Properties

Label 608.2.s.c.559.11
Level $608$
Weight $2$
Character 608.559
Analytic conductor $4.855$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(335,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.335"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.11
Character \(\chi\) \(=\) 608.559
Dual form 608.2.s.c.335.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.03079 + 1.17247i) q^{3} +(-1.50560 - 0.869259i) q^{5} -2.63359i q^{7} +(1.24939 + 2.16401i) q^{9} +3.51485 q^{11} +(3.13303 + 5.42656i) q^{13} +(-2.03837 - 3.53056i) q^{15} +(-0.535037 + 0.926710i) q^{17} +(3.79871 + 2.13770i) q^{19} +(3.08781 - 5.34825i) q^{21} +(5.79041 - 3.34309i) q^{23} +(-0.988779 - 1.71262i) q^{25} -1.17531i q^{27} +(-0.579314 - 1.00340i) q^{29} +3.82638 q^{31} +(7.13790 + 4.12107i) q^{33} +(-2.28927 + 3.96513i) q^{35} -3.55090 q^{37} +14.6936i q^{39} +(-4.54864 - 2.62616i) q^{41} +(0.164324 - 0.284617i) q^{43} -4.34419i q^{45} +(-6.68209 + 3.85791i) q^{47} +0.0642261 q^{49} +(-2.17309 + 1.25463i) q^{51} +(-0.526815 - 0.912471i) q^{53} +(-5.29195 - 3.05531i) q^{55} +(5.20797 + 8.79511i) q^{57} +(-8.45232 - 4.87995i) q^{59} +(-11.2916 + 6.51920i) q^{61} +(5.69912 - 3.29039i) q^{63} -10.8936i q^{65} +(-12.3705 + 7.14213i) q^{67} +15.6788 q^{69} +(0.554279 - 0.960040i) q^{71} +(-5.98385 + 10.3643i) q^{73} -4.63727i q^{75} -9.25665i q^{77} +(-1.02065 + 1.76782i) q^{79} +(5.12621 - 8.87886i) q^{81} +11.0796 q^{83} +(1.61110 - 0.930170i) q^{85} -2.71693i q^{87} +(2.18737 - 1.26288i) q^{89} +(14.2913 - 8.25110i) q^{91} +(7.77056 + 4.48634i) q^{93} +(-3.86113 - 6.52059i) q^{95} +(0.354186 + 0.204489i) q^{97} +(4.39143 + 7.60618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 6 q^{3} + 8 q^{9} + 16 q^{11} - 22 q^{17} - 4 q^{19} + 16 q^{25} + 36 q^{33} + 28 q^{35} + 6 q^{41} - 30 q^{43} - 68 q^{49} + 42 q^{51} - 26 q^{57} + 18 q^{59} - 78 q^{67} + 14 q^{73} + 6 q^{81}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.03079 + 1.17247i 1.17247 + 0.676929i 0.954262 0.298972i \(-0.0966439\pi\)
0.218213 + 0.975901i \(0.429977\pi\)
\(4\) 0 0
\(5\) −1.50560 0.869259i −0.673325 0.388744i 0.124010 0.992281i \(-0.460424\pi\)
−0.797335 + 0.603537i \(0.793758\pi\)
\(6\) 0 0
\(7\) 2.63359i 0.995402i −0.867349 0.497701i \(-0.834178\pi\)
0.867349 0.497701i \(-0.165822\pi\)
\(8\) 0 0
\(9\) 1.24939 + 2.16401i 0.416465 + 0.721338i
\(10\) 0 0
\(11\) 3.51485 1.05977 0.529883 0.848071i \(-0.322236\pi\)
0.529883 + 0.848071i \(0.322236\pi\)
\(12\) 0 0
\(13\) 3.13303 + 5.42656i 0.868946 + 1.50506i 0.863075 + 0.505075i \(0.168535\pi\)
0.00587005 + 0.999983i \(0.498131\pi\)
\(14\) 0 0
\(15\) −2.03837 3.53056i −0.526304 0.911586i
\(16\) 0 0
\(17\) −0.535037 + 0.926710i −0.129765 + 0.224760i −0.923586 0.383392i \(-0.874756\pi\)
0.793820 + 0.608153i \(0.208089\pi\)
\(18\) 0 0
\(19\) 3.79871 + 2.13770i 0.871485 + 0.490422i
\(20\) 0 0
\(21\) 3.08781 5.34825i 0.673816 1.16708i
\(22\) 0 0
\(23\) 5.79041 3.34309i 1.20738 0.697083i 0.245196 0.969473i \(-0.421148\pi\)
0.962187 + 0.272390i \(0.0878142\pi\)
\(24\) 0 0
\(25\) −0.988779 1.71262i −0.197756 0.342523i
\(26\) 0 0
\(27\) 1.17531i 0.226189i
\(28\) 0 0
\(29\) −0.579314 1.00340i −0.107576 0.186327i 0.807212 0.590262i \(-0.200976\pi\)
−0.914788 + 0.403935i \(0.867642\pi\)
\(30\) 0 0
\(31\) 3.82638 0.687238 0.343619 0.939109i \(-0.388347\pi\)
0.343619 + 0.939109i \(0.388347\pi\)
\(32\) 0 0
\(33\) 7.13790 + 4.12107i 1.24255 + 0.717386i
\(34\) 0 0
\(35\) −2.28927 + 3.96513i −0.386957 + 0.670229i
\(36\) 0 0
\(37\) −3.55090 −0.583764 −0.291882 0.956454i \(-0.594281\pi\)
−0.291882 + 0.956454i \(0.594281\pi\)
\(38\) 0 0
\(39\) 14.6936i 2.35286i
\(40\) 0 0
\(41\) −4.54864 2.62616i −0.710378 0.410137i 0.100823 0.994904i \(-0.467852\pi\)
−0.811201 + 0.584767i \(0.801186\pi\)
\(42\) 0 0
\(43\) 0.164324 0.284617i 0.0250591 0.0434036i −0.853224 0.521545i \(-0.825356\pi\)
0.878283 + 0.478141i \(0.158689\pi\)
\(44\) 0 0
\(45\) 4.34419i 0.647593i
\(46\) 0 0
\(47\) −6.68209 + 3.85791i −0.974683 + 0.562733i −0.900661 0.434523i \(-0.856917\pi\)
−0.0740221 + 0.997257i \(0.523584\pi\)
\(48\) 0 0
\(49\) 0.0642261 0.00917515
\(50\) 0 0
\(51\) −2.17309 + 1.25463i −0.304293 + 0.175684i
\(52\) 0 0
\(53\) −0.526815 0.912471i −0.0723636 0.125338i 0.827573 0.561358i \(-0.189721\pi\)
−0.899937 + 0.436020i \(0.856388\pi\)
\(54\) 0 0
\(55\) −5.29195 3.05531i −0.713567 0.411978i
\(56\) 0 0
\(57\) 5.20797 + 8.79511i 0.689813 + 1.16494i
\(58\) 0 0
\(59\) −8.45232 4.87995i −1.10040 0.635315i −0.164073 0.986448i \(-0.552463\pi\)
−0.936326 + 0.351133i \(0.885796\pi\)
\(60\) 0 0
\(61\) −11.2916 + 6.51920i −1.44574 + 0.834698i −0.998224 0.0595773i \(-0.981025\pi\)
−0.447516 + 0.894276i \(0.647691\pi\)
\(62\) 0 0
\(63\) 5.69912 3.29039i 0.718021 0.414550i
\(64\) 0 0
\(65\) 10.8936i 1.35119i
\(66\) 0 0
\(67\) −12.3705 + 7.14213i −1.51130 + 0.872549i −0.511387 + 0.859350i \(0.670868\pi\)
−0.999913 + 0.0131990i \(0.995798\pi\)
\(68\) 0 0
\(69\) 15.6788 1.88750
\(70\) 0 0
\(71\) 0.554279 0.960040i 0.0657808 0.113936i −0.831259 0.555885i \(-0.812380\pi\)
0.897040 + 0.441949i \(0.145713\pi\)
\(72\) 0 0
\(73\) −5.98385 + 10.3643i −0.700356 + 1.21305i 0.267985 + 0.963423i \(0.413642\pi\)
