Properties

Label 608.2.s.c.559.10
Level $608$
Weight $2$
Character 608.559
Analytic conductor $4.855$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(335,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.335"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.10
Character \(\chi\) \(=\) 608.559
Dual form 608.2.s.c.335.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05104 + 0.606818i) q^{3} +(2.45005 + 1.41453i) q^{5} +0.450769i q^{7} +(-0.763544 - 1.32250i) q^{9} +2.15933 q^{11} +(1.86406 + 3.22864i) q^{13} +(1.71673 + 2.97346i) q^{15} +(-0.716566 + 1.24113i) q^{17} +(0.0305680 - 4.35879i) q^{19} +(-0.273535 + 0.473776i) q^{21} +(-1.12985 + 0.652319i) q^{23} +(1.50182 + 2.60122i) q^{25} -5.49424i q^{27} +(4.22992 + 7.32644i) q^{29} -0.497284 q^{31} +(2.26955 + 1.31032i) q^{33} +(-0.637628 + 1.10440i) q^{35} -6.72997 q^{37} +4.52457i q^{39} +(-7.30919 - 4.21996i) q^{41} +(-2.90174 + 5.02595i) q^{43} -4.32024i q^{45} +(-0.567335 + 0.327551i) q^{47} +6.79681 q^{49} +(-1.50628 + 0.869651i) q^{51} +(-3.86444 - 6.69340i) q^{53} +(5.29047 + 3.05445i) q^{55} +(2.67712 - 4.56271i) q^{57} +(12.1090 + 6.99113i) q^{59} +(2.13281 - 1.23138i) q^{61} +(0.596141 - 0.344182i) q^{63} +10.5471i q^{65} +(-2.16651 + 1.25083i) q^{67} -1.58336 q^{69} +(8.35311 - 14.4680i) q^{71} +(8.25523 - 14.2985i) q^{73} +3.64532i q^{75} +0.973361i q^{77} +(-4.05535 + 7.02407i) q^{79} +(1.04337 - 1.80717i) q^{81} -11.8333 q^{83} +(-3.51124 + 2.02722i) q^{85} +10.2672i q^{87} +(-6.95256 + 4.01406i) q^{89} +(-1.45537 + 0.840259i) q^{91} +(-0.522665 - 0.301761i) q^{93} +(6.24056 - 10.6360i) q^{95} +(-5.47310 - 3.15990i) q^{97} +(-1.64875 - 2.85571i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 6 q^{3} + 8 q^{9} + 16 q^{11} - 22 q^{17} - 4 q^{19} + 16 q^{25} + 36 q^{33} + 28 q^{35} + 6 q^{41} - 30 q^{43} - 68 q^{49} + 42 q^{51} - 26 q^{57} + 18 q^{59} - 78 q^{67} + 14 q^{73} + 6 q^{81}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.05104 + 0.606818i 0.606818 + 0.350346i 0.771719 0.635964i \(-0.219397\pi\)
−0.164901 + 0.986310i \(0.552731\pi\)
\(4\) 0 0
\(5\) 2.45005 + 1.41453i 1.09569 + 0.632599i 0.935087 0.354419i \(-0.115321\pi\)
0.160607 + 0.987018i \(0.448655\pi\)
\(6\) 0 0
\(7\) 0.450769i 0.170375i 0.996365 + 0.0851873i \(0.0271489\pi\)
−0.996365 + 0.0851873i \(0.972851\pi\)
\(8\) 0 0
\(9\) −0.763544 1.32250i −0.254515 0.440832i
\(10\) 0 0
\(11\) 2.15933 0.651064 0.325532 0.945531i \(-0.394457\pi\)
0.325532 + 0.945531i \(0.394457\pi\)
\(12\) 0 0
\(13\) 1.86406 + 3.22864i 0.516996 + 0.895464i 0.999805 + 0.0197382i \(0.00628328\pi\)
−0.482809 + 0.875726i \(0.660383\pi\)
\(14\) 0 0
\(15\) 1.71673 + 2.97346i 0.443258 + 0.767745i
\(16\) 0 0
\(17\) −0.716566 + 1.24113i −0.173793 + 0.301018i −0.939743 0.341882i \(-0.888936\pi\)
0.765950 + 0.642900i \(0.222269\pi\)
\(18\) 0 0
\(19\) 0.0305680 4.35879i 0.00701278 0.999975i
\(20\) 0 0
\(21\) −0.273535 + 0.473776i −0.0596901 + 0.103386i
\(22\) 0 0
\(23\) −1.12985 + 0.652319i −0.235590 + 0.136018i −0.613148 0.789968i \(-0.710097\pi\)
0.377558 + 0.925986i \(0.376764\pi\)
\(24\) 0 0
\(25\) 1.50182 + 2.60122i 0.300363 + 0.520245i
\(26\) 0 0
\(27\) 5.49424i 1.05737i
\(28\) 0 0
\(29\) 4.22992 + 7.32644i 0.785477 + 1.36049i 0.928714 + 0.370797i \(0.120915\pi\)
−0.143237 + 0.989688i \(0.545751\pi\)
\(30\) 0 0
\(31\) −0.497284 −0.0893149 −0.0446575 0.999002i \(-0.514220\pi\)
−0.0446575 + 0.999002i \(0.514220\pi\)
\(32\) 0 0
\(33\) 2.26955 + 1.31032i 0.395077 + 0.228098i
\(34\) 0 0
\(35\) −0.637628 + 1.10440i −0.107779 + 0.186678i
\(36\) 0 0
\(37\) −6.72997 −1.10640 −0.553200 0.833049i \(-0.686593\pi\)
−0.553200 + 0.833049i \(0.686593\pi\)
\(38\) 0 0
\(39\) 4.52457i 0.724511i
\(40\) 0 0
\(41\) −7.30919 4.21996i −1.14150 0.659047i −0.194701 0.980863i \(-0.562374\pi\)
−0.946802 + 0.321815i \(0.895707\pi\)
\(42\) 0 0
\(43\) −2.90174 + 5.02595i −0.442511 + 0.766451i −0.997875 0.0651562i \(-0.979245\pi\)
0.555364 + 0.831607i \(0.312579\pi\)
\(44\) 0 0
\(45\) 4.32024i 0.644023i
\(46\) 0 0
\(47\) −0.567335 + 0.327551i −0.0827543 + 0.0477782i −0.540806 0.841147i \(-0.681881\pi\)
0.458052 + 0.888925i \(0.348547\pi\)
\(48\) 0 0
\(49\) 6.79681 0.970972
\(50\) 0 0
\(51\) −1.50628 + 0.869651i −0.210921 + 0.121775i
\(52\) 0 0
\(53\) −3.86444 6.69340i −0.530821 0.919409i −0.999353 0.0359626i \(-0.988550\pi\)
0.468532 0.883446i \(-0.344783\pi\)
\(54\) 0 0
\(55\) 5.29047 + 3.05445i 0.713367 + 0.411862i
\(56\) 0 0
\(57\) 2.67712 4.56271i 0.354593 0.604346i
\(58\) 0 0
\(59\) 12.1090 + 6.99113i 1.57646 + 0.910168i 0.995348 + 0.0963425i \(0.0307144\pi\)
0.581109 + 0.813826i \(0.302619\pi\)
\(60\) 0 0
\(61\) 2.13281 1.23138i 0.273078 0.157662i −0.357208 0.934025i \(-0.616271\pi\)
0.630286 + 0.776363i \(0.282938\pi\)
\(62\) 0 0
\(63\) 0.596141 0.344182i 0.0751067 0.0433629i
\(64\) 0 0
\(65\) 10.5471i 1.30821i
\(66\) 0 0
\(67\) −2.16651 + 1.25083i −0.264681 + 0.152814i −0.626468 0.779447i \(-0.715500\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(68\) 0 0
\(69\) −1.58336 −0.190614
\(70\) 0 0
\(71\) 8.35311 14.4680i 0.991332 1.71704i 0.381888 0.924209i \(-0.375274\pi\)
0.609444 0.792829i \(-0.291393\pi\)
\(72\) 0 0
\(73\) 8.25523 14.2985i 0.966202 1.67351i 0.259851 0.965649i \(-0.416327\pi\)
