Properties

Label 608.2.s.c.559.1
Level $608$
Weight $2$
Character 608.559
Analytic conductor $4.855$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(335,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.335"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.1
Character \(\chi\) \(=\) 608.559
Dual form 608.2.s.c.335.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.07624 - 1.19872i) q^{3} +(-0.418341 - 0.241529i) q^{5} +1.56686i q^{7} +(1.37385 + 2.37958i) q^{9} -1.24363 q^{11} +(1.80015 + 3.11796i) q^{13} +(0.579050 + 1.00294i) q^{15} +(-1.35570 + 2.34815i) q^{17} +(4.25703 - 0.936862i) q^{19} +(1.87822 - 3.25318i) q^{21} +(5.52533 - 3.19005i) q^{23} +(-2.38333 - 4.12804i) q^{25} +0.604878i q^{27} +(-0.695157 - 1.20405i) q^{29} +4.86016 q^{31} +(2.58207 + 1.49076i) q^{33} +(0.378442 - 0.655481i) q^{35} +10.9720 q^{37} -8.63150i q^{39} +(1.10008 + 0.635132i) q^{41} +(-4.78175 + 8.28223i) q^{43} -1.32730i q^{45} +(7.26763 - 4.19597i) q^{47} +4.54495 q^{49} +(5.62954 - 3.25022i) q^{51} +(1.50024 + 2.59849i) q^{53} +(0.520259 + 0.300372i) q^{55} +(-9.96165 - 3.15782i) q^{57} +(-4.43723 - 2.56184i) q^{59} +(9.42313 - 5.44044i) q^{61} +(-3.72846 + 2.15263i) q^{63} -1.73916i q^{65} +(3.22460 - 1.86172i) q^{67} -15.2959 q^{69} +(-6.62670 + 11.4778i) q^{71} +(-0.494526 + 0.856544i) q^{73} +11.4277i q^{75} -1.94859i q^{77} +(-5.81311 + 10.0686i) q^{79} +(4.84663 - 8.39460i) q^{81} +12.1949 q^{83} +(1.13429 - 0.654884i) q^{85} +3.33319i q^{87} +(-11.1625 + 6.44469i) q^{89} +(-4.88540 + 2.82059i) q^{91} +(-10.0909 - 5.82596i) q^{93} +(-2.00717 - 0.636268i) q^{95} +(2.42717 + 1.40133i) q^{97} +(-1.70855 - 2.95930i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 6 q^{3} + 8 q^{9} + 16 q^{11} - 22 q^{17} - 4 q^{19} + 16 q^{25} + 36 q^{33} + 28 q^{35} + 6 q^{41} - 30 q^{43} - 68 q^{49} + 42 q^{51} - 26 q^{57} + 18 q^{59} - 78 q^{67} + 14 q^{73} + 6 q^{81}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.07624 1.19872i −1.19872 0.692080i −0.238449 0.971155i \(-0.576639\pi\)
−0.960269 + 0.279075i \(0.909972\pi\)
\(4\) 0 0
\(5\) −0.418341 0.241529i −0.187088 0.108015i 0.403531 0.914966i \(-0.367783\pi\)
−0.590618 + 0.806951i \(0.701116\pi\)
\(6\) 0 0
\(7\) 1.56686i 0.592217i 0.955154 + 0.296109i \(0.0956891\pi\)
−0.955154 + 0.296109i \(0.904311\pi\)
\(8\) 0 0
\(9\) 1.37385 + 2.37958i 0.457950 + 0.793192i
\(10\) 0 0
\(11\) −1.24363 −0.374967 −0.187484 0.982268i \(-0.560033\pi\)
−0.187484 + 0.982268i \(0.560033\pi\)
\(12\) 0 0