−0.968341 + 0.249630i \(0.919691\pi\)
\(74\) 0 0
\(75\) 4.63727i 0.535466i
\(76\) 0 0
\(77\) 9.25665i 1.05489i
\(78\) 0 0
\(79\) −1.02065 + 1.76782i −0.114832 + 0.198895i −0.917713 0.397245i \(-0.869966\pi\)
0.802881 + 0.596140i \(0.203300\pi\)
\(80\) 0 0
\(81\) 5.12621 8.87886i 0.569579 0.986540i
\(82\) 0 0
\(83\) 11.0796 1.21615 0.608073 0.793881i \(-0.291943\pi\)
0.608073 + 0.793881i \(0.291943\pi\)
\(84\) 0 0
\(85\) 1.61110 0.930170i 0.174749 0.100891i
\(86\) 0 0
\(87\) 2.71693i 0.291285i
\(88\) 0 0
\(89\) 2.18737 1.26288i 0.231861 0.133865i −0.379569 0.925163i \(-0.623928\pi\)
0.611430 + 0.791298i \(0.290594\pi\)
\(90\) 0 0
\(91\) 14.2913 8.25110i 1.49814 0.864950i
\(92\) 0 0
\(93\) 7.77056 + 4.48634i 0.805770 + 0.465211i
\(94\) 0 0
\(95\) −3.86113 6.52059i −0.396143 0.668998i
\(96\) 0 0
\(97\) 0.354186 + 0.204489i 0.0359622 + 0.0207628i 0.517873 0.855457i \(-0.326724\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(98\) 0 0
\(99\) 4.39143 + 7.60618i 0.441355 + 0.764450i
\(100\) 0 0
\(101\) −14.9614 + 8.63798i −1.48872 + 0.859511i −0.999917 0.0128855i \(-0.995898\pi\)
−0.488799 + 0.872396i \(0.662565\pi\)
\(102\) 0 0
\(103\) −1.22345 −0.120551 −0.0602753 0.998182i \(-0.519198\pi\)
−0.0602753 + 0.998182i \(0.519198\pi\)
\(104\) 0 0
\(105\) −9.29802 + 5.36822i −0.907394 + 0.523884i
\(106\) 0 0
\(107\) 9.53314i 0.921604i −0.887503 0.460802i \(-0.847562\pi\)
0.887503 0.460802i \(-0.152438\pi\)
\(108\) 0 0
\(109\) 8.32099 14.4124i 0.797006 1.38045i −0.124552 0.992213i \(-0.539749\pi\)
0.921558 0.388241i \(-0.126917\pi\)
\(110\) 0 0
\(111\) −7.21111 4.16334i −0.684448 0.395166i
\(112\) 0 0
\(113\) 11.1836i 1.05206i −0.850465 0.526032i \(-0.823679\pi\)
0.850465 0.526032i \(-0.176321\pi\)
\(114\) 0 0
\(115\) −11.6240 −1.08395
\(116\) 0 0
\(117\) −7.82877 + 13.5598i −0.723770 + 1.25361i
\(118\) 0 0
\(119\) 2.44057 + 1.40906i 0.223727 + 0.129169i
\(120\) 0 0
\(121\) 1.35414 0.123104
\(122\) 0 0
\(123\) −6.15821 10.6663i −0.555267 0.961750i
\(124\) 0 0
\(125\) 12.1306i 1.08499i
\(126\) 0 0
\(127\) 6.15278 + 10.6569i 0.545971 + 0.945650i 0.998545 + 0.0539229i \(0.0171725\pi\)
−0.452574 + 0.891727i \(0.649494\pi\)
\(128\) 0 0
\(129\) 0.667412 0.385330i 0.0587623 0.0339264i
\(130\) 0 0
\(131\) −2.13527 + 3.69840i −0.186560 + 0.323131i −0.944101 0.329656i \(-0.893067\pi\)
0.757541 + 0.652787i \(0.226400\pi\)
\(132\) 0 0
\(133\) 5.62982 10.0042i 0.488167 0.867478i
\(134\) 0 0
\(135\) −1.02165 + 1.76955i −0.0879299 + 0.152299i
\(136\) 0 0
\(137\) −4.80955 8.33038i −0.410907 0.711712i 0.584082 0.811695i \(-0.301455\pi\)
−0.994989 + 0.0999823i \(0.968121\pi\)
\(138\) 0 0
\(139\) 1.71132 + 2.96409i 0.145152 + 0.251411i 0.929430 0.368999i \(-0.120300\pi\)
−0.784278 + 0.620410i \(0.786966\pi\)
\(140\) 0 0
\(141\) −18.0932 −1.52372
\(142\) 0 0
\(143\) 11.0121 + 19.0735i 0.920879 + 1.59501i
\(144\) 0 0
\(145\) 2.01430i 0.167278i
\(146\) 0 0
\(147\) 0.130429 + 0.0753035i 0.0107576 + 0.00621092i
\(148\) 0 0
\(149\) −4.61838 2.66643i −0.378353 0.218442i 0.298749 0.954332i \(-0.403431\pi\)
−0.677101 + 0.735890i \(0.736764\pi\)
\(150\) 0 0
\(151\) 12.8756 1.04780 0.523899 0.851780i \(-0.324477\pi\)
0.523899 + 0.851780i \(0.324477\pi\)
\(152\) 0 0
\(153\) −2.67389 −0.216171
\(154\) 0 0
\(155\) −5.76100 3.32611i −0.462735 0.267160i
\(156\) 0 0
\(157\) 10.7727 + 6.21961i 0.859754 + 0.496379i 0.863930 0.503612i \(-0.167996\pi\)
−0.00417613 + 0.999991i \(0.501329\pi\)
\(158\) 0 0
\(159\) 2.47071i 0.195940i
\(160\) 0 0
\(161\) −8.80432 15.2495i −0.693878 1.20183i
\(162\) 0 0
\(163\) −12.0962 −0.947449 −0.473724 0.880673i \(-0.657091\pi\)
−0.473724 + 0.880673i \(0.657091\pi\)
\(164\) 0 0
\(165\) −7.16455 12.4094i −0.557759 0.966067i
\(166\) 0 0
\(167\) −12.3200 21.3389i −0.953352 1.65125i −0.738094 0.674698i \(-0.764274\pi\)
−0.215258 0.976557i \(-0.569059\pi\)
\(168\) 0 0
\(169\) −13.1317 + 22.7448i −1.01013 + 1.74960i
\(170\) 0 0
\(171\) 0.120074 + 10.8913i 0.00918232 + 0.832879i
\(172\) 0 0
\(173\) −1.29936 + 2.25057i −0.0987889 + 0.171107i −0.911184 0.412001i \(-0.864830\pi\)
0.812395 + 0.583108i \(0.198164\pi\)
\(174\) 0 0
\(175\) −4.51032 + 2.60403i −0.340948 + 0.196846i
\(176\) 0 0
\(177\) −11.4432 19.8203i −0.860126 1.48978i
\(178\) 0 0
\(179\) 1.92541i 0.143912i 0.997408 + 0.0719559i \(0.0229241\pi\)
−0.997408 + 0.0719559i \(0.977076\pi\)
\(180\) 0 0
\(181\) 8.78786 + 15.2210i 0.653196 + 1.13137i 0.982343 + 0.187091i \(0.0599058\pi\)
−0.329146 + 0.944279i \(0.606761\pi\)
\(182\) 0 0
\(183\) −30.5744 −2.26013
\(184\) 0 0
\(185\) 5.34623 + 3.08665i 0.393063 + 0.226935i
\(186\) 0 0
\(187\) −1.88057 + 3.25724i −0.137521 + 0.238193i
\(188\) 0 0
\(189\) −3.09529 −0.225149
\(190\) 0 0
\(191\) 3.45229i 0.249799i −0.992169 0.124900i \(-0.960139\pi\)
0.992169 0.124900i \(-0.0398609\pi\)
\(192\) 0 0
\(193\) 6.81683 + 3.93570i 0.490686 + 0.283298i 0.724859 0.688897i \(-0.241905\pi\)
−0.234173 + 0.972195i \(0.575238\pi\)
\(194\) 0 0
\(195\) 12.7725 22.1227i 0.914659 1.58424i
\(196\) 0 0
\(197\) 14.5485i 1.03653i 0.855219 + 0.518267i \(0.173423\pi\)
−0.855219 + 0.518267i \(0.826577\pi\)
\(198\) 0 0
\(199\) −4.90638 + 2.83270i −0.347804 + 0.200805i −0.663718 0.747983i \(-0.731022\pi\)