0.706351 0.707862i \(-0.250340\pi\)
\(74\) 0 0
\(75\) 3.64532i 0.420925i
\(76\) 0 0
\(77\) 0.973361i 0.110925i
\(78\) 0 0
\(79\) −4.05535 + 7.02407i −0.456262 + 0.790269i −0.998760 0.0497881i \(-0.984145\pi\)
0.542498 + 0.840057i \(0.317479\pi\)
\(80\) 0 0
\(81\) 1.04337 1.80717i 0.115930 0.200796i
\(82\) 0 0
\(83\) −11.8333 −1.29887 −0.649435 0.760417i \(-0.724994\pi\)
−0.649435 + 0.760417i \(0.724994\pi\)
\(84\) 0 0
\(85\) −3.51124 + 2.02722i −0.380848 + 0.219882i
\(86\) 0 0
\(87\) 10.2672i 1.10076i
\(88\) 0 0
\(89\) −6.95256 + 4.01406i −0.736970 + 0.425490i −0.820967 0.570976i \(-0.806565\pi\)
0.0839965 + 0.996466i \(0.473232\pi\)
\(90\) 0 0
\(91\) −1.45537 + 0.840259i −0.152564 + 0.0880831i
\(92\) 0 0
\(93\) −0.522665 0.301761i −0.0541979 0.0312912i
\(94\) 0 0
\(95\) 6.24056 10.6360i 0.640267 1.09123i
\(96\) 0 0
\(97\) −5.47310 3.15990i −0.555709 0.320839i 0.195712 0.980661i \(-0.437298\pi\)
−0.751422 + 0.659822i \(0.770632\pi\)
\(98\) 0 0
\(99\) −1.64875 2.85571i −0.165705 0.287010i
\(100\) 0 0
\(101\) 4.61075 2.66202i 0.458787 0.264881i −0.252747 0.967532i \(-0.581334\pi\)
0.711534 + 0.702652i \(0.248001\pi\)
\(102\) 0 0
\(103\) −17.9095 −1.76468 −0.882340 0.470613i \(-0.844033\pi\)
−0.882340 + 0.470613i \(0.844033\pi\)
\(104\) 0 0
\(105\) −1.34034 + 0.773848i −0.130804 + 0.0755199i
\(106\) 0 0
\(107\) 0.909747i 0.0879485i 0.999033 + 0.0439743i \(0.0140020\pi\)
−0.999033 + 0.0439743i \(0.985998\pi\)
\(108\) 0 0
\(109\) 0.935166 1.61976i 0.0895727 0.155144i −0.817758 0.575562i \(-0.804783\pi\)
0.907331 + 0.420418i \(0.138117\pi\)
\(110\) 0 0
\(111\) −7.07346 4.08386i −0.671383 0.387623i
\(112\) 0 0
\(113\) 2.34200i 0.220317i 0.993914 + 0.110159i \(0.0351359\pi\)
−0.993914 + 0.110159i \(0.964864\pi\)
\(114\) 0 0
\(115\) −3.69091 −0.344179
\(116\) 0 0
\(117\) 2.84658 4.93042i 0.263166 0.455818i
\(118\) 0 0
\(119\) −0.559462 0.323006i −0.0512858 0.0296099i
\(120\) 0 0
\(121\) −6.33727 −0.576116
\(122\) 0 0
\(123\) −5.12150 8.87069i −0.461790 0.799843i
\(124\) 0 0
\(125\) 5.64786i 0.505160i
\(126\) 0 0
\(127\) −1.06604 1.84643i −0.0945955 0.163844i 0.814844 0.579680i \(-0.196822\pi\)
−0.909440 + 0.415836i \(0.863489\pi\)
\(128\) 0 0
\(129\) −6.09968 + 3.52165i −0.537047 + 0.310064i
\(130\) 0 0
\(131\) 8.72441 15.1111i 0.762255 1.32026i −0.179430 0.983771i \(-0.557425\pi\)
0.941686 0.336494i \(-0.109241\pi\)
\(132\) 0 0
\(133\) 1.96481 + 0.0137791i 0.170370 + 0.00119480i
\(134\) 0 0
\(135\) 7.77179 13.4611i 0.668889 1.15855i
\(136\) 0 0
\(137\) −4.28881 7.42843i −0.366417 0.634654i 0.622585 0.782552i \(-0.286082\pi\)
−0.989003 + 0.147898i \(0.952749\pi\)
\(138\) 0 0
\(139\) 2.38145 + 4.12479i 0.201992 + 0.349860i 0.949170 0.314763i \(-0.101925\pi\)
−0.747178 + 0.664624i \(0.768592\pi\)
\(140\) 0 0
\(141\) −0.795055 −0.0669557
\(142\) 0 0
\(143\) 4.02512 + 6.97172i 0.336598 + 0.583004i
\(144\) 0 0
\(145\) 23.9335i 1.98757i
\(146\) 0 0
\(147\) 7.14371 + 4.12442i 0.589203 + 0.340177i
\(148\) 0 0
\(149\) −9.33207 5.38787i −0.764513 0.441392i 0.0664008 0.997793i \(-0.478848\pi\)
−0.830914 + 0.556401i \(0.812182\pi\)
\(150\) 0 0
\(151\) −5.40642 −0.439968 −0.219984 0.975503i \(-0.570601\pi\)
−0.219984 + 0.975503i \(0.570601\pi\)
\(152\) 0 0
\(153\) 2.18852 0.176931
\(154\) 0 0
\(155\) −1.21837 0.703426i −0.0978618 0.0565005i
\(156\) 0 0
\(157\) −13.3288 7.69539i −1.06375 0.614159i −0.137286 0.990531i \(-0.543838\pi\)
−0.926468 + 0.376373i \(0.877171\pi\)
\(158\) 0 0
\(159\) 9.38003i 0.743885i
\(160\) 0 0
\(161\) −0.294045 0.509301i −0.0231740 0.0401386i
\(162\) 0 0
\(163\) −0.534048 −0.0418298 −0.0209149 0.999781i \(-0.506658\pi\)
−0.0209149 + 0.999781i \(0.506658\pi\)
\(164\) 0 0
\(165\) 3.70699 + 6.42070i 0.288589 + 0.499851i
\(166\) 0 0
\(167\) −6.81811 11.8093i −0.527601 0.913832i −0.999482 0.0321697i \(-0.989758\pi\)
0.471881 0.881662i \(-0.343575\pi\)
\(168\) 0 0
\(169\) −0.449417 + 0.778413i −0.0345705 + 0.0598779i
\(170\) 0 0
\(171\) −5.78783 + 3.28770i −0.442606 + 0.251417i
\(172\) 0 0
\(173\) −0.822987 + 1.42546i −0.0625706 + 0.108375i −0.895614 0.444833i \(-0.853263\pi\)
0.833043 + 0.553208i \(0.186597\pi\)
\(174\) 0 0
\(175\) −1.17255 + 0.676972i −0.0886365 + 0.0511743i
\(176\) 0 0
\(177\) 8.48469 + 14.6959i 0.637748 + 1.10461i
\(178\) 0 0
\(179\) 7.67159i 0.573402i −0.958020 0.286701i \(-0.907441\pi\)
0.958020 0.286701i \(-0.0925586\pi\)
\(180\) 0 0
\(181\) 11.7649 + 20.3774i 0.874479 + 1.51464i 0.857316 + 0.514790i \(0.172130\pi\)
0.0171632 + 0.999853i \(0.494537\pi\)
\(182\) 0 0
\(183\) 2.98889 0.220945
\(184\) 0 0
\(185\) −16.4887 9.51977i −1.21228 0.699908i
\(186\) 0 0
\(187\) −1.54731 + 2.68001i −0.113150 + 0.195982i
\(188\) 0 0
\(189\) 2.47663 0.180148
\(190\) 0 0
\(191\) 23.8645i 1.72678i −0.504540 0.863388i \(-0.668338\pi\)
0.504540 0.863388i \(-0.331662\pi\)
\(192\) 0 0
\(193\) 16.5463 + 9.55301i 1.19103 + 0.687641i 0.958540 0.284958i \(-0.0919798\pi\)
0.232489 + 0.972599i \(0.425313\pi\)
\(194\) 0 0
\(195\) −6.40016 + 11.0854i −0.458325 + 0.793843i
\(196\) 0 0
\(197\) 11.2480i 0.801385i −0.916213 0.400693i \(-0.868770\pi\)
0.916213 0.400693i \(-0.131230\pi\)
\(198\) 0 0