\(13\) 1.80015 + 3.11796i 0.499273 + 0.864766i 1.00000 0.000839577i \(-0.000267246\pi\)
−0.500727 + 0.865605i \(0.666934\pi\)
\(14\) 0 0
\(15\) 0.579050 + 1.00294i 0.149510 + 0.258959i
\(16\) 0 0
\(17\) −1.35570 + 2.34815i −0.328807 + 0.569510i −0.982275 0.187444i \(-0.939980\pi\)
0.653469 + 0.756954i \(0.273313\pi\)
\(18\) 0 0
\(19\) 4.25703 0.936862i 0.976629 0.214931i
\(20\) 0 0
\(21\) 1.87822 3.25318i 0.409862 0.709901i
\(22\) 0 0
\(23\) 5.52533 3.19005i 1.15211 0.665171i 0.202710 0.979239i \(-0.435025\pi\)
0.949401 + 0.314068i \(0.101692\pi\)
\(24\) 0 0
\(25\) −2.38333 4.12804i −0.476665 0.825609i
\(26\) 0 0
\(27\) 0.604878i 0.116409i
\(28\) 0 0
\(29\) −0.695157 1.20405i −0.129087 0.223586i 0.794236 0.607610i \(-0.207871\pi\)
−0.923323 + 0.384024i \(0.874538\pi\)
\(30\) 0 0
\(31\) 4.86016 0.872910 0.436455 0.899726i \(-0.356234\pi\)
0.436455 + 0.899726i \(0.356234\pi\)
\(32\) 0 0
\(33\) 2.58207 + 1.49076i 0.449480 + 0.259507i
\(34\) 0 0
\(35\) 0.378442 0.655481i 0.0639684 0.110797i
\(36\) 0 0
\(37\) 10.9720 1.80379 0.901894 0.431957i \(-0.142177\pi\)
0.901894 + 0.431957i \(0.142177\pi\)
\(38\) 0 0
\(39\) 8.63150i 1.38215i
\(40\) 0 0
\(41\) 1.10008 + 0.635132i 0.171804 + 0.0991909i 0.583436 0.812159i \(-0.301708\pi\)
−0.411632 + 0.911350i \(0.635041\pi\)
\(42\) 0 0
\(43\) −4.78175 + 8.28223i −0.729210 + 1.26303i 0.228008 + 0.973659i \(0.426779\pi\)
−0.957218 + 0.289369i \(0.906554\pi\)
\(44\) 0 0
\(45\) 1.32730i 0.197862i
\(46\) 0 0
\(47\) 7.26763 4.19597i 1.06009 0.612045i 0.134635 0.990895i \(-0.457014\pi\)
0.925458 + 0.378850i \(0.123680\pi\)
\(48\) 0 0
\(49\) 4.54495 0.649279
\(50\) 0 0
\(51\) 5.62954 3.25022i 0.788293 0.455121i
\(52\) 0 0
\(53\) 1.50024 + 2.59849i 0.206074 + 0.356930i 0.950474 0.310803i \(-0.100598\pi\)
−0.744400 + 0.667733i \(0.767265\pi\)
\(54\) 0 0
\(55\) 0.520259 + 0.300372i 0.0701517 + 0.0405021i
\(56\) 0 0
\(57\) −9.96165 3.15782i −1.31945 0.418264i
\(58\) 0 0
\(59\) −4.43723 2.56184i −0.577678 0.333523i 0.182532 0.983200i \(-0.441571\pi\)
−0.760210 + 0.649677i \(0.774904\pi\)
\(60\) 0 0
\(61\) 9.42313 5.44044i 1.20651 0.696578i 0.244513 0.969646i \(-0.421372\pi\)
0.961995 + 0.273068i \(0.0880385\pi\)
\(62\) 0 0
\(63\) −3.72846 + 2.15263i −0.469742 + 0.271206i
\(64\) 0 0
\(65\) 1.73916i 0.215716i
\(66\) 0 0
\(67\) 3.22460 1.86172i 0.393947 0.227446i −0.289922 0.957050i \(-0.593629\pi\)
0.683869 + 0.729605i \(0.260296\pi\)
\(68\) 0 0
\(69\) −15.2959 −1.84141
\(70\) 0 0
\(71\) −6.62670 + 11.4778i −0.786444 + 1.36216i 0.141688 + 0.989911i \(0.454747\pi\)