0.315914 + 0.948788i \(0.397689\pi\)
\(200\) 0 0
\(201\) −33.4958 −2.36261
\(202\) 0 0
\(203\) −2.64254 + 1.52567i −0.185470 + 0.107081i
\(204\) 0 0
\(205\) 4.56562 + 7.90789i 0.318877 + 0.552311i
\(206\) 0 0
\(207\) 14.4690 + 8.35368i 1.00567 + 0.580621i
\(208\) 0 0
\(209\) 13.3519 + 7.51369i 0.923570 + 0.519733i
\(210\) 0 0
\(211\) 1.22935 + 0.709763i 0.0846317 + 0.0488621i 0.541719 0.840560i \(-0.317774\pi\)
−0.457087 + 0.889422i \(0.651107\pi\)
\(212\) 0 0
\(213\) 2.25124 1.29976i 0.154253 0.0890579i
\(214\) 0 0
\(215\) −0.494811 + 0.285679i −0.0337458 + 0.0194832i
\(216\) 0 0
\(217\) 10.0771i 0.684078i
\(218\) 0 0
\(219\) −24.3038 + 14.0318i −1.64230 + 0.948182i
\(220\) 0 0
\(221\) −6.70514 −0.451036
\(222\) 0 0
\(223\) 9.02397 15.6300i 0.604290 1.04666i −0.387874 0.921713i \(-0.626790\pi\)
0.992163 0.124948i \(-0.0398764\pi\)
\(224\) 0 0
\(225\) 2.47075 4.27946i 0.164717 0.285298i
\(226\) 0 0
\(227\) 17.6838i 1.17371i −0.809691 0.586857i \(-0.800365\pi\)
0.809691 0.586857i \(-0.199635\pi\)
\(228\) 0 0
\(229\) 5.53546i 0.365793i −0.983132 0.182897i \(-0.941453\pi\)
0.983132 0.182897i \(-0.0585474\pi\)
\(230\) 0 0
\(231\) 10.8532 18.7983i 0.714087 1.23684i
\(232\) 0 0
\(233\) −9.43030 + 16.3338i −0.617799 + 1.07006i 0.372087 + 0.928198i \(0.378642\pi\)
−0.989886 + 0.141862i \(0.954691\pi\)
\(234\) 0 0
\(235\) 13.4141 0.875037
\(236\) 0 0
\(237\) −4.14544 + 2.39337i −0.269275 + 0.155466i
\(238\) 0 0
\(239\) 8.91252i 0.576503i −0.957555 0.288251i \(-0.906926\pi\)
0.957555 0.288251i \(-0.0930739\pi\)
\(240\) 0 0
\(241\) 10.6275 6.13581i 0.684580 0.395242i −0.116999 0.993132i \(-0.537327\pi\)
0.801578 + 0.597890i \(0.203994\pi\)
\(242\) 0 0
\(243\) 17.7669 10.2577i 1.13975 0.658034i
\(244\) 0 0
\(245\) −0.0966988 0.0558291i −0.00617786 0.00356679i
\(246\) 0 0
\(247\) 0.301103 + 27.3114i 0.0191587 + 1.73779i
\(248\) 0 0
\(249\) 22.5003 + 12.9906i 1.42590 + 0.823244i
\(250\) 0 0
\(251\) 6.34526 + 10.9903i 0.400510 + 0.693703i 0.993787 0.111295i \(-0.0354998\pi\)
−0.593278 + 0.804998i \(0.702166\pi\)
\(252\) 0 0
\(253\) 20.3524 11.7505i 1.27954 0.738745i
\(254\) 0 0
\(255\) 4.36240 0.273184
\(256\) 0 0
\(257\) −15.8394 + 9.14489i −0.988035 + 0.570442i −0.904686 0.426078i \(-0.859895\pi\)
−0.0833488 + 0.996520i \(0.526562\pi\)
\(258\) 0 0
\(259\) 9.35159i 0.581080i
\(260\) 0 0
\(261\) 1.44758 2.50729i 0.0896032 0.155197i
\(262\) 0 0
\(263\) 17.6630 + 10.1978i 1.08915 + 0.628821i 0.933350 0.358968i \(-0.116871\pi\)
0.155799 + 0.987789i \(0.450205\pi\)
\(264\) 0 0
\(265\) 1.83175i 0.112524i
\(266\) 0 0
\(267\) 5.92279 0.362469
\(268\) 0 0
\(269\) 2.66106 4.60909i 0.162248 0.281021i −0.773427 0.633886i \(-0.781459\pi\)
0.935674 + 0.352864i \(0.114792\pi\)
\(270\) 0 0
\(271\) −18.8199 10.8657i −1.14323 0.660044i −0.196002 0.980604i \(-0.562796\pi\)
−0.947228 + 0.320559i \(0.896129\pi\)
\(272\) 0 0
\(273\) 38.6968 2.34204
\(274\) 0 0
\(275\) −3.47541 6.01958i −0.209575 0.362994i
\(276\) 0 0
\(277\) 5.64662i 0.339273i −0.985507 0.169636i \(-0.945741\pi\)
0.985507 0.169636i \(-0.0542593\pi\)
\(278\) 0 0
\(279\) 4.78066 + 8.28034i 0.286211 + 0.495731i
\(280\) 0 0
\(281\) 21.8341 12.6059i 1.30251 0.752005i 0.321677 0.946849i \(-0.395753\pi\)
0.980834 + 0.194844i \(0.0624201\pi\)
\(282\) 0 0
\(283\) −15.2893 + 26.4818i −0.908852 + 1.57418i −0.0931914 + 0.995648i \(0.529707\pi\)
−0.815661 + 0.578530i \(0.803627\pi\)
\(284\) 0 0
\(285\) −0.195900 17.7690i −0.0116041 1.05254i
\(286\) 0 0
\(287\) −6.91621 + 11.9792i −0.408251 + 0.707112i
\(288\) 0 0
\(289\) 7.92747 + 13.7308i 0.466322 + 0.807693i
\(290\) 0 0
\(291\) 0.479518 + 0.830549i 0.0281098 + 0.0486876i
\(292\) 0 0
\(293\) 6.91254 0.403835 0.201918 0.979403i \(-0.435283\pi\)
0.201918 + 0.979403i \(0.435283\pi\)
\(294\) 0 0
\(295\) 8.48387 + 14.6945i 0.493950 + 0.855547i
\(296\) 0 0
\(297\) 4.13105i 0.239708i
\(298\) 0 0
\(299\) 36.2830 + 20.9480i 2.09830 + 1.21145i
\(300\) 0 0
\(301\) −0.749562 0.432760i −0.0432041 0.0249439i
\(302\) 0 0
\(303\) −40.5112 −2.32731
\(304\) 0 0
\(305\) 22.6675 1.29794
\(306\) 0 0
\(307\) 4.83749 + 2.79293i 0.276090 + 0.159401i 0.631652 0.775252i \(-0.282377\pi\)
−0.355562 + 0.934653i \(0.615711\pi\)
\(308\) 0 0
\(309\) −2.48457 1.43447i −0.141342 0.0816041i
\(310\) 0 0
\(311\) 3.40979i 0.193351i −0.995316 0.0966757i \(-0.969179\pi\)
0.995316 0.0966757i \(-0.0308210\pi\)
\(312\) 0 0
\(313\) 6.98982 + 12.1067i 0.395088 + 0.684313i 0.993112 0.117165i \(-0.0373808\pi\)
−0.598024 + 0.801478i \(0.704047\pi\)
\(314\) 0 0
\(315\) −11.4408 −0.644615
\(316\) 0 0
\(317\) −12.9318 22.3986i −0.726323 1.25803i −0.958427 0.285338i \(-0.907894\pi\)
0.232104 0.972691i \(-0.425439\pi\)
\(318\) 0 0
\(319\) −2.03620 3.52680i −0.114005 0.197463i
\(320\) 0 0
\(321\) 11.1774 19.3598i 0.623860 1.08056i
\(322\) 0 0
\(323\) −4.01348 + 2.37656i −0.223316 + 0.132235i
\(324\) 0 0
\(325\) 6.19574 10.7313i 0.343678 0.595268i
\(326\) 0 0
\(327\) 33.7963 19.5123i 1.86894 1.07903i
\(328\) 0 0
\(329\) 10.1601 + 17.5979i 0.560146 + 0.970201i
\(330\) 0 0
\(331\) 7.70618i 0.423570i −0.977316 0.211785i \(-0.932072\pi\)
0.977316 0.211785i \(-0.0679276\pi\)
\(332\) 0 0
