278.603 + 1087.55i 0.357642 + 1.39608i
\(780\) 0 0
\(781\) 1075.67i 1.37730i
\(782\) 0 0
\(783\) −990.648 −1.26520
\(784\) 0 0
\(785\) −515.502 −0.656690
\(786\) 0 0
\(787\) 793.870i 1.00873i 0.863491 + 0.504364i \(0.168273\pi\)
−0.863491 + 0.504364i \(0.831727\pi\)
\(788\) 0 0
\(789\) 747.095i 0.946889i
\(790\) 0 0
\(791\) 339.121i 0.428725i
\(792\) 0 0
\(793\) 46.5610i 0.0587151i
\(794\) 0 0
\(795\) 591.512 0.744040
\(796\) 0 0
\(797\) 597.536i 0.749732i 0.927079 + 0.374866i \(0.122311\pi\)
−0.927079 + 0.374866i \(0.877689\pi\)
\(798\) 0 0
\(799\) −99.2768 −0.124251
\(800\) 0 0
\(801\) 80.2752i 0.100219i
\(802\) 0 0
\(803\) 101.135 0.125946
\(804\) 0 0
\(805\) −240.325 −0.298541
\(806\) 0 0
\(807\) −127.969 −0.158573
\(808\) 0 0
\(809\) 385.508 0.476524 0.238262 0.971201i \(-0.423422\pi\)
0.238262 + 0.971201i \(0.423422\pi\)
\(810\) 0 0
\(811\) 1258.22i 1.55144i 0.631076 + 0.775721i \(0.282614\pi\)
−0.631076 + 0.775721i \(0.717386\pi\)
\(812\) 0 0
\(813\) 1.70452i 0.00209658i
\(814\) 0 0
\(815\) −504.096 −0.618523
\(816\) 0 0
\(817\) 35.5747 9.11338i 0.0435431 0.0111547i
\(818\) 0 0
\(819\) 53.3937i 0.0651938i
\(820\) 0 0
\(821\) 804.198 0.979535 0.489768 0.871853i \(-0.337082\pi\)
0.489768 + 0.871853i \(0.337082\pi\)
\(822\) 0 0
\(823\) −979.035 −1.18959 −0.594797 0.803876i \(-0.702767\pi\)
−0.594797 + 0.803876i \(0.702767\pi\)
\(824\) 0 0
\(825\) 95.9373i 0.116288i
\(826\) 0 0
\(827\) 726.111i 0.878006i −0.898485 0.439003i \(-0.855332\pi\)
0.898485 0.439003i \(-0.144668\pi\)
\(828\) 0 0
\(829\) 609.462i 0.735177i −0.929988 0.367589i \(-0.880183\pi\)
0.929988 0.367589i \(-0.119817\pi\)
\(830\) 0 0
\(831\) 404.577i 0.486855i
\(832\) 0 0
\(833\) 343.484 0.412346
\(834\) 0 0
\(835\) 763.494i 0.914364i
\(836\) 0 0
\(837\) −160.820 −0.192139
\(838\) 0 0
\(839\) 898.822i 1.07130i 0.844439 + 0.535651i \(0.179934\pi\)
−0.844439 + 0.535651i \(0.820066\pi\)
\(840\) 0 0
\(841\) −946.234 −1.12513
\(842\) 0 0
\(843\) −128.592 −0.152541
\(844\) 0 0
\(845\) −701.724 −0.830443
\(846\) 0 0
\(847\) −62.8443 −0.0741963
\(848\) 0 0
\(849\) 527.719i 0.621577i
\(850\) 0 0
\(851\) 925.000i 1.08696i
\(852\) 0 0
\(853\) 437.364 0.512737 0.256368 0.966579i \(-0.417474\pi\)
0.256368 + 0.966579i \(0.417474\pi\)
\(854\) 0 0
\(855\) −555.128 + 142.210i −0.649272 + 0.166328i
\(856\) 0 0
\(857\) 668.970i 0.780595i −0.920689 0.390298i \(-0.872372\pi\)
0.920689 0.390298i \(-0.127628\pi\)
\(858\) 0 0
\(859\) 833.585 0.970413 0.485207 0.874400i \(-0.338744\pi\)