−0.928132 + 0.372250i \(0.878586\pi\)
\(72\) 0 0
\(73\) −0.494526 + 0.856544i −0.0578799 + 0.100251i −0.893514 0.449036i \(-0.851767\pi\)
0.835634 + 0.549287i \(0.185101\pi\)
\(74\) 0 0
\(75\) 11.4277i 1.31956i
\(76\) 0 0
\(77\) 1.94859i 0.222062i
\(78\) 0 0
\(79\) −5.81311 + 10.0686i −0.654026 + 1.13281i 0.328111 + 0.944639i \(0.393588\pi\)
−0.982137 + 0.188168i \(0.939745\pi\)
\(80\) 0 0
\(81\) 4.84663 8.39460i 0.538514 0.932733i
\(82\) 0 0
\(83\) 12.1949 1.33856 0.669280 0.743010i \(-0.266603\pi\)
0.669280 + 0.743010i \(0.266603\pi\)
\(84\) 0 0
\(85\) 1.13429 0.654884i 0.123031 0.0710322i
\(86\) 0 0
\(87\) 3.33319i 0.357355i
\(88\) 0 0
\(89\) −11.1625 + 6.44469i −1.18323 + 0.683136i −0.956759 0.290883i \(-0.906051\pi\)
−0.226467 + 0.974019i \(0.572718\pi\)
\(90\) 0 0
\(91\) −4.88540 + 2.82059i −0.512129 + 0.295678i
\(92\) 0 0
\(93\) −10.0909 5.82596i −1.04637 0.604124i
\(94\) 0 0
\(95\) −2.00717 0.636268i −0.205931 0.0652798i
\(96\) 0 0
\(97\) 2.42717 + 1.40133i 0.246442 + 0.142283i 0.618134 0.786073i \(-0.287889\pi\)
−0.371692 + 0.928356i \(0.621222\pi\)
\(98\) 0 0
\(99\) −1.70855 2.95930i −0.171716 0.297421i
\(100\) 0 0
\(101\) −0.655955 + 0.378716i −0.0652700 + 0.0376837i −0.532280 0.846568i \(-0.678665\pi\)
0.467010 + 0.884252i \(0.345331\pi\)
\(102\) 0 0
\(103\) −4.06152 −0.400193 −0.200097 0.979776i \(-0.564126\pi\)
−0.200097 + 0.979776i \(0.564126\pi\)
\(104\) 0 0
\(105\) −1.57147 + 0.907291i −0.153360 + 0.0885425i
\(106\) 0 0
\(107\) 4.15320i 0.401505i −0.979642 0.200753i \(-0.935661\pi\)
0.979642 0.200753i \(-0.0643388\pi\)
\(108\) 0 0
\(109\) −9.07011 + 15.7099i −0.868759 + 1.50473i −0.00549325 + 0.999985i \(0.501749\pi\)
−0.863266 + 0.504750i \(0.831585\pi\)
\(110\) 0 0
\(111\) −22.7805 13.1523i −2.16223 1.24837i
\(112\) 0 0
\(113\) 7.00334i 0.658819i −0.944187 0.329409i \(-0.893150\pi\)
0.944187 0.329409i \(-0.106850\pi\)
\(114\) 0 0
\(115\) −3.08196 −0.287394
\(116\) 0 0
\(117\) −4.94628 + 8.56720i −0.457284 + 0.792038i
\(118\) 0 0
\(119\) −3.67922 2.12420i −0.337274 0.194725i
\(120\) 0 0
\(121\) −9.45340 −0.859400
\(122\) 0 0
\(123\) −1.52269 2.63737i −0.137296 0.237804i
\(124\) 0 0
\(125\) 4.71786i 0.421978i
\(126\) 0 0
\(127\) 7.61514 + 13.1898i 0.675734 + 1.17041i 0.976254 + 0.216630i \(0.0695065\pi\)
−0.300520 + 0.953776i \(0.597160\pi\)
\(128\) 0 0
\(129\) 19.8561 11.4639i 1.74823 1.00934i
\(130\) 0 0
\(131\) 4.14342 7.17662i 0.362012 0.627024i −0.626279 0.779599i \(-0.715423\pi\)
0.988292 + 0.152575i \(0.0487564\pi\)