\(333\) −4.43647 7.68419i −0.243117 0.421091i
\(334\) 0 0
\(335\) 24.8334 1.35679
\(336\) 0 0
\(337\) 16.5941 + 9.58062i 0.903939 + 0.521889i 0.878476 0.477786i \(-0.158561\pi\)
0.0254629 + 0.999676i \(0.491894\pi\)
\(338\) 0 0
\(339\) 13.1125 22.7115i 0.712172 1.23352i
\(340\) 0 0
\(341\) 13.4491 0.728312
\(342\) 0 0
\(343\) 18.6042i 1.00453i
\(344\) 0 0
\(345\) −23.6060 13.6289i −1.27090 0.733756i
\(346\) 0 0
\(347\) 0.244410 0.423330i 0.0131206 0.0227255i −0.859391 0.511320i \(-0.829157\pi\)
0.872511 + 0.488594i \(0.162490\pi\)
\(348\) 0 0
\(349\) 23.0553i 1.23412i −0.786916 0.617060i \(-0.788324\pi\)
0.786916 0.617060i \(-0.211676\pi\)
\(350\) 0 0
\(351\) 6.37792 3.68229i 0.340428 0.196546i
\(352\) 0 0
\(353\) −18.1384 −0.965407 −0.482704 0.875784i \(-0.660345\pi\)
−0.482704 + 0.875784i \(0.660345\pi\)
\(354\) 0 0
\(355\) −1.66905 + 0.963624i −0.0885837 + 0.0511438i
\(356\) 0 0
\(357\) 3.30419 + 5.72302i 0.174876 + 0.302894i
\(358\) 0 0
\(359\) −1.99616 1.15248i −0.105353 0.0608257i 0.446398 0.894835i \(-0.352707\pi\)
−0.551751 + 0.834009i \(0.686040\pi\)
\(360\) 0 0
\(361\) 9.86046 + 16.2410i 0.518972 + 0.854791i
\(362\) 0 0
\(363\) 2.74997 + 1.58770i 0.144336 + 0.0833325i
\(364\) 0 0
\(365\) 18.0186 10.4030i 0.943135 0.544519i
\(366\) 0 0
\(367\) 6.22808 3.59578i 0.325103 0.187698i −0.328562 0.944482i \(-0.606564\pi\)
0.653665 + 0.756784i \(0.273231\pi\)
\(368\) 0 0
\(369\) 13.1244i 0.683230i
\(370\) 0 0
\(371\) −2.40307 + 1.38741i −0.124761 + 0.0720309i
\(372\) 0 0
\(373\) −36.8480 −1.90792 −0.953958 0.299940i \(-0.903033\pi\)
−0.953958 + 0.299940i \(0.903033\pi\)
\(374\) 0 0
\(375\) −14.2228 + 24.6347i −0.734464 + 1.27213i
\(376\) 0 0
\(377\) 3.63001 6.28737i 0.186955 0.323816i
\(378\) 0 0
\(379\) 13.7966i 0.708683i 0.935116 + 0.354342i \(0.115295\pi\)
−0.935116 + 0.354342i \(0.884705\pi\)
\(380\) 0 0
\(381\) 28.8559i 1.47833i
\(382\) 0 0
\(383\) −10.3391 + 17.9079i −0.528304 + 0.915049i 0.471152 + 0.882052i \(0.343838\pi\)
−0.999455 + 0.0329968i \(0.989495\pi\)
\(384\) 0 0
\(385\) −8.04642 + 13.9368i −0.410084 + 0.710286i
\(386\) 0 0
\(387\) 0.821220 0.0417449
\(388\) 0 0
\(389\) −4.94700 + 2.85615i −0.250823 + 0.144813i −0.620141 0.784490i \(-0.712925\pi\)
0.369318 + 0.929303i \(0.379591\pi\)
\(390\) 0 0
\(391\) 7.15471i 0.361829i
\(392\) 0 0
\(393\) −8.67256 + 5.00711i −0.437473 + 0.252575i
\(394\) 0 0
\(395\) 3.07338 1.77442i 0.154639 0.0892806i
\(396\) 0 0
\(397\) 3.60511 + 2.08141i 0.180935 + 0.104463i 0.587732 0.809056i \(-0.300021\pi\)
−0.406797 + 0.913519i \(0.633354\pi\)
\(398\) 0 0
\(399\) 23.1627 13.7156i 1.15958 0.686641i
\(400\) 0 0
\(401\) −11.9448 6.89632i −0.596494 0.344386i 0.171167 0.985242i \(-0.445246\pi\)
−0.767661 + 0.640856i \(0.778579\pi\)
\(402\) 0 0
\(403\) 11.9882 + 20.7641i 0.597173 + 1.03433i
\(404\) 0 0
\(405\) −15.4360 + 8.91200i −0.767023 + 0.442841i
\(406\) 0 0
\(407\) −12.4809 −0.618653
\(408\) 0 0
\(409\) −23.9196 + 13.8100i −1.18275 + 0.682859i −0.956648 0.291246i \(-0.905930\pi\)
−0.226098 + 0.974105i \(0.572597\pi\)
\(410\) 0 0
\(411\) 22.5563i 1.11262i
\(412\) 0 0
\(413\) −12.8518 + 22.2599i −0.632394 + 1.09534i
\(414\) 0 0
\(415\) −16.6815 9.63106i −0.818862 0.472770i
\(416\) 0 0
\(417\) 8.02591i 0.393031i
\(418\) 0 0
\(419\) −5.29106 −0.258485 −0.129243 0.991613i \(-0.541255\pi\)
−0.129243 + 0.991613i \(0.541255\pi\)
\(420\) 0 0
\(421\) 0.257440 0.445898i 0.0125468 0.0217318i −0.859684 0.510827i \(-0.829339\pi\)
0.872231 + 0.489095i \(0.162673\pi\)
\(422\) 0 0
\(423\) −16.6971 9.64009i −0.811842 0.468717i
\(424\) 0 0
\(425\) 2.11613 0.102647
\(426\) 0 0
\(427\) 17.1689 + 29.7374i 0.830860 + 1.43909i
\(428\) 0 0
\(429\) 51.6457i 2.49348i
\(430\) 0 0
\(431\) −3.98898 6.90912i −0.192143 0.332801i 0.753817 0.657084i \(-0.228210\pi\)
−0.945960 + 0.324283i \(0.894877\pi\)
\(432\) 0 0
\(433\) −23.3608 + 13.4874i −1.12265 + 0.648161i −0.942075 0.335401i \(-0.891128\pi\)
−0.180572 + 0.983562i \(0.557795\pi\)
\(434\) 0 0
\(435\) −2.36171 + 4.09060i −0.113235 + 0.196129i
\(436\) 0 0
\(437\) 29.1426 0.321292i 1.39408 0.0153695i
\(438\) 0 0
\(439\) 12.1104 20.9758i 0.577996 1.00112i −0.417713 0.908579i \(-0.637168\pi\)
0.995709 0.0925395i \(-0.0294984\pi\)
\(440\) 0 0
\(441\) 0.0802437 + 0.138986i 0.00382113 + 0.00661839i
\(442\) 0 0
\(443\) −9.46404 16.3922i −0.449650 0.778817i 0.548713 0.836011i \(-0.315118\pi\)
−0.998363 + 0.0571938i \(0.981785\pi\)
\(444\) 0 0
\(445\) −4.39108 −0.208157
\(446\) 0 0
\(447\) −6.25263 10.8299i −0.295739 0.512236i
\(448\) 0 0
\(449\) 26.8822i 1.26865i −0.773067 0.634325i \(-0.781278\pi\)
0.773067 0.634325i \(-0.218722\pi\)
\(450\) 0 0
\(451\) −15.9878 9.23054i −0.752834 0.434649i
\(452\) 0 0
\(453\) 26.1475 + 15.0963i 1.22852 + 0.709285i
\(454\) 0 0
\(455\) −28.6893 −1.34498
\(456\) 0 0
\(457\) −20.7685 −0.971510 −0.485755 0.874095i \(-0.661455\pi\)
−0.485755 + 0.874095i \(0.661455\pi\)
\(458\) 0 0
\(459\) 1.08918 + 0.628836i 0.0508384 + 0.0293516i
\(460\) 0 0
\(461\) −1.43067 0.825996i −0.0666328 0.0384705i 0.466313 0.884620i \(-0.345582\pi\)
−0.532946 + 0.846149i \(0.678915\pi\)
\(462\) 0 0
\(463\) 1.67704i 0.0779389i 0.999240 + 0.0389694i \(0.0124075\pi\)
−0.999240 + 0.0389694i \(0.987592\pi\)