\(199\) −9.91953 + 5.72704i −0.703177 + 0.405979i −0.808530 0.588456i \(-0.799736\pi\)
0.105353 + 0.994435i \(0.466403\pi\)
\(200\) 0 0
\(201\) −3.03611 −0.214151
\(202\) 0 0
\(203\) −3.30253 + 1.90672i −0.231792 + 0.133825i
\(204\) 0 0
\(205\) −11.9386 20.6782i −0.833825 1.44423i
\(206\) 0 0
\(207\) 1.72538 + 0.996149i 0.119922 + 0.0692371i
\(208\) 0 0
\(209\) 0.0660065 9.41209i 0.00456577 0.651048i
\(210\) 0 0
\(211\) 13.8288 + 7.98406i 0.952013 + 0.549645i 0.893706 0.448653i \(-0.148096\pi\)
0.0583076 + 0.998299i \(0.481430\pi\)
\(212\) 0 0
\(213\) 17.5589 10.1376i 1.20312 0.694619i
\(214\) 0 0
\(215\) −14.2188 + 8.20921i −0.969712 + 0.559864i
\(216\) 0 0
\(217\) 0.224160i 0.0152170i
\(218\) 0 0
\(219\) 17.3531 10.0188i 1.17262 0.677011i
\(220\) 0 0
\(221\) −5.34288 −0.359401
\(222\) 0 0
\(223\) −8.06323 + 13.9659i −0.539954 + 0.935227i 0.458952 + 0.888461i \(0.348225\pi\)
−0.998906 + 0.0467660i \(0.985108\pi\)
\(224\) 0 0
\(225\) 2.29341 3.97230i 0.152894 0.264820i
\(226\) 0 0
\(227\) 13.0282i 0.864715i 0.901702 + 0.432357i \(0.142318\pi\)
−0.901702 + 0.432357i \(0.857682\pi\)
\(228\) 0 0
\(229\) 12.7253i 0.840914i 0.907312 + 0.420457i \(0.138130\pi\)
−0.907312 + 0.420457i \(0.861870\pi\)
\(230\) 0 0
\(231\) −0.590653 + 1.02304i −0.0388621 + 0.0673111i
\(232\) 0 0
\(233\) 5.77758 10.0071i 0.378502 0.655585i −0.612343 0.790593i \(-0.709773\pi\)
0.990845 + 0.135008i \(0.0431060\pi\)
\(234\) 0 0
\(235\) −1.85333 −0.120898
\(236\) 0 0
\(237\) −8.52466 + 4.92171i −0.553736 + 0.319700i
\(238\) 0 0
\(239\) 18.8301i 1.21802i 0.793163 + 0.609010i \(0.208433\pi\)
−0.793163 + 0.609010i \(0.791567\pi\)
\(240\) 0 0
\(241\) −8.47571 + 4.89346i −0.545969 + 0.315215i −0.747494 0.664268i \(-0.768743\pi\)
0.201526 + 0.979483i \(0.435410\pi\)
\(242\) 0 0
\(243\) −12.0812 + 6.97509i −0.775009 + 0.447452i
\(244\) 0 0
\(245\) 16.6525 + 9.61432i 1.06389 + 0.614236i
\(246\) 0 0
\(247\) 14.1300 8.02634i 0.899068 0.510704i
\(248\) 0 0
\(249\) −12.4372 7.18063i −0.788177 0.455054i
\(250\) 0 0
\(251\) −8.19032 14.1861i −0.516969 0.895416i −0.999806 0.0197059i \(-0.993727\pi\)
0.482837 0.875710i \(-0.339606\pi\)
\(252\) 0 0
\(253\) −2.43972 + 1.40858i −0.153384 + 0.0885564i
\(254\) 0 0
\(255\) −4.92060 −0.308140
\(256\) 0 0
\(257\) 7.56834 4.36958i 0.472100 0.272567i −0.245019 0.969518i \(-0.578794\pi\)
0.717118 + 0.696951i \(0.245461\pi\)
\(258\) 0 0
\(259\) 3.03366i 0.188502i
\(260\) 0 0
\(261\) 6.45946 11.1881i 0.399831 0.692527i
\(262\) 0 0
\(263\) 24.1288 + 13.9308i 1.48785 + 0.859008i 0.999904 0.0138683i \(-0.00441455\pi\)
0.487942 + 0.872876i \(0.337748\pi\)
\(264\) 0 0
\(265\) 21.8655i 1.34319i
\(266\) 0 0
\(267\) −9.74322 −0.596276
\(268\) 0 0
\(269\) −11.8357 + 20.5001i −0.721638 + 1.24991i 0.238704 + 0.971092i \(0.423277\pi\)
−0.960343 + 0.278822i \(0.910056\pi\)
\(270\) 0 0
\(271\) 15.9524 + 9.21013i 0.969041 + 0.559476i 0.898944 0.438064i \(-0.144336\pi\)
0.0700969 + 0.997540i \(0.477669\pi\)
\(272\) 0 0
\(273\) −2.03954 −0.123438
\(274\) 0 0
\(275\) 3.24293 + 5.61691i 0.195556 + 0.338713i
\(276\) 0 0
\(277\) 26.0321i 1.56412i 0.623203 + 0.782060i \(0.285831\pi\)
−0.623203 + 0.782060i \(0.714169\pi\)
\(278\) 0 0
\(279\) 0.379699 + 0.657657i 0.0227320 + 0.0393729i
\(280\) 0 0
\(281\) 18.1670 10.4887i 1.08375 0.625706i 0.151848 0.988404i \(-0.451478\pi\)
0.931907 + 0.362698i \(0.118144\pi\)
\(282\) 0 0
\(283\) 5.72882 9.92260i 0.340543 0.589837i −0.643991 0.765033i \(-0.722723\pi\)
0.984534 + 0.175196i \(0.0560558\pi\)
\(284\) 0 0
\(285\) 13.0132 7.39198i 0.770835 0.437863i
\(286\) 0 0
\(287\) 1.90223 3.29475i 0.112285 0.194483i
\(288\) 0 0
\(289\) 7.47307 + 12.9437i 0.439592 + 0.761396i
\(290\) 0 0
\(291\) −3.83496 6.64235i −0.224810 0.389382i
\(292\) 0 0
\(293\) −10.4003 −0.607590 −0.303795 0.952737i \(-0.598254\pi\)
−0.303795 + 0.952737i \(0.598254\pi\)
\(294\) 0 0
\(295\) 19.7784 + 34.2572i 1.15154 + 1.99453i
\(296\) 0 0
\(297\) 11.8639i 0.688413i
\(298\) 0 0
\(299\) −4.21221 2.43192i −0.243598 0.140642i
\(300\) 0 0
\(301\) −2.26554 1.30801i −0.130584 0.0753926i
\(302\) 0 0
\(303\) 6.46144 0.371200
\(304\) 0 0
\(305\) 6.96731 0.398947
\(306\) 0 0
\(307\) 2.39992 + 1.38560i 0.136971 + 0.0790801i 0.566920 0.823773i \(-0.308135\pi\)
−0.429949 + 0.902853i \(0.641468\pi\)
\(308\) 0 0
\(309\) −18.8236 10.8678i −1.07084 0.618249i
\(310\) 0 0
\(311\) 13.8001i 0.782530i −0.920278 0.391265i \(-0.872038\pi\)
0.920278 0.391265i \(-0.127962\pi\)
\(312\) 0 0
\(313\) 5.89194 + 10.2051i 0.333032 + 0.576829i 0.983105 0.183043i \(-0.0585949\pi\)
−0.650073 + 0.759872i \(0.725262\pi\)
\(314\) 0 0
\(315\) 1.94743 0.109725
\(316\) 0 0
\(317\) 8.86581 + 15.3560i 0.497953 + 0.862480i 0.999997 0.00236177i \(-0.000751775\pi\)
−0.502044 + 0.864842i \(0.667418\pi\)
\(318\) 0 0
\(319\) 9.13381 + 15.8202i 0.511395 + 0.885763i
\(320\) 0 0
\(321\) −0.552051 + 0.956180i −0.0308125 + 0.0533687i
\(322\) 0 0
\(323\) 5.38792 + 3.16130i 0.299792 + 0.175900i
\(324\) 0 0
\(325\) −5.59894 + 9.69766i −0.310574 + 0.537929i
\(326\) 0 0
\(327\) 1.96579 1.13495i 0.108709 0.0627630i
\(328\) 0 0
\(329\) −0.147650 0.255737i −0.00814020 0.0140992i
\(330\) 0 0
\(331\) 27.3712i 1.50445i 0.658904 + 0.752227i \(0.271020\pi\)
−0.658904 + 0.752227i \(0.728980\pi\)