\(132\) 0 0
\(133\) 1.46793 + 6.67017i 0.127286 + 0.578377i
\(134\) 0 0
\(135\) 0.146096 0.253045i 0.0125739 0.0217787i
\(136\) 0 0
\(137\) 8.90976 + 15.4322i 0.761212 + 1.31846i 0.942226 + 0.334978i \(0.108729\pi\)
−0.181013 + 0.983481i \(0.557938\pi\)
\(138\) 0 0
\(139\) −4.16150 7.20793i −0.352974 0.611368i 0.633795 0.773501i \(-0.281496\pi\)
−0.986769 + 0.162132i \(0.948163\pi\)
\(140\) 0 0
\(141\) −20.1191 −1.69434
\(142\) 0 0
\(143\) −2.23872 3.87757i −0.187211 0.324259i
\(144\) 0 0
\(145\) 0.671602i 0.0557735i
\(146\) 0 0
\(147\) −9.43641 5.44811i −0.778302 0.449353i
\(148\) 0 0
\(149\) −16.0928 9.29117i −1.31837 0.761162i −0.334905 0.942252i \(-0.608704\pi\)
−0.983467 + 0.181090i \(0.942037\pi\)
\(150\) 0 0
\(151\) 4.56745 0.371694 0.185847 0.982579i \(-0.440497\pi\)
0.185847 + 0.982579i \(0.440497\pi\)
\(152\) 0 0
\(153\) −7.45013 −0.602308
\(154\) 0 0
\(155\) −2.03320 1.17387i −0.163311 0.0942875i
\(156\) 0 0
\(157\) 16.0994 + 9.29499i 1.28487 + 0.741821i 0.977735 0.209844i \(-0.0672957\pi\)
0.307137 + 0.951665i \(0.400629\pi\)
\(158\) 0 0
\(159\) 7.19346i 0.570479i
\(160\) 0 0
\(161\) 4.99836 + 8.65741i 0.393926 + 0.682300i
\(162\) 0 0
\(163\) −13.2618 −1.03874 −0.519370 0.854549i \(-0.673833\pi\)
−0.519370 + 0.854549i \(0.673833\pi\)
\(164\) 0 0
\(165\) −0.720122 1.24729i −0.0560614 0.0971012i
\(166\) 0 0
\(167\) 5.01139 + 8.67998i 0.387793 + 0.671677i 0.992152 0.125035i \(-0.0399042\pi\)
−0.604359 + 0.796712i \(0.706571\pi\)
\(168\) 0 0
\(169\) 0.0188953 0.0327276i 0.00145348 0.00251751i
\(170\) 0 0
\(171\) 8.07785 + 8.84281i 0.617729 + 0.676227i
\(172\) 0 0
\(173\) 7.75097 13.4251i 0.589296 1.02069i −0.405029 0.914304i \(-0.632739\pi\)
0.994325 0.106386i \(-0.0339280\pi\)
\(174\) 0 0
\(175\) 6.46807 3.73434i 0.488940 0.282290i
\(176\) 0 0
\(177\) 6.14184 + 10.6380i 0.461649 + 0.799599i
\(178\) 0 0
\(179\) 2.86093i 0.213836i −0.994268 0.106918i \(-0.965902\pi\)
0.994268 0.106918i \(-0.0340982\pi\)
\(180\) 0 0
\(181\) −0.305140 0.528519i −0.0226809 0.0392845i 0.854462 0.519514i \(-0.173887\pi\)
−0.877143 + 0.480229i \(0.840554\pi\)
\(182\) 0 0
\(183\) −26.0862 −1.92835
\(184\) 0 0
\(185\) −4.59004 2.65006i −0.337466 0.194836i
\(186\) 0 0
\(187\) 1.68599 2.92022i 0.123292 0.213548i
\(188\) 0 0
\(189\) −0.947760 −0.0689394
\(190\) 0 0
\(191\) 21.9035i 1.58488i −0.609947 0.792442i \(-0.708809\pi\)
0.609947 0.792442i \(-0.291191\pi\)
\(192\) 0 0
\(193\) 4.60435 + 2.65832i 0.331428 + 0.191350i 0.656475 0.754348i \(-0.272047\pi\)