\(464\) 0 0
\(465\) −7.79957 13.5093i −0.361696 0.626477i
\(466\) 0 0
\(467\) −11.9357 −0.552316 −0.276158 0.961112i \(-0.589061\pi\)
−0.276158 + 0.961112i \(0.589061\pi\)
\(468\) 0 0
\(469\) 18.8094 + 32.5788i 0.868537 + 1.50435i
\(470\) 0 0
\(471\) 14.5847 + 25.2614i 0.672026 + 1.16398i
\(472\) 0 0
\(473\) 0.577572 1.00038i 0.0265568 0.0459977i
\(474\) 0 0
\(475\) −0.0950277 8.61945i −0.00436017 0.395488i
\(476\) 0 0
\(477\) 1.31640 2.28007i 0.0602738 0.104397i
\(478\) 0 0
\(479\) −1.63885 + 0.946189i −0.0748808 + 0.0432325i −0.536973 0.843599i \(-0.680432\pi\)
0.462092 + 0.886832i \(0.347099\pi\)
\(480\) 0 0
\(481\) −11.1251 19.2692i −0.507259 0.878598i
\(482\) 0 0
\(483\) 41.2914i 1.87882i
\(484\) 0 0
\(485\) −0.355508 0.615759i −0.0161428 0.0279602i
\(486\) 0 0
\(487\) 7.47813 0.338866 0.169433 0.985542i \(-0.445806\pi\)
0.169433 + 0.985542i \(0.445806\pi\)
\(488\) 0 0
\(489\) −24.5648 14.1825i −1.11086 0.641355i
\(490\) 0 0
\(491\) 14.3418 24.8407i 0.647236 1.12105i −0.336544 0.941668i \(-0.609258\pi\)
0.983780 0.179378i \(-0.0574087\pi\)
\(492\) 0 0
\(493\) 1.23982 0.0558386
\(494\) 0 0
\(495\) 15.2691i 0.686297i
\(496\) 0 0
\(497\) −2.52835 1.45974i −0.113412 0.0654784i
\(498\) 0 0
\(499\) −6.66818 + 11.5496i −0.298509 + 0.517033i −0.975795 0.218687i \(-0.929823\pi\)
0.677286 + 0.735720i \(0.263156\pi\)
\(500\) 0 0
\(501\) 57.7797i 2.58141i
\(502\) 0 0
\(503\) 31.7044 18.3046i 1.41363 0.816160i 0.417902 0.908492i \(-0.362765\pi\)
0.995728 + 0.0923320i \(0.0294321\pi\)
\(504\) 0 0
\(505\) 30.0345 1.33652
\(506\) 0 0
\(507\) −53.3354 + 30.7932i −2.36871 + 1.36758i
\(508\) 0 0
\(509\) 4.86878 + 8.43297i 0.215805 + 0.373785i 0.953521 0.301326i \(-0.0974292\pi\)
−0.737716 + 0.675111i \(0.764096\pi\)
\(510\) 0 0
\(511\) 27.2953 + 15.7590i 1.20747 + 0.697136i
\(512\) 0 0
\(513\) 2.51247 4.46469i 0.110928 0.197121i
\(514\) 0 0
\(515\) 1.84203 + 1.06350i 0.0811697 + 0.0468633i
\(516\) 0 0
\(517\) −23.4865 + 13.5599i −1.03294 + 0.596366i
\(518\) 0 0
\(519\) −5.27746 + 3.04695i −0.231655 + 0.133746i
\(520\) 0 0
\(521\) 10.4196i 0.456489i −0.973604 0.228244i \(-0.926701\pi\)
0.973604 0.228244i \(-0.0732985\pi\)
\(522\) 0 0
\(523\) −7.69425 + 4.44228i −0.336446 + 0.194247i −0.658699 0.752406i \(-0.728893\pi\)
0.322253 + 0.946653i \(0.395560\pi\)
\(524\) 0 0
\(525\) −12.2127 −0.533004
\(526\) 0 0
\(527\) −2.04725 + 3.54595i −0.0891798 + 0.154464i
\(528\) 0 0
\(529\) 10.8525 18.7972i 0.471850 0.817267i
\(530\) 0 0
\(531\) 24.3879i 1.05835i
\(532\) 0 0
\(533\) 32.9113i 1.42555i
\(534\) 0 0
\(535\) −8.28677 + 14.3531i −0.358268 + 0.620539i
\(536\) 0 0
\(537\) −2.25749 + 3.91009i −0.0974180 + 0.168733i
\(538\) 0 0
\(539\) 0.225745 0.00972351
\(540\) 0 0
\(541\) −13.0499 + 7.53435i −0.561058 + 0.323927i −0.753570 0.657367i \(-0.771670\pi\)
0.192512 + 0.981295i \(0.438337\pi\)
\(542\) 0 0
\(543\) 41.2142i 1.76867i
\(544\) 0 0
\(545\) −25.0562 + 14.4662i −1.07329 + 0.619663i
\(546\) 0 0
\(547\) 13.6000 7.85196i 0.581494 0.335725i −0.180233 0.983624i \(-0.557685\pi\)
0.761727 + 0.647898i \(0.224352\pi\)
\(548\) 0 0
\(549\) −28.2153 16.2901i −1.20420 0.695245i
\(550\) 0 0
\(551\) −0.0556756 5.05004i −0.00237186 0.215139i
\(552\) 0 0
\(553\) 4.65570 + 2.68797i 0.197980 + 0.114304i
\(554\) 0 0
\(555\) 7.23803 + 12.5366i 0.307237 + 0.532151i
\(556\) 0 0
\(557\) −5.29879 + 3.05926i −0.224517 + 0.129625i −0.608040 0.793906i \(-0.708044\pi\)
0.383523 + 0.923531i \(0.374711\pi\)
\(558\) 0 0
\(559\) 2.05932 0.0871000
\(560\) 0 0
\(561\) −7.63807 + 4.40984i −0.322480 + 0.186184i
\(562\) 0 0
\(563\) 7.15012i 0.301342i 0.988584 + 0.150671i \(0.0481433\pi\)
−0.988584 + 0.150671i \(0.951857\pi\)
\(564\) 0 0
\(565\) −9.72143 + 16.8380i −0.408984 + 0.708380i
\(566\) 0 0
\(567\) −23.3832 13.5003i −0.982003 0.566960i
\(568\) 0 0
\(569\) 17.0049i 0.712881i 0.934318 + 0.356440i \(0.116010\pi\)
−0.934318 + 0.356440i \(0.883990\pi\)
\(570\) 0 0
\(571\) 24.7475 1.03565 0.517826 0.855486i \(-0.326741\pi\)
0.517826 + 0.855486i \(0.326741\pi\)
\(572\) 0 0
\(573\) 4.04773 7.01087i 0.169096 0.292883i
\(574\) 0 0
\(575\) −11.4509 6.61116i −0.477534 0.275704i
\(576\) 0 0
\(577\) 4.20132 0.174903 0.0874515 0.996169i \(-0.472128\pi\)
0.0874515 + 0.996169i \(0.472128\pi\)
\(578\) 0 0
\(579\) 9.22902 + 15.9851i 0.383545 + 0.664319i
\(580\) 0 0
\(581\) 29.1791i 1.21055i
\(582\) 0 0
\(583\) −1.85167 3.20719i −0.0766885 0.132828i
\(584\) 0 0
\(585\) 23.5740 13.6105i 0.974665 0.562723i
\(586\) 0 0
\(587\) −2.00696 + 3.47616i −0.0828361 + 0.143476i −0.904467 0.426543i \(-0.859731\pi\)
0.821631 + 0.570020i \(0.193064\pi\)
\(588\) 0 0
\(589\) 14.5353 + 8.17966i 0.598918 + 0.337037i
\(590\) 0 0
\(591\) −17.0577 + 29.5448i −0.701660 + 1.21531i
\(592\) 0 0
\(593\) 20.6458 + 35.7596i 0.847821 + 1.46847i 0.883148 + 0.469094i \(0.155419\pi\)
−0.0353273 + 0.999376i \(0.511247\pi\)
\(594\) 0 0
\(595\) −2.44968 4.24298i −0.100427 0.173945i
\(596\) 0 0
\(597\) −13.2851 −0.543722
\(598\) 0 0
\(599\) −16.4449 28.4833i −0.671919 1.16380i −0.977359 0.211586i \(-0.932137\pi\)
0.305440 0.952211i \(-0.401196\pi\)
\(600\) 0 0
\(601\) 36.2387i 1.47821i −0.673591 0.739104i \(-0.735249\pi\)