\(332\) 0 0
\(333\) 5.13863 + 8.90036i 0.281595 + 0.487737i
\(334\) 0 0
\(335\) −7.07739 −0.386679
\(336\) 0 0
\(337\) 10.7104 + 6.18363i 0.583430 + 0.336844i 0.762495 0.646994i \(-0.223974\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(338\) 0 0
\(339\) −1.42117 + 2.46154i −0.0771873 + 0.133692i
\(340\) 0 0
\(341\) −1.07380 −0.0581497
\(342\) 0 0
\(343\) 6.21917i 0.335804i
\(344\) 0 0
\(345\) −3.87929 2.23971i −0.208854 0.120582i
\(346\) 0 0
\(347\) 5.69195 9.85874i 0.305560 0.529245i −0.671826 0.740709i \(-0.734490\pi\)
0.977386 + 0.211464i \(0.0678231\pi\)
\(348\) 0 0
\(349\) 2.93676i 0.157201i 0.996906 + 0.0786007i \(0.0250452\pi\)
−0.996906 + 0.0786007i \(0.974955\pi\)
\(350\) 0 0
\(351\) 17.7389 10.2416i 0.946833 0.546655i
\(352\) 0 0
\(353\) 19.1919 1.02148 0.510740 0.859735i \(-0.329371\pi\)
0.510740 + 0.859735i \(0.329371\pi\)
\(354\) 0 0
\(355\) 40.9310 23.6315i 2.17239 1.25423i
\(356\) 0 0
\(357\) −0.392011 0.678984i −0.0207474 0.0359356i
\(358\) 0 0
\(359\) −3.85728 2.22700i −0.203579 0.117537i 0.394745 0.918791i \(-0.370833\pi\)
−0.598324 + 0.801254i \(0.704166\pi\)
\(360\) 0 0
\(361\) −18.9981 0.266479i −0.999902 0.0140252i
\(362\) 0 0
\(363\) −6.66072 3.84557i −0.349597 0.201840i
\(364\) 0 0
\(365\) 40.4514 23.3546i 2.11732 1.22244i
\(366\) 0 0
\(367\) −16.5629 + 9.56259i −0.864576 + 0.499163i −0.865542 0.500837i \(-0.833026\pi\)
0.000966198 1.00000i \(0.499692\pi\)
\(368\) 0 0
\(369\) 12.8885i 0.670949i
\(370\) 0 0
\(371\) 3.01718 1.74197i 0.156644 0.0904384i
\(372\) 0 0
\(373\) −20.6810 −1.07082 −0.535411 0.844592i \(-0.679843\pi\)
−0.535411 + 0.844592i \(0.679843\pi\)
\(374\) 0 0
\(375\) 3.42722 5.93612i 0.176981 0.306540i
\(376\) 0 0
\(377\) −15.7696 + 27.3138i −0.812177 + 1.40673i
\(378\) 0 0
\(379\) 2.56021i 0.131509i −0.997836 0.0657546i \(-0.979055\pi\)
0.997836 0.0657546i \(-0.0209454\pi\)
\(380\) 0 0
\(381\) 2.58756i 0.132565i
\(382\) 0 0
\(383\) −9.13650 + 15.8249i −0.466853 + 0.808613i −0.999283 0.0378608i \(-0.987946\pi\)
0.532430 + 0.846474i \(0.321279\pi\)
\(384\) 0 0
\(385\) −1.37685 + 2.38478i −0.0701709 + 0.121540i
\(386\) 0 0
\(387\) 8.86241 0.450502
\(388\) 0 0
\(389\) 12.4317 7.17743i 0.630311 0.363910i −0.150562 0.988601i \(-0.548108\pi\)
0.780872 + 0.624690i \(0.214775\pi\)
\(390\) 0 0
\(391\) 1.86972i 0.0945558i
\(392\) 0 0
\(393\) 18.3394 10.5883i 0.925100 0.534107i
\(394\) 0 0
\(395\) −19.8716 + 11.4729i −0.999847 + 0.577262i
\(396\) 0 0
\(397\) 22.8960 + 13.2190i 1.14912 + 0.663444i 0.948673 0.316260i \(-0.102427\pi\)
0.200447 + 0.979705i \(0.435761\pi\)
\(398\) 0 0
\(399\) 2.05673 + 1.20676i 0.102965 + 0.0604137i
\(400\) 0 0
\(401\) −6.10144 3.52267i −0.304691 0.175914i 0.339857 0.940477i \(-0.389621\pi\)
−0.644549 + 0.764563i \(0.722955\pi\)
\(402\) 0 0
\(403\) −0.926966 1.60555i −0.0461755 0.0799783i
\(404\) 0 0
\(405\) 5.11260 2.95176i 0.254047 0.146674i
\(406\) 0 0
\(407\) −14.5323 −0.720337
\(408\) 0 0
\(409\) 17.6696 10.2015i 0.873705 0.504434i 0.00512749 0.999987i \(-0.498368\pi\)
0.868578 + 0.495553i \(0.165035\pi\)
\(410\) 0 0
\(411\) 10.4101i 0.513492i
\(412\) 0 0
\(413\) −3.15139 + 5.45836i −0.155070 + 0.268588i
\(414\) 0 0
\(415\) −28.9920 16.7386i −1.42316 0.821664i
\(416\) 0 0
\(417\) 5.78043i 0.283069i
\(418\) 0 0
\(419\) 7.69306 0.375831 0.187915 0.982185i \(-0.439827\pi\)
0.187915 + 0.982185i \(0.439827\pi\)
\(420\) 0 0
\(421\) −3.05025 + 5.28319i −0.148660 + 0.257487i −0.930732 0.365701i \(-0.880829\pi\)
0.782072 + 0.623188i \(0.214163\pi\)
\(422\) 0 0
\(423\) 0.866371 + 0.500199i 0.0421244 + 0.0243205i
\(424\) 0 0
\(425\) −4.30461 −0.208804
\(426\) 0 0
\(427\) 0.555067 + 0.961404i 0.0268616 + 0.0465256i
\(428\) 0 0
\(429\) 9.77007i 0.471703i
\(430\) 0 0
\(431\) 4.72335 + 8.18108i 0.227516 + 0.394069i 0.957071 0.289853i \(-0.0936063\pi\)
−0.729555 + 0.683922i \(0.760273\pi\)
\(432\) 0 0
\(433\) −14.9419 + 8.62669i −0.718061 + 0.414572i −0.814038 0.580811i \(-0.802736\pi\)
0.0959778 + 0.995383i \(0.469402\pi\)
\(434\) 0 0
\(435\) −14.5233 + 25.1550i −0.696337 + 1.20609i
\(436\) 0 0
\(437\) 2.80879 + 4.94472i 0.134362 + 0.236538i
\(438\) 0 0
\(439\) 4.84656 8.39450i 0.231314 0.400647i −0.726881 0.686763i \(-0.759031\pi\)
0.958195 + 0.286116i \(0.0923642\pi\)
\(440\) 0 0
\(441\) −5.18966 8.98876i −0.247127 0.428036i
\(442\) 0 0
\(443\) −8.03408 13.9154i −0.381711 0.661142i 0.609596 0.792712i \(-0.291332\pi\)
−0.991307 + 0.131570i \(0.957998\pi\)
\(444\) 0 0
\(445\) −22.7121 −1.07666
\(446\) 0 0
\(447\) −6.53892 11.3257i −0.309280 0.535689i
\(448\) 0 0
\(449\) 12.4409i 0.587123i −0.955940 0.293562i \(-0.905159\pi\)
0.955940 0.293562i \(-0.0948406\pi\)
\(450\) 0 0
\(451\) −15.7830 9.11231i −0.743192 0.429082i
\(452\) 0 0
\(453\) −5.68236 3.28071i −0.266981 0.154141i
\(454\) 0 0
\(455\) −4.75430 −0.222885
\(456\) 0 0
\(457\) −23.5694 −1.10253 −0.551265 0.834330i \(-0.685855\pi\)
−0.551265 + 0.834330i \(0.685855\pi\)
\(458\) 0 0
\(459\) 6.81906 + 3.93698i 0.318286 + 0.183763i
\(460\) 0 0
\(461\) −0.956655 0.552325i −0.0445559 0.0257243i 0.477557 0.878601i \(-0.341523\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(462\) 0 0
\(463\) 26.1205i 1.21392i −0.794731 0.606962i \(-0.792388\pi\)