−0.325047 + 0.945698i \(0.605380\pi\)
\(194\) 0 0
\(195\) −2.08476 + 3.61091i −0.149293 + 0.258583i
\(196\) 0 0
\(197\) 0.913518i 0.0650855i −0.999470 0.0325427i \(-0.989639\pi\)
0.999470 0.0325427i \(-0.0103605\pi\)
\(198\) 0 0
\(199\) 17.3763 10.0322i 1.23177 0.711164i 0.264373 0.964421i \(-0.414835\pi\)
0.967399 + 0.253257i \(0.0815017\pi\)
\(200\) 0 0
\(201\) −8.92672 −0.629642
\(202\) 0 0
\(203\) 1.88657 1.08921i 0.132411 0.0764478i
\(204\) 0 0
\(205\) −0.306806 0.531403i −0.0214282 0.0371148i
\(206\) 0 0
\(207\) 15.1819 + 8.76529i 1.05522 + 0.609230i
\(208\) 0 0
\(209\) −5.29415 + 1.16511i −0.366204 + 0.0805921i
\(210\) 0 0
\(211\) 21.5716 + 12.4544i 1.48505 + 0.857394i 0.999855 0.0170124i \(-0.00541549\pi\)
0.485194 + 0.874406i \(0.338749\pi\)
\(212\) 0 0
\(213\) 27.5172 15.8871i 1.88545 1.08856i
\(214\) 0 0
\(215\) 4.00080 2.30986i 0.272852 0.157531i
\(216\) 0 0
\(217\) 7.61519i 0.516953i
\(218\) 0 0
\(219\) 2.05351 1.18559i 0.138763 0.0801151i
\(220\) 0 0
\(221\) −9.76191 −0.656657
\(222\) 0 0
\(223\) −1.75003 + 3.03114i −0.117191 + 0.202980i −0.918653 0.395065i \(-0.870722\pi\)
0.801463 + 0.598045i \(0.204056\pi\)
\(224\) 0 0
\(225\) 6.54866 11.3426i 0.436578 0.756175i
\(226\) 0 0
\(227\) 5.29383i 0.351364i −0.984447 0.175682i \(-0.943787\pi\)
0.984447 0.175682i \(-0.0562130\pi\)
\(228\) 0 0
\(229\) 1.20868i 0.0798721i 0.999202 + 0.0399360i \(0.0127154\pi\)
−0.999202 + 0.0399360i \(0.987285\pi\)
\(230\) 0 0
\(231\) −2.33581 + 4.04573i −0.153685 + 0.266190i
\(232\) 0 0
\(233\) 5.58944 9.68119i 0.366176 0.634236i −0.622788 0.782391i \(-0.714000\pi\)
0.988964 + 0.148155i \(0.0473334\pi\)
\(234\) 0 0
\(235\) −4.05380 −0.264440
\(236\) 0 0
\(237\) 24.1388 13.9366i 1.56799 0.905277i
\(238\) 0 0
\(239\) 20.3237i 1.31463i 0.753615 + 0.657317i \(0.228309\pi\)
−0.753615 + 0.657317i \(0.771691\pi\)
\(240\) 0 0
\(241\) 5.48096 3.16443i 0.353060 0.203839i −0.312972 0.949762i \(-0.601325\pi\)
0.666032 + 0.745923i \(0.267991\pi\)
\(242\) 0 0
\(243\) −18.5540 + 10.7122i −1.19024 + 0.687185i
\(244\) 0 0
\(245\) −1.90134 1.09774i −0.121472 0.0701319i
\(246\) 0 0
\(247\) 10.5844 + 11.5867i 0.673469 + 0.737246i
\(248\) 0 0
\(249\) −25.3195 14.6182i −1.60456 0.926391i
\(250\) 0 0
\(251\) −12.1536 21.0507i −0.767131 1.32871i −0.939113 0.343609i \(-0.888350\pi\)
0.171982 0.985100i \(-0.444983\pi\)
\(252\) 0 0
\(253\) −6.87144 + 3.96723i −0.432004 + 0.249417i
\(254\) 0 0
\(255\) −3.14009 −0.196640
\(256\) 0 0
\(257\) 7.08286 4.08929i 0.441817 0.255083i −0.262551 0.964918i \(-0.584564\pi\)