0.673591 0.739104i \(-0.264751\pi\)
\(602\) 0 0
\(603\) −30.9113 17.8467i −1.25881 0.726772i
\(604\) 0 0
\(605\) −2.03880 1.17710i −0.0828889 0.0478559i
\(606\) 0 0
\(607\) 31.1439 1.26409 0.632046 0.774931i \(-0.282215\pi\)
0.632046 + 0.774931i \(0.282215\pi\)
\(608\) 0 0
\(609\) −7.15526 −0.289946
\(610\) 0 0
\(611\) −41.8703 24.1738i −1.69389 0.977969i
\(612\) 0 0
\(613\) 19.0102 + 10.9755i 0.767813 + 0.443297i 0.832094 0.554635i \(-0.187142\pi\)
−0.0642809 + 0.997932i \(0.520475\pi\)
\(614\) 0 0
\(615\) 21.4123i 0.863427i
\(616\) 0 0
\(617\) 13.2947 + 23.0270i 0.535222 + 0.927033i 0.999153 + 0.0411607i \(0.0131056\pi\)
−0.463930 + 0.885872i \(0.653561\pi\)
\(618\) 0 0
\(619\) 10.1699 0.408765 0.204382 0.978891i \(-0.434481\pi\)
0.204382 + 0.978891i \(0.434481\pi\)
\(620\) 0 0
\(621\) −3.92919 6.80555i −0.157673 0.273097i
\(622\) 0 0
\(623\) −3.32591 5.76064i −0.133250 0.230795i
\(624\) 0 0
\(625\) 5.60074 9.70076i 0.224029 0.388030i
\(626\) 0 0
\(627\) 18.3052 + 30.9135i 0.731040 + 1.23456i
\(628\) 0 0
\(629\) 1.89986 3.29065i 0.0757524 0.131207i
\(630\) 0 0
\(631\) −1.60265 + 0.925289i −0.0638004 + 0.0368352i −0.531561 0.847020i \(-0.678394\pi\)
0.467760 + 0.883855i \(0.345061\pi\)
\(632\) 0 0
\(633\) 1.66436 + 2.88275i 0.0661523 + 0.114579i
\(634\) 0 0
\(635\) 21.3934i 0.848973i
\(636\) 0 0
\(637\) 0.201222 + 0.348527i 0.00797271 + 0.0138091i
\(638\) 0 0
\(639\) 2.77005 0.109582
\(640\) 0 0
\(641\) 14.0043 + 8.08541i 0.553138 + 0.319354i 0.750387 0.660999i \(-0.229867\pi\)
−0.197249 + 0.980353i \(0.563201\pi\)
\(642\) 0 0
\(643\) 3.77472 6.53800i 0.148860 0.257834i −0.781946 0.623346i \(-0.785773\pi\)
0.930806 + 0.365512i \(0.119106\pi\)
\(644\) 0 0
\(645\) −1.33981 −0.0527548
\(646\) 0 0
\(647\) 26.6043i 1.04592i 0.852356 + 0.522962i \(0.175173\pi\)
−0.852356 + 0.522962i \(0.824827\pi\)
\(648\) 0 0
\(649\) −29.7086 17.1523i −1.16616 0.673285i
\(650\) 0 0
\(651\) 11.8151 20.4644i 0.463072 0.802065i
\(652\) 0 0
\(653\) 44.5639i 1.74392i 0.489576 + 0.871961i \(0.337152\pi\)
−0.489576 + 0.871961i \(0.662848\pi\)
\(654\) 0 0
\(655\) 6.42973 3.71221i 0.251230 0.145048i
\(656\) 0 0
\(657\) −29.9047 −1.16669
\(658\) 0 0
\(659\) −7.12914 + 4.11601i −0.277712 + 0.160337i −0.632387 0.774653i \(-0.717925\pi\)
0.354675 + 0.934990i \(0.384591\pi\)
\(660\) 0 0
\(661\) −12.0523 20.8752i −0.468780 0.811952i 0.530583 0.847633i \(-0.321973\pi\)
−0.999363 + 0.0356816i \(0.988640\pi\)
\(662\) 0 0
\(663\) −13.6167 7.86160i −0.528829 0.305319i
\(664\) 0 0
\(665\) −17.1725 + 10.1686i −0.665922 + 0.394322i
\(666\) 0 0
\(667\) −6.70893 3.87340i −0.259771 0.149979i
\(668\) 0 0
\(669\) 36.6515 21.1608i 1.41703 0.818122i
\(670\) 0 0
\(671\) −39.6882 + 22.9140i −1.53215 + 0.884585i
\(672\) 0 0
\(673\) 20.9382i 0.807109i −0.914956 0.403555i \(-0.867775\pi\)
0.914956 0.403555i \(-0.132225\pi\)
\(674\) 0 0
\(675\) −2.01286 + 1.16213i −0.0774751 + 0.0447303i
\(676\) 0 0
\(677\) −1.42054 −0.0545958 −0.0272979 0.999627i \(-0.508690\pi\)
−0.0272979 + 0.999627i \(0.508690\pi\)
\(678\) 0 0
\(679\) 0.538541 0.932780i 0.0206673 0.0357968i
\(680\) 0 0
\(681\) 20.7338 35.9120i 0.794521 1.37615i
\(682\) 0 0
\(683\) 5.61433i 0.214826i 0.994214 + 0.107413i \(0.0342567\pi\)
−0.994214 + 0.107413i \(0.965743\pi\)
\(684\) 0 0
\(685\) 16.7230i 0.638952i
\(686\) 0 0
\(687\) 6.49018 11.2413i 0.247616 0.428883i
\(688\) 0 0
\(689\) 3.30105 5.71759i 0.125760 0.217823i
\(690\) 0 0
\(691\) −14.4545 −0.549874 −0.274937 0.961462i \(-0.588657\pi\)
−0.274937 + 0.961462i \(0.588657\pi\)
\(692\) 0 0
\(693\) 20.0315 11.5652i 0.760935 0.439326i
\(694\) 0 0
\(695\) 5.95031i 0.225708i
\(696\) 0 0
\(697\) 4.86738 2.81018i 0.184365 0.106443i
\(698\) 0 0
\(699\) −38.3018 + 22.1136i −1.44871 + 0.836412i
\(700\) 0 0
\(701\) −19.3056 11.1461i −0.729162 0.420982i 0.0889537 0.996036i \(-0.471648\pi\)
−0.818115 + 0.575054i \(0.804981\pi\)
\(702\) 0 0
\(703\) −13.4888 7.59076i −0.508741 0.286291i
\(704\) 0 0
\(705\) 27.2411 + 15.7277i 1.02596 + 0.592338i
\(706\) 0 0
\(707\) 22.7489 + 39.4022i 0.855559 + 1.48187i
\(708\) 0 0
\(709\) 3.96340 2.28827i 0.148849 0.0859379i −0.423726 0.905790i \(-0.639278\pi\)
0.572575 + 0.819853i \(0.305945\pi\)
\(710\) 0 0
\(711\) −5.10078 −0.191294
\(712\) 0 0
\(713\) 22.1563 12.7919i 0.829760 0.479062i
\(714\) 0 0
\(715\) 38.2895i 1.43195i
\(716\) 0 0
\(717\) 10.4497 18.0994i 0.390251 0.675935i
\(718\) 0 0
\(719\) 27.0082 + 15.5932i 1.00724 + 0.581529i 0.910382 0.413770i \(-0.135788\pi\)
0.0968558 + 0.995298i \(0.469121\pi\)
\(720\) 0 0
\(721\) 3.22207i 0.119996i
\(722\) 0 0
\(723\) 28.7763 1.07020
\(724\) 0 0
\(725\) −1.14563 + 1.98428i −0.0425475 + 0.0736945i
\(726\) 0 0
\(727\) 23.9867 + 13.8487i 0.889616 + 0.513620i 0.873817 0.486255i \(-0.161637\pi\)
0.0157989 + 0.999875i \(0.494971\pi\)
\(728\) 0 0
\(729\) 17.3505 0.642610
\(730\) 0 0
\(731\) 0.175838 + 0.304561i 0.00650361 + 0.0112646i
\(732\) 0 0
\(733\) 39.4678i 1.45778i −0.684633 0.728888i \(-0.740038\pi\)
0.684633 0.728888i \(-0.259962\pi\)
\(734\) 0 0
\(735\) −0.130916 0.226754i −0.00482892 0.00836394i
\(736\) 0 0
\(737\) −43.4805 + 25.1035i −1.60162 + 0.924698i
\(738\) 0 0
\(739\) 9.60431 16.6352i 0.353300 0.611934i −0.633525 0.773722i \(-0.718393\pi\)