0.794731 0.606962i \(-0.207612\pi\)
\(464\) 0 0
\(465\) −0.853703 1.47866i −0.0395895 0.0685711i
\(466\) 0 0
\(467\) 18.4324 0.852950 0.426475 0.904499i \(-0.359755\pi\)
0.426475 + 0.904499i \(0.359755\pi\)
\(468\) 0 0
\(469\) −0.563837 0.976594i −0.0260356 0.0450949i
\(470\) 0 0
\(471\) −9.33940 16.1763i −0.430337 0.745365i
\(472\) 0 0
\(473\) −6.26582 + 10.8527i −0.288103 + 0.499008i
\(474\) 0 0
\(475\) 11.3841 6.46659i 0.522338 0.296708i
\(476\) 0 0
\(477\) −5.90133 + 10.2214i −0.270204 + 0.468006i
\(478\) 0 0
\(479\) 26.2671 15.1653i 1.20018 0.692922i 0.239581 0.970876i \(-0.422990\pi\)
0.960594 + 0.277955i \(0.0896565\pi\)
\(480\) 0 0
\(481\) −12.5450 21.7287i −0.572005 0.990741i
\(482\) 0 0
\(483\) 0.713727i 0.0324757i
\(484\) 0 0
\(485\) −8.93957 15.4838i −0.405925 0.703083i
\(486\) 0 0
\(487\) −41.6132 −1.88568 −0.942838 0.333253i \(-0.891854\pi\)
−0.942838 + 0.333253i \(0.891854\pi\)
\(488\) 0 0
\(489\) −0.561305 0.324070i −0.0253831 0.0146549i
\(490\) 0 0
\(491\) −15.3752 + 26.6306i −0.693873 + 1.20182i 0.276686 + 0.960960i \(0.410764\pi\)
−0.970559 + 0.240863i \(0.922570\pi\)
\(492\) 0 0
\(493\) −12.1241 −0.546041
\(494\) 0 0
\(495\) 9.32884i 0.419300i
\(496\) 0 0
\(497\) 6.52173 + 3.76532i 0.292540 + 0.168898i
\(498\) 0 0
\(499\) −12.0566 + 20.8826i −0.539728 + 0.934835i 0.459191 + 0.888338i \(0.348139\pi\)
−0.998918 + 0.0464978i \(0.985194\pi\)
\(500\) 0 0
\(501\) 16.5494i 0.739373i
\(502\) 0 0
\(503\) −10.6337 + 6.13939i −0.474135 + 0.273742i −0.717969 0.696075i \(-0.754928\pi\)
0.243834 + 0.969817i \(0.421595\pi\)
\(504\) 0 0
\(505\) 15.0621 0.670253
\(506\) 0 0
\(507\) −0.944710 + 0.545429i −0.0419560 + 0.0242233i
\(508\) 0 0
\(509\) 2.27630 + 3.94266i 0.100895 + 0.174755i 0.912054 0.410071i \(-0.134496\pi\)
−0.811159 + 0.584826i \(0.801163\pi\)
\(510\) 0 0
\(511\) 6.44531 + 3.72120i 0.285124 + 0.164616i
\(512\) 0 0
\(513\) −23.9482 0.167948i −1.05734 0.00741507i
\(514\) 0 0
\(515\) −43.8792 25.3337i −1.93355 1.11633i
\(516\) 0 0
\(517\) −1.22507 + 0.707292i −0.0538784 + 0.0311067i
\(518\) 0 0
\(519\) −1.72998 + 0.998807i −0.0759379 + 0.0438428i
\(520\) 0 0
\(521\) 14.0347i 0.614871i 0.951569 + 0.307436i \(0.0994709\pi\)
−0.951569 + 0.307436i \(0.900529\pi\)
\(522\) 0 0
\(523\) 5.94814 3.43416i 0.260094 0.150165i −0.364283 0.931288i \(-0.618686\pi\)
0.624378 + 0.781123i \(0.285353\pi\)
\(524\) 0 0
\(525\) −1.64320 −0.0717149
\(526\) 0 0
\(527\) 0.356337 0.617194i 0.0155223 0.0268854i
\(528\) 0 0
\(529\) −10.6490 + 18.4445i −0.462998 + 0.801936i
\(530\) 0 0
\(531\) 21.3522i 0.926605i
\(532\) 0 0
\(533\) 31.4650i 1.36290i
\(534\) 0 0
\(535\) −1.28687 + 2.22892i −0.0556362 + 0.0963647i
\(536\) 0 0
\(537\) 4.65526 8.06314i 0.200889 0.347950i
\(538\) 0 0
\(539\) 14.6766 0.632165
\(540\) 0 0
\(541\) 34.4443 19.8865i 1.48088 0.854985i 0.481113 0.876659i \(-0.340233\pi\)
0.999765 + 0.0216733i \(0.00689936\pi\)
\(542\) 0 0
\(543\) 28.5566i 1.22548i
\(544\) 0 0
\(545\) 4.58240 2.64565i 0.196289 0.113327i
\(546\) 0 0
\(547\) 9.78439 5.64902i 0.418350 0.241535i −0.276021 0.961152i \(-0.589016\pi\)
0.694371 + 0.719617i \(0.255683\pi\)
\(548\) 0 0
\(549\) −3.25699 1.88042i −0.139005 0.0802545i
\(550\) 0 0
\(551\) 32.0637 18.2134i 1.36596 0.775916i
\(552\) 0 0
\(553\) −3.16623 1.82802i −0.134642 0.0777355i
\(554\) 0 0
\(555\) −11.5535 20.0113i −0.490420 0.849433i
\(556\) 0 0
\(557\) −20.8369 + 12.0302i −0.882888 + 0.509735i −0.871609 0.490201i \(-0.836923\pi\)
−0.0112782 + 0.999936i \(0.503590\pi\)
\(558\) 0 0
\(559\) −21.6360 −0.915106
\(560\) 0 0
\(561\) −3.25256 + 1.87787i −0.137323 + 0.0792836i
\(562\) 0 0
\(563\) 30.2137i 1.27336i 0.771130 + 0.636678i \(0.219692\pi\)
−0.771130 + 0.636678i \(0.780308\pi\)
\(564\) 0 0
\(565\) −3.31284 + 5.73801i −0.139372 + 0.241400i
\(566\) 0 0
\(567\) 0.814614 + 0.470318i 0.0342106 + 0.0197515i
\(568\) 0 0
\(569\) 31.3114i 1.31264i 0.754482 + 0.656320i \(0.227888\pi\)
−0.754482 + 0.656320i \(0.772112\pi\)
\(570\) 0 0
\(571\) 36.8938 1.54396 0.771978 0.635649i \(-0.219267\pi\)
0.771978 + 0.635649i \(0.219267\pi\)
\(572\) 0 0
\(573\) 14.4814 25.0826i 0.604970 1.04784i
\(574\) 0 0
\(575\) −3.39366 1.95933i −0.141525 0.0817096i
\(576\) 0 0
\(577\) −1.16074 −0.0483220 −0.0241610 0.999708i \(-0.507691\pi\)
−0.0241610 + 0.999708i \(0.507691\pi\)
\(578\) 0 0
\(579\) 11.5939 + 20.0812i 0.481825 + 0.834545i
\(580\) 0 0
\(581\) 5.33407i 0.221294i
\(582\) 0 0
\(583\) −8.34461 14.4533i −0.345598 0.598594i
\(584\) 0 0
\(585\) 13.9485 8.05317i 0.576700 0.332958i
\(586\) 0 0
\(587\) 0.751317 1.30132i 0.0310102 0.0537112i −0.850104 0.526615i \(-0.823461\pi\)
0.881114 + 0.472904i \(0.156794\pi\)
\(588\) 0 0
\(589\) −0.0152010 + 2.16756i −0.000626346 + 0.0893127i
\(590\) 0 0
\(591\) 6.82547 11.8221i 0.280763 0.486295i
\(592\) 0 0
\(593\) 9.24084 + 16.0056i 0.379476 + 0.657271i 0.990986 0.133965i \(-0.0427710\pi\)
−0.611510 + 0.791237i \(0.709438\pi\)
\(594\) 0 0
\(595\) −0.913806 1.58276i −0.0374624 0.0648868i
\(596\) 0 0
\(597\) −13.9011 −0.568934
\(598\) 0 0
\(599\) 16.6212 + 28.7888i 0.679124 + 1.17628i 0.975245 + 0.221127i \(0.0709734\pi\)
−0.296121 + 0.955150i \(0.595693\pi\)
\(600\) 0 0
\(601\) 11.1345i 0.454186i −0.973873 0.227093i \(-0.927078\pi\)