0.704368 + 0.709835i \(0.251231\pi\)
\(258\) 0 0
\(259\) 17.1916i 1.06823i
\(260\) 0 0
\(261\) 1.91008 3.30836i 0.118231 0.204782i
\(262\) 0 0
\(263\) −19.0322 10.9882i −1.17358 0.677564i −0.219056 0.975712i \(-0.570298\pi\)
−0.954520 + 0.298148i \(0.903631\pi\)
\(264\) 0 0
\(265\) 1.44941i 0.0890364i
\(266\) 0 0
\(267\) 30.9015 1.89114
\(268\) 0 0
\(269\) 1.94226 3.36410i 0.118422 0.205113i −0.800721 0.599038i \(-0.795550\pi\)
0.919142 + 0.393925i \(0.128883\pi\)
\(270\) 0 0
\(271\) 1.81233 + 1.04635i 0.110091 + 0.0635611i 0.554035 0.832494i \(-0.313088\pi\)
−0.443943 + 0.896055i \(0.646421\pi\)
\(272\) 0 0
\(273\) 13.5244 0.818531
\(274\) 0 0
\(275\) 2.96397 + 5.13374i 0.178734 + 0.309576i
\(276\) 0 0
\(277\) 27.8262i 1.67191i 0.548797 + 0.835956i \(0.315086\pi\)
−0.548797 + 0.835956i \(0.684914\pi\)
\(278\) 0 0
\(279\) 6.67712 + 11.5651i 0.399749 + 0.692385i
\(280\) 0 0
\(281\) −20.0761 + 11.5910i −1.19764 + 0.691458i −0.960029 0.279902i \(-0.909698\pi\)
−0.237612 + 0.971360i \(0.576365\pi\)
\(282\) 0 0
\(283\) −1.40718 + 2.43730i −0.0836480 + 0.144883i −0.904814 0.425806i \(-0.859990\pi\)
0.821166 + 0.570689i \(0.193324\pi\)
\(284\) 0 0
\(285\) 3.40466 + 3.72707i 0.201674 + 0.220773i
\(286\) 0 0
\(287\) −0.995162 + 1.72367i −0.0587426 + 0.101745i
\(288\) 0 0
\(289\) 4.82413 + 8.35564i 0.283772 + 0.491508i
\(290\) 0 0
\(291\) −3.35959 5.81899i −0.196943 0.341115i
\(292\) 0 0
\(293\) −8.65633 −0.505708 −0.252854 0.967504i \(-0.581369\pi\)
−0.252854 + 0.967504i \(0.581369\pi\)
\(294\) 0 0
\(295\) 1.23752 + 2.14344i 0.0720510 + 0.124796i
\(296\) 0 0
\(297\) 0.752242i 0.0436495i
\(298\) 0 0
\(299\) 19.8929 + 11.4852i 1.15043 + 0.664204i
\(300\) 0 0
\(301\) −12.9771 7.49233i −0.747987 0.431851i
\(302\) 0 0
\(303\) 1.81589 0.104320
\(304\) 0 0
\(305\) −5.25610 −0.300964
\(306\) 0 0
\(307\) −8.98393 5.18688i −0.512740 0.296031i 0.221219 0.975224i \(-0.428996\pi\)
−0.733959 + 0.679194i \(0.762330\pi\)
\(308\) 0 0
\(309\) 8.43268 + 4.86861i 0.479719 + 0.276966i
\(310\) 0 0
\(311\) 20.7808i 1.17837i −0.807997 0.589186i \(-0.799449\pi\)
0.807997 0.589186i \(-0.200551\pi\)
\(312\) 0 0
\(313\) −11.9901 20.7674i −0.677720 1.17384i −0.975666 0.219262i \(-0.929635\pi\)
0.297946 0.954583i \(-0.403698\pi\)
\(314\) 0 0
\(315\) 2.07969 0.117177
\(316\) 0 0
\(317\) 9.45498 + 16.3765i 0.531045 + 0.919797i 0.999344 + 0.0362265i \(0.0115338\pi\)
−0.468299 + 0.883570i \(0.655133\pi\)
\(318\) 0 0
\(319\) 0.864515 + 1.49738i 0.0484035 + 0.0838374i