0.986826 + 0.161788i \(0.0517260\pi\)
\(740\) 0 0
\(741\) −31.4105 + 55.8167i −1.15389 + 2.05048i
\(742\) 0 0
\(743\) −12.5887 + 21.8042i −0.461834 + 0.799920i −0.999052 0.0435235i \(-0.986142\pi\)
0.537219 + 0.843443i \(0.319475\pi\)
\(744\) 0 0
\(745\) 4.63563 + 8.02914i 0.169836 + 0.294165i
\(746\) 0 0
\(747\) 13.8428 + 23.9765i 0.506482 + 0.877253i
\(748\) 0 0
\(749\) −25.1063 −0.917366
\(750\) 0 0
\(751\) 6.81951 + 11.8117i 0.248848 + 0.431017i 0.963206 0.268763i \(-0.0866149\pi\)
−0.714359 + 0.699780i \(0.753282\pi\)
\(752\) 0 0
\(753\) 29.7587i 1.08447i
\(754\) 0 0
\(755\) −19.3854 11.1922i −0.705508 0.407325i
\(756\) 0 0
\(757\) −11.9944 6.92497i −0.435944 0.251692i 0.265932 0.963992i \(-0.414320\pi\)
−0.701876 + 0.712299i \(0.747654\pi\)
\(758\) 0 0
\(759\) 55.1085 2.00031
\(760\) 0 0
\(761\) 30.7993 1.11647 0.558237 0.829682i \(-0.311478\pi\)
0.558237 + 0.829682i \(0.311478\pi\)
\(762\) 0 0
\(763\) −37.9562 21.9140i −1.37411 0.793341i
\(764\) 0 0
\(765\) 4.02580 + 2.32430i 0.145553 + 0.0840352i
\(766\) 0 0
\(767\) 61.1560i 2.20822i
\(768\) 0 0
\(769\) 13.8221 + 23.9405i 0.498437 + 0.863318i 0.999998 0.00180408i \(-0.000574256\pi\)
−0.501562 + 0.865122i \(0.667241\pi\)
\(770\) 0 0
\(771\) −42.8886 −1.54460
\(772\) 0 0
\(773\) 8.10943 + 14.0459i 0.291676 + 0.505198i 0.974206 0.225660i \(-0.0724538\pi\)
−0.682530 + 0.730857i \(0.739120\pi\)
\(774\) 0 0
\(775\) −3.78344 6.55312i −0.135905 0.235395i
\(776\) 0 0
\(777\) −10.9645 + 18.9911i −0.393349 + 0.681301i
\(778\) 0 0
\(779\) −11.6650 19.6997i −0.417943 0.705813i
\(780\) 0 0
\(781\) 1.94821 3.37439i 0.0697123 0.120745i
\(782\) 0 0
\(783\) −1.17931 + 0.680877i −0.0421452 + 0.0243325i
\(784\) 0 0
\(785\) −10.8129 18.7285i −0.385929 0.668449i
\(786\) 0 0
\(787\) 5.50219i 0.196132i 0.995180 + 0.0980660i \(0.0312656\pi\)
−0.995180 + 0.0980660i \(0.968734\pi\)
\(788\) 0 0
\(789\) 23.9132 + 41.4189i 0.851333 + 1.47455i
\(790\) 0 0
\(791\) −29.4529 −1.04723
\(792\) 0 0
\(793\) −70.7537 40.8497i −2.51254 1.45061i
\(794\) 0 0
\(795\) −2.14769 + 3.71990i −0.0761706 + 0.131931i
\(796\) 0 0
\(797\) 49.6076 1.75719 0.878596 0.477565i \(-0.158481\pi\)
0.878596 + 0.477565i \(0.158481\pi\)
\(798\) 0 0
\(799\) 8.25648i 0.292093i
\(800\) 0 0
\(801\) 5.46579 + 3.15567i 0.193124 + 0.111500i
\(802\) 0 0
\(803\) −21.0323 + 36.4290i −0.742214 + 1.28555i
\(804\) 0 0
\(805\) 30.6129i 1.07896i
\(806\) 0 0
\(807\) 10.8081 6.24005i 0.380463 0.219660i
\(808\) 0 0
\(809\) 1.83016 0.0643449 0.0321725 0.999482i \(-0.489757\pi\)
0.0321725 + 0.999482i \(0.489757\pi\)
\(810\) 0 0
\(811\) 35.5280 20.5121i 1.24756 0.720278i 0.276936 0.960888i \(-0.410681\pi\)
0.970622 + 0.240610i \(0.0773476\pi\)
\(812\) 0 0
\(813\) −25.4795 44.1318i −0.893606 1.54777i
\(814\) 0 0
\(815\) 18.2121 + 10.5147i 0.637941 + 0.368315i
\(816\) 0 0
\(817\) 1.23264 0.729903i 0.0431247 0.0255361i
\(818\) 0 0
\(819\) 35.7110 + 20.6177i 1.24784 + 0.720442i
\(820\) 0 0
\(821\) 43.4002 25.0571i 1.51468 0.874500i 0.514827 0.857294i \(-0.327856\pi\)
0.999852 0.0172064i \(-0.00547725\pi\)
\(822\) 0 0
\(823\) 15.6404 9.02998i 0.545190 0.314765i −0.201990 0.979388i \(-0.564741\pi\)
0.747180 + 0.664622i \(0.231408\pi\)
\(824\) 0 0
\(825\) 16.2993i 0.567469i
\(826\) 0 0
\(827\) 9.58340 5.53298i 0.333247 0.192400i −0.324035 0.946045i \(-0.605039\pi\)
0.657282 + 0.753645i \(0.271706\pi\)
\(828\) 0 0
\(829\) −12.1712 −0.422722 −0.211361 0.977408i \(-0.567790\pi\)
−0.211361 + 0.977408i \(0.567790\pi\)
\(830\) 0 0
\(831\) 6.62052 11.4671i 0.229663 0.397789i
\(832\) 0 0
\(833\) −0.0343633 + 0.0595190i −0.00119062 + 0.00206221i
\(834\) 0 0
\(835\) 42.8372i 1.48244i
\(836\) 0 0
\(837\) 4.49720i 0.155446i
\(838\) 0 0
\(839\) −16.4497 + 28.4917i −0.567906 + 0.983642i 0.428867 + 0.903368i \(0.358913\pi\)
−0.996773 + 0.0802744i \(0.974420\pi\)
\(840\) 0 0
\(841\) 13.8288 23.9522i 0.476855 0.825937i
\(842\) 0 0
\(843\) 59.1204 2.03622
\(844\) 0 0
\(845\) 39.5422 22.8297i 1.36029 0.785366i
\(846\) 0 0
\(847\) 3.56625i 0.122538i
\(848\) 0 0
\(849\) −62.0984 + 35.8526i −2.13121 + 1.23046i
\(850\) 0 0
\(851\) −20.5611 + 11.8710i −0.704827 + 0.406932i
\(852\) 0 0
\(853\) 8.52099 + 4.91960i 0.291753 + 0.168444i 0.638732 0.769429i \(-0.279459\pi\)
−0.346979 + 0.937873i \(0.612793\pi\)
\(854\) 0 0
\(855\) 9.28658 16.5023i 0.317594 0.564368i
\(856\) 0 0
\(857\) 13.0633 + 7.54208i 0.446233 + 0.257633i 0.706238 0.707975i \(-0.250391\pi\)
−0.260005 + 0.965607i \(0.583724\pi\)
\(858\) 0 0
\(859\) −19.2316 33.3101i −0.656173 1.13653i −0.981598 0.190958i \(-0.938841\pi\)
0.325425 0.945568i \(-0.394493\pi\)
\(860\) 0 0
\(861\) −28.0907 + 16.2182i −0.957328 + 0.552714i
\(862\) 0 0
\(863\) −5.27487 −0.179559 −0.0897794 0.995962i \(-0.528616\pi\)
−0.0897794 + 0.995962i \(0.528616\pi\)
\(864\) 0 0
\(865\) 3.91265 2.25897i 0.133034 0.0768072i
\(866\) 0 0
\(867\) 37.1790i 1.26267i
\(868\) 0 0
\(869\) −3.58743 + 6.21360i −0.121695 + 0.210782i
\(870\) 0 0
\(871\) −77.5144 44.7530i −2.62647 1.51640i
\(872\) 0 0
\(873\) 1.02195i 0.0345878i
\(874\) 0 0
\(875\) 31.9470 1.08001
\(876\) 0 0
\(877\) −12.9910 + 22.5011i −0.438676 + 0.759810i −0.997588 0.0694177i \(-0.977886\pi\)