0.973873 0.227093i \(-0.0729221\pi\)
\(602\) 0 0
\(603\) 3.30845 + 1.91013i 0.134730 + 0.0777867i
\(604\) 0 0
\(605\) −15.5266 8.96429i −0.631247 0.364450i
\(606\) 0 0
\(607\) 11.2378 0.456127 0.228064 0.973646i \(-0.426761\pi\)
0.228064 + 0.973646i \(0.426761\pi\)
\(608\) 0 0
\(609\) −4.62812 −0.187541
\(610\) 0 0
\(611\) −2.11509 1.22115i −0.0855674 0.0494024i
\(612\) 0 0
\(613\) 20.5664 + 11.8740i 0.830669 + 0.479587i 0.854082 0.520139i \(-0.174120\pi\)
−0.0234126 + 0.999726i \(0.507453\pi\)
\(614\) 0 0
\(615\) 28.9781i 1.16851i
\(616\) 0 0
\(617\) −2.53920 4.39802i −0.102224 0.177058i 0.810376 0.585910i \(-0.199263\pi\)
−0.912601 + 0.408852i \(0.865929\pi\)
\(618\) 0 0
\(619\) −45.0160 −1.80935 −0.904674 0.426105i \(-0.859885\pi\)
−0.904674 + 0.426105i \(0.859885\pi\)
\(620\) 0 0
\(621\) 3.58400 + 6.20766i 0.143821 + 0.249105i
\(622\) 0 0
\(623\) −1.80941 3.13400i −0.0724927 0.125561i
\(624\) 0 0
\(625\) 15.4982 26.8436i 0.619927 1.07375i
\(626\) 0 0
\(627\) 5.78080 9.85242i 0.230863 0.393468i
\(628\) 0 0
\(629\) 4.82247 8.35276i 0.192284 0.333046i
\(630\) 0 0
\(631\) 20.6719 11.9349i 0.822936 0.475122i −0.0284918 0.999594i \(-0.509070\pi\)
0.851428 + 0.524472i \(0.175737\pi\)
\(632\) 0 0
\(633\) 9.68974 + 16.7831i 0.385132 + 0.667069i
\(634\) 0 0
\(635\) 6.03179i 0.239364i
\(636\) 0 0
\(637\) 12.6696 + 21.9445i 0.501989 + 0.869471i
\(638\) 0 0
\(639\) −25.5119 −1.00923
\(640\) 0 0
\(641\) −0.303877 0.175444i −0.0120024 0.00692960i 0.493987 0.869469i \(-0.335539\pi\)
−0.505989 + 0.862540i \(0.668872\pi\)
\(642\) 0 0
\(643\) −7.67194 + 13.2882i −0.302552 + 0.524035i −0.976713 0.214549i \(-0.931172\pi\)
0.674161 + 0.738584i \(0.264505\pi\)
\(644\) 0 0
\(645\) −19.9260 −0.784585
\(646\) 0 0
\(647\) 12.4035i 0.487632i 0.969821 + 0.243816i \(0.0783994\pi\)
−0.969821 + 0.243816i \(0.921601\pi\)
\(648\) 0 0
\(649\) 26.1474 + 15.0962i 1.02637 + 0.592578i
\(650\) 0 0
\(651\) 0.136024 0.235601i 0.00533122 0.00923394i
\(652\) 0 0
\(653\) 38.6270i 1.51159i −0.654808 0.755795i \(-0.727250\pi\)
0.654808 0.755795i \(-0.272750\pi\)
\(654\) 0 0
\(655\) 42.7504 24.6820i 1.67040 0.964404i
\(656\) 0 0
\(657\) −25.2129 −0.983650
\(658\) 0 0
\(659\) −0.427803 + 0.246992i −0.0166648 + 0.00962144i −0.508309 0.861175i \(-0.669729\pi\)
0.491644 + 0.870796i \(0.336396\pi\)
\(660\) 0 0
\(661\) −12.5398 21.7195i −0.487740 0.844791i 0.512160 0.858890i \(-0.328845\pi\)
−0.999901 + 0.0140991i \(0.995512\pi\)
\(662\) 0 0
\(663\) −5.61558 3.24216i −0.218091 0.125915i
\(664\) 0 0
\(665\) 4.79438 + 2.81305i 0.185918 + 0.109085i
\(666\) 0 0
\(667\) −9.55835 5.51852i −0.370101 0.213678i
\(668\) 0 0
\(669\) −16.9495 + 9.78582i −0.655307 + 0.378342i
\(670\) 0 0
\(671\) 4.60545 2.65896i 0.177791 0.102648i
\(672\) 0 0
\(673\) 12.2784i 0.473296i −0.971595 0.236648i \(-0.923951\pi\)
0.971595 0.236648i \(-0.0760489\pi\)
\(674\) 0 0
\(675\) 14.2917 8.25134i 0.550089 0.317594i
\(676\) 0 0
\(677\) −6.28293 −0.241473 −0.120736 0.992685i \(-0.538526\pi\)
−0.120736 + 0.992685i \(0.538526\pi\)
\(678\) 0 0
\(679\) 1.42438 2.46710i 0.0546628 0.0946788i
\(680\) 0 0
\(681\) −7.90577 + 13.6932i −0.302950 + 0.524724i
\(682\) 0 0
\(683\) 28.9958i 1.10949i 0.832020 + 0.554746i \(0.187185\pi\)
−0.832020 + 0.554746i \(0.812815\pi\)
\(684\) 0 0
\(685\) 24.2667i 0.927181i
\(686\) 0 0
\(687\) −7.72197 + 13.3748i −0.294611 + 0.510282i
\(688\) 0 0
\(689\) 14.4071 24.9538i 0.548865 0.950662i
\(690\) 0 0
\(691\) −29.0538 −1.10526 −0.552629 0.833427i \(-0.686375\pi\)
−0.552629 + 0.833427i \(0.686375\pi\)
\(692\) 0 0
\(693\) 1.28727 0.743204i 0.0488992 0.0282320i
\(694\) 0 0
\(695\) 13.4746i 0.511120i
\(696\) 0 0
\(697\) 10.4750 6.04776i 0.396770 0.229075i
\(698\) 0 0
\(699\) 12.1449 7.01188i 0.459363 0.265214i
\(700\) 0 0
\(701\) −21.1436 12.2073i −0.798584 0.461063i 0.0443920 0.999014i \(-0.485865\pi\)
−0.842976 + 0.537952i \(0.819198\pi\)
\(702\) 0 0
\(703\) −0.205722 + 29.3345i −0.00775894 + 1.10637i
\(704\) 0 0
\(705\) −1.94792 1.12463i −0.0733630 0.0423561i
\(706\) 0 0
\(707\) 1.19995 + 2.07838i 0.0451289 + 0.0781656i
\(708\) 0 0
\(709\) −3.14824 + 1.81764i −0.118235 + 0.0682627i −0.557951 0.829874i \(-0.688412\pi\)
0.439716 + 0.898137i \(0.355079\pi\)
\(710\) 0 0
\(711\) 12.3857 0.464502
\(712\) 0 0
\(713\) 0.561857 0.324388i 0.0210417 0.0121484i
\(714\) 0 0
\(715\) 22.7747i 0.851726i
\(716\) 0 0
\(717\) −11.4265 + 19.7912i −0.426729 + 0.739116i
\(718\) 0 0
\(719\) −34.9775 20.1943i −1.30444 0.753120i −0.323279 0.946304i \(-0.604785\pi\)
−0.981163 + 0.193184i \(0.938119\pi\)
\(720\) 0 0
\(721\) 8.07306i 0.300657i
\(722\) 0 0
\(723\) −11.8777 −0.441738
\(724\) 0 0
\(725\) −12.7051 + 22.0059i −0.471857 + 0.817280i
\(726\) 0 0
\(727\) 4.07642 + 2.35352i 0.151186 + 0.0872873i 0.573685 0.819076i \(-0.305514\pi\)
−0.422499 + 0.906364i \(0.638847\pi\)
\(728\) 0 0
\(729\) −23.1906 −0.858912
\(730\) 0 0
\(731\) −4.15857 7.20286i −0.153810 0.266407i
\(732\) 0 0
\(733\) 23.9315i 0.883930i 0.897032 + 0.441965i \(0.145718\pi\)
−0.897032 + 0.441965i \(0.854282\pi\)
\(734\) 0 0
\(735\) 11.6683 + 20.2101i 0.430391 + 0.745459i
\(736\) 0 0
\(737\) −4.67821 + 2.70097i −0.172324 + 0.0994915i
\(738\) 0 0