\(320\) 0 0
\(321\) −4.97852 + 8.62305i −0.277874 + 0.481292i
\(322\) 0 0
\(323\) −3.57138 + 11.2662i −0.198717 + 0.626871i
\(324\) 0 0
\(325\) 8.58071 14.8622i 0.475972 0.824408i
\(326\) 0 0
\(327\) 37.6635 21.7450i 2.08279 1.20250i
\(328\) 0 0
\(329\) 6.57450 + 11.3874i 0.362464 + 0.627806i
\(330\) 0 0
\(331\) 15.9594i 0.877208i −0.898680 0.438604i \(-0.855473\pi\)
0.898680 0.438604i \(-0.144527\pi\)
\(332\) 0 0
\(333\) 15.0739 + 26.1087i 0.826044 + 1.43075i
\(334\) 0 0
\(335\) −1.79864 −0.0982702
\(336\) 0 0
\(337\) −21.3485 12.3256i −1.16293 0.671418i −0.210925 0.977502i \(-0.567648\pi\)
−0.952004 + 0.306085i \(0.900981\pi\)
\(338\) 0 0
\(339\) −8.39503 + 14.5406i −0.455955 + 0.789738i
\(340\) 0 0
\(341\) −6.04422 −0.327313
\(342\) 0 0
\(343\) 18.0893i 0.976731i
\(344\) 0 0
\(345\) 6.39889 + 3.69440i 0.344504 + 0.198900i
\(346\) 0 0
\(347\) −4.57443 + 7.92314i −0.245568 + 0.425336i −0.962291 0.272022i \(-0.912308\pi\)
0.716723 + 0.697358i \(0.245641\pi\)
\(348\) 0 0
\(349\) 17.8070i 0.953189i −0.879123 0.476595i \(-0.841871\pi\)
0.879123 0.476595i \(-0.158129\pi\)
\(350\) 0 0
\(351\) −1.88599 + 1.08887i −0.100666 + 0.0581198i
\(352\) 0 0
\(353\) 23.3856 1.24469 0.622344 0.782744i \(-0.286181\pi\)
0.622344 + 0.782744i \(0.286181\pi\)
\(354\) 0 0
\(355\) 5.54443 3.20108i 0.294268 0.169896i
\(356\) 0 0
\(357\) 5.09263 + 8.82070i 0.269531 + 0.466841i
\(358\) 0 0
\(359\) −11.4051 6.58476i −0.601940 0.347530i 0.167864 0.985810i \(-0.446313\pi\)
−0.769805 + 0.638280i \(0.779646\pi\)
\(360\) 0 0
\(361\) 17.2446 7.97650i 0.907609 0.419816i
\(362\) 0 0
\(363\) 19.6275 + 11.3320i 1.03018 + 0.594773i
\(364\) 0 0
\(365\) 0.413761 0.238885i 0.0216572 0.0125038i
\(366\) 0 0
\(367\) 13.2710 7.66199i 0.692738 0.399953i −0.111899 0.993720i \(-0.535693\pi\)
0.804637 + 0.593767i \(0.202360\pi\)
\(368\) 0 0
\(369\) 3.49030i 0.181698i
\(370\) 0 0
\(371\) −4.07147 + 2.35067i −0.211380 + 0.122041i
\(372\) 0 0
\(373\) −8.33115 −0.431370 −0.215685 0.976463i \(-0.569199\pi\)
−0.215685 + 0.976463i \(0.569199\pi\)
\(374\) 0 0
\(375\) 5.65539 9.79541i 0.292043 0.505833i
\(376\) 0 0
\(377\) 2.50278 4.33494i 0.128900 0.223261i
\(378\) 0 0
\(379\) 10.4481i 0.536682i −0.963324 0.268341i \(-0.913525\pi\)
0.963324 0.268341i \(-0.0864754\pi\)
\(380\) 0 0
\(381\) 36.5136i 1.87065i
\(382\) 0 0
\(383\) −4.22512 + 7.31812i −0.215893 + 0.373938i −0.953549 0.301239i \(-0.902600\pi\)
0.737655 + 0.675178i \(0.235933\pi\)
\(384\) 0 0
\(385\) −0.470640 + 0.815173i −0.0239861 + 0.0415451i