0.485207 + 0.874400i \(0.338744\pi\)
\(860\) 0 0
\(861\) 209.578 0.243413
\(862\) 0 0
\(863\) 948.742i 1.09935i 0.835378 + 0.549676i \(0.185249\pi\)
−0.835378 + 0.549676i \(0.814751\pi\)
\(864\) 0 0
\(865\) 306.839i 0.354728i
\(866\) 0 0
\(867\) 335.192i 0.386611i
\(868\) 0 0
\(869\) 87.9740i 0.101236i
\(870\) 0 0
\(871\) −245.287 −0.281616
\(872\) 0 0
\(873\) 141.890i 0.162531i
\(874\) 0 0
\(875\) −321.714 −0.367673
\(876\) 0 0
\(877\) 1167.56i 1.33131i 0.746259 + 0.665656i \(0.231848\pi\)
−0.746259 + 0.665656i \(0.768152\pi\)
\(878\) 0 0
\(879\) 15.2687 0.0173706
\(880\) 0 0
\(881\) 1395.03 1.58346 0.791729 0.610873i \(-0.209181\pi\)
0.791729 + 0.610873i \(0.209181\pi\)
\(882\) 0 0
\(883\) 839.991 0.951292 0.475646 0.879637i \(-0.342214\pi\)
0.475646 + 0.879637i \(0.342214\pi\)
\(884\) 0 0
\(885\) −341.443 −0.385812
\(886\) 0 0
\(887\) 353.635i 0.398687i 0.979930 + 0.199344i \(0.0638810\pi\)
−0.979930 + 0.199344i \(0.936119\pi\)
\(888\) 0 0
\(889\) 304.558i 0.342585i
\(890\) 0 0
\(891\) 321.023 0.360295
\(892\) 0 0
\(893\) 230.240 58.9819i 0.257827 0.0660492i
\(894\) 0 0
\(895\) 1540.24i 1.72094i
\(896\) 0 0
\(897\) 110.311 0.122977
\(898\) 0 0
\(899\) −290.137 −0.322733
\(900\) 0 0
\(901\) 713.721i 0.792143i
\(902\) 0 0
\(903\) 6.85551i 0.00759193i
\(904\) 0 0
\(905\) 1152.58i 1.27357i
\(906\) 0 0
\(907\) 451.706i 0.498022i 0.968501 + 0.249011i \(0.0801055\pi\)
−0.968501 + 0.249011i \(0.919894\pi\)
\(908\) 0 0
\(909\) −493.040 −0.542399
\(910\) 0 0
\(911\) 1396.09i 1.53248i −0.642554 0.766241i \(-0.722125\pi\)
0.642554 0.766241i \(-0.277875\pi\)
\(912\) 0 0
\(913\) 675.515 0.739885
\(914\) 0 0
\(915\) 93.2876i 0.101954i
\(916\) 0 0
\(917\) −477.706 −0.520944
\(918\) 0 0
\(919\) −1290.37 −1.40411 −0.702054 0.712124i \(-0.747733\pi\)
−0.702054 + 0.712124i \(0.747733\pi\)
\(920\) 0 0
\(921\) 597.431 0.648677
\(922\) 0 0
\(923\) 290.980 0.315255
\(924\) 0 0
\(925\) 217.619i 0.235264i
\(926\) 0 0
\(927\) 945.707i 1.02018i
\(928\) 0 0
\(929\) −1383.61 −1.48935 −0.744677 0.667425i \(-0.767396\pi\)
−0.744677 + 0.667425i \(0.767396\pi\)
\(930\) 0 0
\(931\) −796.599 + 204.069i −0.855638 + 0.219194i
\(932\) 0 0
\(933\) 585.152i 0.627172i
\(934\) 0 0
\(935\) 427.152 0.456848
\(936\) 0 0
\(937\) −1047.14 −1.11755 −0.558774 0.829320i \(-0.688728\pi\)
−0.558774 + 0.829320i \(0.688728\pi\)
\(938\) 0 0
\(939\) 557.611i 0.593834i
\(940\) 0 0
\(941\) 1072.95i 1.14022i −0.821569 0.570110i \(-0.806901\pi\)