\(739\) −1.44053 + 2.49507i −0.0529906 + 0.0917825i −0.891304 0.453406i \(-0.850209\pi\)
0.838313 + 0.545189i \(0.183542\pi\)
\(740\) 0 0
\(741\) 19.7217 + 0.138307i 0.724494 + 0.00508084i
\(742\) 0 0
\(743\) −17.8747 + 30.9598i −0.655758 + 1.13581i 0.325945 + 0.945389i \(0.394318\pi\)
−0.981703 + 0.190418i \(0.939016\pi\)
\(744\) 0 0
\(745\) −15.2427 26.4011i −0.558448 0.967261i
\(746\) 0 0
\(747\) 9.03522 + 15.6495i 0.330581 + 0.572584i
\(748\) 0 0
\(749\) −0.410086 −0.0149842
\(750\) 0 0
\(751\) −24.3250 42.1322i −0.887632 1.53742i −0.842667 0.538436i \(-0.819015\pi\)
−0.0449656 0.998989i \(-0.514318\pi\)
\(752\) 0 0
\(753\) 19.8801i 0.724473i
\(754\) 0 0
\(755\) −13.2460 7.64757i −0.482071 0.278324i
\(756\) 0 0
\(757\) −29.4372 16.9956i −1.06991 0.617716i −0.141757 0.989902i \(-0.545275\pi\)
−0.928158 + 0.372186i \(0.878608\pi\)
\(758\) 0 0
\(759\) −3.41899 −0.124102
\(760\) 0 0
\(761\) −34.2969 −1.24326 −0.621631 0.783310i \(-0.713530\pi\)
−0.621631 + 0.783310i \(0.713530\pi\)
\(762\) 0 0
\(763\) 0.730135 + 0.421544i 0.0264327 + 0.0152609i
\(764\) 0 0
\(765\) 5.36198 + 3.09574i 0.193863 + 0.111927i
\(766\) 0 0
\(767\) 52.1275i 1.88221i
\(768\) 0 0
\(769\) −5.78344 10.0172i −0.208556 0.361230i 0.742704 0.669620i \(-0.233543\pi\)
−0.951260 + 0.308390i \(0.900210\pi\)
\(770\) 0 0
\(771\) 10.6062 0.381971
\(772\) 0 0
\(773\) 11.6089 + 20.1073i 0.417545 + 0.723209i 0.995692 0.0927238i \(-0.0295574\pi\)
−0.578147 + 0.815933i \(0.696224\pi\)
\(774\) 0 0
\(775\) −0.746830 1.29355i −0.0268269 0.0464656i
\(776\) 0 0
\(777\) 1.84088 3.18850i 0.0660412 0.114387i
\(778\) 0 0
\(779\) −18.6174 + 31.7302i −0.667036 + 1.13685i
\(780\) 0 0
\(781\) 18.0372 31.2413i 0.645421 1.11790i
\(782\) 0 0
\(783\) 40.2532 23.2402i 1.43853 0.830536i
\(784\) 0 0
\(785\) −21.7708 37.7081i −0.777033 1.34586i
\(786\) 0 0
\(787\) 33.9207i 1.20914i 0.796552 + 0.604571i \(0.206655\pi\)
−0.796552 + 0.604571i \(0.793345\pi\)
\(788\) 0 0
\(789\) 16.9069 + 29.2836i 0.601901 + 1.04252i
\(790\) 0 0
\(791\) −1.05570 −0.0375364
\(792\) 0 0
\(793\) 7.95135 + 4.59072i 0.282361 + 0.163021i
\(794\) 0 0
\(795\) 13.2684 22.9815i 0.470581 0.815070i
\(796\) 0 0
\(797\) 12.2630 0.434378 0.217189 0.976130i \(-0.430311\pi\)
0.217189 + 0.976130i \(0.430311\pi\)
\(798\) 0 0
\(799\) 0.938848i 0.0332141i
\(800\) 0 0
\(801\) 10.6172 + 6.12983i 0.375139 + 0.216587i
\(802\) 0 0
\(803\) 17.8258 30.8752i 0.629059 1.08956i
\(804\) 0 0
\(805\) 1.66375i 0.0586394i
\(806\) 0 0
\(807\) −24.8797 + 14.3643i −0.875806 + 0.505647i
\(808\) 0 0
\(809\) 35.6199 1.25233 0.626164 0.779691i \(-0.284624\pi\)
0.626164 + 0.779691i \(0.284624\pi\)
\(810\) 0 0
\(811\) −16.4875 + 9.51908i −0.578956 + 0.334260i −0.760718 0.649082i \(-0.775153\pi\)
0.181763 + 0.983342i \(0.441820\pi\)
\(812\) 0 0
\(813\) 11.1777 + 19.3604i 0.392021 + 0.679000i
\(814\) 0 0
\(815\) −1.30844 0.755429i −0.0458327 0.0264615i
\(816\) 0 0
\(817\) 21.8184 + 12.8017i 0.763329 + 0.447875i
\(818\) 0 0
\(819\) 2.22248 + 1.28315i 0.0776597 + 0.0448369i
\(820\) 0 0
\(821\) 34.7173 20.0441i 1.21164 0.699543i 0.248526 0.968625i \(-0.420054\pi\)
0.963117 + 0.269082i \(0.0867204\pi\)
\(822\) 0 0
\(823\) 27.7423 16.0170i 0.967037 0.558319i 0.0687052 0.997637i \(-0.478113\pi\)
0.898332 + 0.439318i \(0.144780\pi\)
\(824\) 0 0
\(825\) 7.87146i 0.274049i
\(826\) 0 0
\(827\) 13.4637 7.77329i 0.468180 0.270304i −0.247298 0.968940i \(-0.579543\pi\)
0.715477 + 0.698636i \(0.246209\pi\)
\(828\) 0 0
\(829\) −5.94617 −0.206519 −0.103260 0.994654i \(-0.532927\pi\)
−0.103260 + 0.994654i \(0.532927\pi\)
\(830\) 0 0
\(831\) −15.7968 + 27.3608i −0.547984 + 0.949136i
\(832\) 0 0
\(833\) −4.87036 + 8.43572i −0.168748 + 0.292280i
\(834\) 0 0
\(835\) 38.5778i 1.33504i
\(836\) 0 0
\(837\) 2.73220i 0.0944386i
\(838\) 0 0
\(839\) 6.06590 10.5064i 0.209418 0.362723i −0.742113 0.670274i \(-0.766176\pi\)
0.951531 + 0.307552i \(0.0995097\pi\)
\(840\) 0 0
\(841\) −21.2845 + 36.8658i −0.733947 + 1.27123i
\(842\) 0 0
\(843\) 25.4590 0.876855
\(844\) 0 0
\(845\) −2.20218 + 1.27143i −0.0757575 + 0.0437386i
\(846\) 0 0
\(847\) 2.85665i 0.0981555i
\(848\) 0 0
\(849\) 12.0424 6.95270i 0.413295 0.238616i
\(850\) 0 0
\(851\) 7.60385 4.39009i 0.260657 0.150490i
\(852\) 0 0
\(853\) 13.8144 + 7.97575i 0.472996 + 0.273085i 0.717493 0.696565i \(-0.245289\pi\)
−0.244497 + 0.969650i \(0.578623\pi\)
\(854\) 0 0
\(855\) −18.8310 0.132061i −0.644007 0.00451639i
\(856\) 0 0
\(857\) 46.8936 + 27.0741i 1.60186 + 0.924832i 0.991116 + 0.133001i \(0.0424614\pi\)
0.610740 + 0.791831i \(0.290872\pi\)
\(858\) 0 0
\(859\) −10.3529 17.9317i −0.353236 0.611823i 0.633578 0.773678i \(-0.281585\pi\)
−0.986814 + 0.161856i \(0.948252\pi\)
\(860\) 0 0
\(861\) 3.99863 2.30861i 0.136273 0.0786773i
\(862\) 0 0
\(863\) −24.9184 −0.848231 −0.424115 0.905608i \(-0.639415\pi\)
−0.424115 + 0.905608i \(0.639415\pi\)
\(864\) 0 0
\(865\) −4.03271 + 2.32829i −0.137116 + 0.0791642i
\(866\) 0 0
\(867\) 18.1392i 0.616038i
\(868\) 0 0
\(869\) −8.75685 + 15.1673i −0.297056 + 0.514516i
\(870\) 0 0
\(871\) −8.07699 4.66325i −0.273678 0.158008i
\(872\) 0 0
\(873\) 9.65089i 0.326633i
\(874\) 0 0
\(875\) 2.54588 0.0860664
\(876\) 0 0
\(877\) −19.0653 + 33.0221i −0.643790 + 1.11508i 0.340790 + 0.940140i \(0.389306\pi\)