0.558911 + 0.829227i \(0.311219\pi\)
\(878\) 0 0
\(879\) 14.0379 + 8.10478i 0.473487 + 0.273368i
\(880\) 0 0
\(881\) −53.7653 −1.81140 −0.905699 0.423920i \(-0.860654\pi\)
−0.905699 + 0.423920i \(0.860654\pi\)
\(882\) 0 0
\(883\) 6.64678 + 11.5126i 0.223682 + 0.387428i 0.955923 0.293617i \(-0.0948590\pi\)
−0.732241 + 0.681045i \(0.761526\pi\)
\(884\) 0 0
\(885\) 39.7885i 1.33748i
\(886\) 0 0
\(887\) 17.6190 + 30.5170i 0.591587 + 1.02466i 0.994019 + 0.109209i \(0.0348318\pi\)
−0.402432 + 0.915450i \(0.631835\pi\)
\(888\) 0 0
\(889\) 28.0659 16.2039i 0.941302 0.543461i
\(890\) 0 0
\(891\) 18.0178 31.2078i 0.603620 1.04550i
\(892\) 0 0
\(893\) −33.6304 + 0.370768i −1.12540 + 0.0124073i
\(894\) 0 0
\(895\) 1.67368 2.89889i 0.0559449 0.0968993i
\(896\) 0 0
\(897\) 49.1220 + 85.0818i 1.64014 + 2.84080i
\(898\) 0 0
\(899\) −2.21668 3.83940i −0.0739303 0.128051i
\(900\) 0 0
\(901\) 1.12746 0.0375612
\(902\) 0 0
\(903\) −1.01480 1.75769i −0.0337705 0.0584921i
\(904\) 0 0
\(905\) 30.5557i 1.01571i
\(906\) 0 0
\(907\) 5.23790 + 3.02410i 0.173922 + 0.100414i 0.584434 0.811441i \(-0.301317\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(908\) 0 0
\(909\) −37.3854 21.5845i −1.24000 0.715912i
\(910\) 0 0
\(911\) 8.93239 0.295943 0.147972 0.988992i \(-0.452726\pi\)
0.147972 + 0.988992i \(0.452726\pi\)
\(912\) 0 0
\(913\) 38.9432 1.28883
\(914\) 0 0
\(915\) 46.0328 + 26.5771i 1.52180 + 0.878611i
\(916\) 0 0
\(917\) 9.74006 + 5.62342i 0.321645 + 0.185702i
\(918\) 0 0
\(919\) 5.38284i 0.177563i −0.996051 0.0887817i \(-0.971703\pi\)
0.996051 0.0887817i \(-0.0282974\pi\)
\(920\) 0 0
\(921\) 6.54927 + 11.3437i 0.215806 + 0.373787i
\(922\) 0 0
\(923\) 6.94629 0.228640
\(924\) 0 0
\(925\) 3.51105 + 6.08132i 0.115443 + 0.199953i
\(926\) 0 0
\(927\) −1.52858 2.64757i −0.0502051 0.0869577i
\(928\) 0 0
\(929\) 7.20302 12.4760i 0.236323 0.409324i −0.723333 0.690499i \(-0.757391\pi\)
0.959656 + 0.281175i \(0.0907242\pi\)
\(930\) 0 0
\(931\) 0.243976 + 0.137296i 0.00799601 + 0.00449970i
\(932\) 0 0
\(933\) 3.99789 6.92455i 0.130885 0.226700i
\(934\) 0 0
\(935\) 5.66278 3.26941i 0.185193 0.106921i
\(936\) 0 0
\(937\) 22.6784 + 39.2801i 0.740871 + 1.28323i 0.952099 + 0.305789i \(0.0989202\pi\)
−0.211229 + 0.977437i \(0.567746\pi\)
\(938\) 0 0
\(939\) 32.7816i 1.06979i
\(940\) 0 0
\(941\) −1.14512 1.98340i −0.0373298 0.0646571i 0.846757 0.531980i \(-0.178552\pi\)
−0.884087 + 0.467323i \(0.845219\pi\)
\(942\) 0 0
\(943\) −35.1180 −1.14360
\(944\) 0 0
\(945\) 4.66027 + 2.69061i 0.151599 + 0.0875255i
\(946\) 0 0
\(947\) 19.1593 33.1850i 0.622595 1.07837i −0.366406 0.930455i \(-0.619412\pi\)
0.989001 0.147911i \(-0.0472549\pi\)
\(948\) 0 0
\(949\) −74.9902 −2.43429
\(950\) 0 0
\(951\) 60.6489i 1.96668i
\(952\) 0 0
\(953\) 23.6158 + 13.6346i 0.764991 + 0.441668i 0.831085 0.556146i \(-0.187720\pi\)
−0.0660939 + 0.997813i \(0.521054\pi\)
\(954\) 0 0
\(955\) −3.00094 + 5.19777i −0.0971080 + 0.168196i
\(956\) 0 0
\(957\) 9.54957i 0.308694i
\(958\) 0 0
\(959\) −21.9388 + 12.6664i −0.708440 + 0.409018i
\(960\) 0 0
\(961\) −16.3588 −0.527704
\(962\) 0 0
\(963\) 20.6299 11.9107i 0.664788 0.383815i
\(964\) 0 0
\(965\) −6.84228 11.8512i −0.220261 0.381503i
\(966\) 0 0
\(967\) 14.8285 + 8.56126i 0.476854 + 0.275312i 0.719104 0.694902i \(-0.244552\pi\)
−0.242251 + 0.970214i \(0.577886\pi\)
\(968\) 0 0
\(969\) −10.9370 + 0.120578i −0.351346 + 0.00387352i
\(970\) 0 0
\(971\) 30.1925 + 17.4317i 0.968924 + 0.559409i 0.898908 0.438137i \(-0.144362\pi\)
0.0700160 + 0.997546i \(0.477695\pi\)
\(972\) 0 0
\(973\) 7.80619 4.50690i 0.250255 0.144485i
\(974\) 0 0
\(975\) 25.1645 14.5287i 0.805908 0.465291i
\(976\) 0 0
\(977\) 44.3910i 1.42019i 0.704104 + 0.710097i \(0.251349\pi\)
−0.704104 + 0.710097i \(0.748651\pi\)
\(978\) 0 0
\(979\) 7.68828 4.43883i 0.245719 0.141866i
\(980\) 0 0
\(981\) 41.5848 1.32770
\(982\) 0 0
\(983\) 9.40482 16.2896i 0.299967 0.519558i −0.676161 0.736754i \(-0.736358\pi\)
0.976128 + 0.217196i \(0.0696910\pi\)
\(984\) 0 0
\(985\) 12.6464 21.9042i 0.402947 0.697925i
\(986\) 0 0
\(987\) 47.6500i 1.51671i
\(988\) 0 0
\(989\) 2.19740i 0.0698731i
\(990\) 0 0
\(991\) −1.81524 + 3.14409i −0.0576630 + 0.0998753i −0.893416 0.449230i \(-0.851698\pi\)
0.835753 + 0.549106i \(0.185032\pi\)
\(992\) 0 0
\(993\) 9.03530 15.6496i 0.286727 0.496625i
\(994\) 0 0
\(995\) 9.84939 0.312247
\(996\) 0 0
\(997\) 33.8520 19.5445i 1.07210 0.618980i 0.143349 0.989672i \(-0.454213\pi\)
0.928756 + 0.370693i \(0.120880\pi\)
\(998\) 0 0
\(999\) 4.17342i 0.132041i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.s.c.559.11 28
4.3 odd 2 152.2.o.c.27.6 yes 28
8.3 odd 2 inner 608.2.s.c.559.12 28
8.5 even 2 152.2.o.c.27.1 28
19.12 odd 6 inner 608.2.s.c.335.12 28
76.31 even 6 152.2.o.c.107.1 yes 28
152.69 odd 6 152.2.o.c.107.6 yes 28
152.107 even 6 inner 608.2.s.c.335.11 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.o.c.27.1 28 8.5 even 2
152.2.o.c.27.6 yes 28 4.3 odd 2
152.2.o.c.107.1 yes 28 76.31 even 6
152.2.o.c.107.6 yes 28 152.69 odd 6
608.2.s.c.335.11 28 152.107 even 6 inner
608.2.s.c.335.12 28 19.12 odd 6 inner
608.2.s.c.559.11 28 1.1 even 1 trivial
608.2.s.c.559.12 28 8.3 odd 2 inner