0.821569 0.570110i \(-0.193099\pi\)
\(942\) 0 0
\(943\) 1338.77i 1.41969i
\(944\) 0 0
\(945\) 248.553i 0.263019i
\(946\) 0 0
\(947\) −484.472 −0.511586 −0.255793 0.966732i \(-0.582337\pi\)
−0.255793 + 0.966732i \(0.582337\pi\)
\(948\) 0 0
\(949\) 27.3581i 0.0288283i
\(950\) 0 0
\(951\) −437.621 −0.460169
\(952\) 0 0
\(953\) 416.133i 0.436656i 0.975875 + 0.218328i \(0.0700603\pi\)
−0.975875 + 0.218328i \(0.929940\pi\)
\(954\) 0 0
\(955\) 950.221 0.994996
\(956\) 0 0
\(957\) −760.876 −0.795064
\(958\) 0 0
\(959\) 366.958 0.382646
\(960\) 0 0
\(961\) 913.900 0.950988
\(962\) 0 0
\(963\) 604.638i 0.627869i
\(964\) 0 0
\(965\) 765.691i 0.793462i
\(966\) 0 0
\(967\) 601.352 0.621874 0.310937 0.950431i \(-0.399357\pi\)
0.310937 + 0.950431i \(0.399357\pi\)
\(968\) 0 0
\(969\) −55.4964 216.634i −0.0572718 0.223564i
\(970\) 0 0
\(971\) 1501.64i 1.54648i −0.634111 0.773242i \(-0.718634\pi\)
0.634111 0.773242i \(-0.281366\pi\)
\(972\) 0 0
\(973\) −30.2823 −0.0311226
\(974\) 0 0
\(975\) 25.9521 0.0266175
\(976\) 0 0
\(977\) 1123.10i 1.14954i 0.818317 + 0.574768i \(0.194908\pi\)
−0.818317 + 0.574768i \(0.805092\pi\)
\(978\) 0 0
\(979\) 143.253i 0.146326i
\(980\) 0 0
\(981\) 707.003i 0.720697i
\(982\) 0 0
\(983\) 630.261i 0.641161i −0.947221 0.320580i \(-0.896122\pi\)
0.947221 0.320580i \(-0.103878\pi\)
\(984\) 0 0
\(985\) 755.933 0.767444
\(986\) 0 0
\(987\) 44.3689i 0.0449533i
\(988\) 0 0
\(989\) −43.7924 −0.0442795
\(990\) 0 0
\(991\) 486.447i 0.490864i −0.969414 0.245432i \(-0.921070\pi\)
0.969414 0.245432i \(-0.0789299\pi\)
\(992\) 0 0
\(993\) −430.391 −0.433425
\(994\) 0 0
\(995\) −718.054 −0.721662
\(996\) 0 0
\(997\) −932.988 −0.935795 −0.467898 0.883783i \(-0.654988\pi\)
−0.467898 + 0.883783i \(0.654988\pi\)
\(998\) 0 0
\(999\) −956.669 −0.957626
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.3.e.b.417.13 yes 20
4.3 odd 2 inner 608.3.e.b.417.8 yes 20
8.3 odd 2 1216.3.e.p.1025.14 20
8.5 even 2 1216.3.e.p.1025.7 20
19.18 odd 2 inner 608.3.e.b.417.7 20
76.75 even 2 inner 608.3.e.b.417.14 yes 20
152.37 odd 2 1216.3.e.p.1025.13 20
152.75 even 2 1216.3.e.p.1025.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.e.b.417.7 20 19.18 odd 2 inner
608.3.e.b.417.8 yes 20 4.3 odd 2 inner
608.3.e.b.417.13 yes 20 1.1 even 1 trivial
608.3.e.b.417.14 yes 20 76.75 even 2 inner
1216.3.e.p.1025.7 20 8.5 even 2
1216.3.e.p.1025.8 20 152.75 even 2
1216.3.e.p.1025.13 20 152.37 odd 2
1216.3.e.p.1025.14 20 8.3 odd 2