−0.984580 + 0.174937i \(0.944028\pi\)
\(878\) 0 0
\(879\) −10.9311 6.31106i −0.368696 0.212867i
\(880\) 0 0
\(881\) 16.6723 0.561702 0.280851 0.959751i \(-0.409383\pi\)
0.280851 + 0.959751i \(0.409383\pi\)
\(882\) 0 0
\(883\) −16.1610 27.9917i −0.543861 0.941994i −0.998678 0.0514093i \(-0.983629\pi\)
0.454817 0.890585i \(-0.349705\pi\)
\(884\) 0 0
\(885\) 48.0076i 1.61376i
\(886\) 0 0
\(887\) 5.27663 + 9.13939i 0.177172 + 0.306871i 0.940911 0.338655i \(-0.109972\pi\)
−0.763739 + 0.645525i \(0.776639\pi\)
\(888\) 0 0
\(889\) 0.832314 0.480537i 0.0279149 0.0161167i
\(890\) 0 0
\(891\) 2.25298 3.90228i 0.0754777 0.130731i
\(892\) 0 0
\(893\) 1.41038 + 2.48291i 0.0471967 + 0.0830874i
\(894\) 0 0
\(895\) 10.8517 18.7958i 0.362733 0.628273i
\(896\) 0 0
\(897\) −2.95147 5.11209i −0.0985465 0.170688i
\(898\) 0 0
\(899\) −2.10347 3.64332i −0.0701548 0.121512i
\(900\) 0 0
\(901\) 11.0765 0.369012
\(902\) 0 0
\(903\) −1.58745 2.74954i −0.0528270 0.0914991i
\(904\) 0 0
\(905\) 66.5675i 2.21278i
\(906\) 0 0
\(907\) 32.3892 + 18.6999i 1.07546 + 0.620920i 0.929669 0.368395i \(-0.120093\pi\)
0.145795 + 0.989315i \(0.453426\pi\)
\(908\) 0 0
\(909\) −7.04102 4.06513i −0.233536 0.134832i
\(910\) 0 0
\(911\) 40.7900 1.35143 0.675717 0.737162i \(-0.263834\pi\)
0.675717 + 0.737162i \(0.263834\pi\)
\(912\) 0 0
\(913\) −25.5520 −0.845647
\(914\) 0 0
\(915\) 7.32291 + 4.22789i 0.242088 + 0.139770i
\(916\) 0 0
\(917\) 6.81162 + 3.93269i 0.224940 + 0.129869i
\(918\) 0 0
\(919\) 10.9991i 0.362826i −0.983407 0.181413i \(-0.941933\pi\)
0.983407 0.181413i \(-0.0580670\pi\)
\(920\) 0 0
\(921\) 1.68161 + 2.91263i 0.0554109 + 0.0959744i
\(922\) 0 0
\(923\) 62.2827 2.05006
\(924\) 0 0
\(925\) −10.1072 17.5061i −0.332322 0.575599i
\(926\) 0 0
\(927\) 13.6747 + 23.6853i 0.449137 + 0.777928i
\(928\) 0 0
\(929\) 15.0117 26.0011i 0.492519 0.853067i −0.507444 0.861685i \(-0.669410\pi\)
0.999963 + 0.00861738i \(0.00274303\pi\)
\(930\) 0 0
\(931\) 0.207765 29.6259i 0.00680921 0.970949i
\(932\) 0 0
\(933\) 8.37412 14.5044i 0.274156 0.474853i
\(934\) 0 0
\(935\) −7.58194 + 4.37744i −0.247956 + 0.143158i
\(936\) 0 0
\(937\) 20.0689 + 34.7604i 0.655623 + 1.13557i 0.981737 + 0.190241i \(0.0609271\pi\)
−0.326115 + 0.945330i \(0.605740\pi\)
\(938\) 0 0
\(939\) 14.3013i 0.466706i
\(940\) 0 0
\(941\) −0.433456 0.750768i −0.0141303 0.0244743i 0.858874 0.512187i \(-0.171165\pi\)
−0.873004 + 0.487713i \(0.837831\pi\)
\(942\) 0 0
\(943\) 11.0110 0.358569
\(944\) 0 0
\(945\) 6.06786 + 3.50328i 0.197387 + 0.113962i
\(946\) 0 0
\(947\) 12.4598 21.5809i 0.404888 0.701286i −0.589421 0.807826i \(-0.700644\pi\)
0.994308 + 0.106540i \(0.0339772\pi\)
\(948\) 0 0
\(949\) 61.5529 1.99809
\(950\) 0 0
\(951\) 21.5197i 0.697825i
\(952\) 0 0
\(953\) −25.5317 14.7407i −0.827053 0.477499i 0.0257895 0.999667i \(-0.491790\pi\)
−0.852843 + 0.522168i \(0.825123\pi\)
\(954\) 0 0
\(955\) 33.7572 58.4692i 1.09236 1.89202i
\(956\) 0 0
\(957\) 22.1702i 0.716662i
\(958\) 0 0
\(959\) 3.34851 1.93326i 0.108129 0.0624282i
\(960\) 0 0
\(961\) −30.7527 −0.992023
\(962\) 0 0
\(963\) 1.20314 0.694632i 0.0387706 0.0223842i
\(964\) 0 0
\(965\) 27.0261 + 46.8106i 0.870002 + 1.50689i
\(966\) 0 0
\(967\) 50.5276 + 29.1722i 1.62486 + 0.938113i 0.985594 + 0.169127i \(0.0540948\pi\)
0.639265 + 0.768986i \(0.279239\pi\)
\(968\) 0 0
\(969\) 3.74458 + 6.59214i 0.120293 + 0.211770i
\(970\) 0 0
\(971\) 0.791582 + 0.457020i 0.0254031 + 0.0146665i 0.512648 0.858599i \(-0.328665\pi\)
−0.487245 + 0.873265i \(0.661998\pi\)
\(972\) 0 0
\(973\) −1.85933 + 1.07348i −0.0596073 + 0.0344143i
\(974\) 0 0
\(975\) −11.7694 + 6.79508i −0.376923 + 0.217617i
\(976\) 0 0
\(977\) 19.2494i 0.615841i −0.951412 0.307921i \(-0.900367\pi\)
0.951412 0.307921i \(-0.0996331\pi\)
\(978\) 0 0
\(979\) −15.0129 + 8.66771i −0.479815 + 0.277021i
\(980\) 0 0
\(981\) −2.85616 −0.0911903
\(982\) 0 0
\(983\) 10.4028 18.0182i 0.331799 0.574693i −0.651066 0.759021i \(-0.725678\pi\)
0.982865 + 0.184329i \(0.0590111\pi\)
\(984\) 0 0
\(985\) 15.9107 27.5581i 0.506956 0.878073i
\(986\) 0 0
\(987\) 0.358386i 0.0114076i
\(988\) 0 0
\(989\) 7.57143i 0.240758i
\(990\) 0 0
\(991\) 2.09378 3.62654i 0.0665113 0.115201i −0.830852 0.556493i \(-0.812147\pi\)
0.897363 + 0.441292i \(0.145480\pi\)
\(992\) 0 0
\(993\) −16.6093 + 28.7682i −0.527080 + 0.912930i
\(994\) 0 0
\(995\) −32.4044 −1.02729
\(996\) 0 0
\(997\) −4.65708 + 2.68877i −0.147491 + 0.0851542i −0.571930 0.820303i \(-0.693805\pi\)
0.424438 + 0.905457i \(0.360472\pi\)
\(998\) 0 0
\(999\) 36.9760i 1.16987i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.s.c.559.10 28
4.3 odd 2 152.2.o.c.27.12 yes 28
8.3 odd 2 inner 608.2.s.c.559.9 28
8.5 even 2 152.2.o.c.27.8 28
19.12 odd 6 inner 608.2.s.c.335.9 28
76.31 even 6 152.2.o.c.107.8 yes 28
152.69 odd 6 152.2.o.c.107.12 yes 28
152.107 even 6 inner 608.2.s.c.335.10 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.o.c.27.8 28 8.5 even 2
152.2.o.c.27.12 yes 28 4.3 odd 2
152.2.o.c.107.8 yes 28 76.31 even 6
152.2.o.c.107.12 yes 28 152.69 odd 6
608.2.s.c.335.9 28 19.12 odd 6 inner
608.2.s.c.335.10 28 152.107 even 6 inner
608.2.s.c.559.9 28 8.3 odd 2 inner
608.2.s.c.559.10 28 1.1 even 1 trivial