\(386\) 0 0
\(387\) −26.2776 −1.33577
\(388\) 0 0
\(389\) 5.29150 3.05505i 0.268290 0.154897i −0.359820 0.933022i \(-0.617162\pi\)
0.628110 + 0.778124i \(0.283829\pi\)
\(390\) 0 0
\(391\) 17.2991i 0.874851i
\(392\) 0 0
\(393\) −17.2055 + 9.93359i −0.867902 + 0.501083i
\(394\) 0 0
\(395\) 4.86372 2.80807i 0.244720 0.141289i
\(396\) 0 0
\(397\) 19.5160 + 11.2676i 0.979481 + 0.565504i 0.902113 0.431499i \(-0.142015\pi\)
0.0773678 + 0.997003i \(0.475348\pi\)
\(398\) 0 0
\(399\) 4.94787 15.6085i 0.247703 0.781403i
\(400\) 0 0
\(401\) −1.59335 0.919919i −0.0795679 0.0459386i 0.459688 0.888080i \(-0.347961\pi\)
−0.539256 + 0.842142i \(0.681295\pi\)
\(402\) 0 0
\(403\) 8.74903 + 15.1538i 0.435820 + 0.754863i
\(404\) 0 0
\(405\) −4.05508 + 2.34120i −0.201499 + 0.116335i
\(406\) 0 0
\(407\) −13.6451 −0.676361
\(408\) 0 0
\(409\) −31.6805 + 18.2907i −1.56650 + 0.904418i −0.569925 + 0.821696i \(0.693028\pi\)
−0.996573 + 0.0827216i \(0.973639\pi\)
\(410\) 0 0
\(411\) 42.7212i 2.10728i
\(412\) 0 0
\(413\) 4.01404 6.95252i 0.197518 0.342111i
\(414\) 0 0
\(415\) −5.10161 2.94542i −0.250428 0.144585i
\(416\) 0 0
\(417\) 19.9539i 0.977144i
\(418\) 0 0
\(419\) −4.03779 −0.197259 −0.0986294 0.995124i \(-0.531446\pi\)
−0.0986294 + 0.995124i \(0.531446\pi\)
\(420\) 0 0
\(421\) −3.23520 + 5.60354i −0.157674 + 0.273100i −0.934030 0.357196i \(-0.883733\pi\)
0.776355 + 0.630295i \(0.217066\pi\)
\(422\) 0 0
\(423\) 19.9693 + 11.5293i 0.970939 + 0.560572i
\(424\) 0 0
\(425\) 12.9244 0.626923
\(426\) 0 0
\(427\) 8.52441 + 14.7647i 0.412525 + 0.714515i
\(428\) 0 0
\(429\) 10.7344i 0.518260i
\(430\) 0 0
\(431\) −3.17434 5.49811i −0.152902 0.264835i 0.779391 0.626538i \(-0.215529\pi\)
−0.932293 + 0.361703i \(0.882195\pi\)
\(432\) 0 0
\(433\) 20.1286 11.6213i 0.967320 0.558482i 0.0689019 0.997623i \(-0.478050\pi\)
0.898418 + 0.439141i \(0.144717\pi\)
\(434\) 0 0
\(435\) 0.805062 1.39441i 0.0385997 0.0668567i
\(436\) 0 0
\(437\) 20.5328 18.7566i 0.982219 0.897250i
\(438\) 0 0
\(439\) 5.22682 9.05312i 0.249462 0.432082i −0.713914 0.700233i \(-0.753079\pi\)
0.963377 + 0.268151i \(0.0864127\pi\)
\(440\) 0 0
\(441\) 6.24408 + 10.8151i 0.297337 + 0.515003i
\(442\) 0 0
\(443\) −7.15226 12.3881i −0.339814 0.588575i 0.644584 0.764534i \(-0.277031\pi\)
−0.984398 + 0.175959i \(0.943697\pi\)
\(444\) 0 0
\(445\) 6.22632 0.295156
\(446\) 0 0
\(447\) 22.2750 + 38.5814i 1.05357 + 1.82484i
\(448\) 0 0
\(449\) 35.1956i 1.66098i −0.557030 0.830492i \(-0.688059\pi\)
0.557030 0.830492i \(-0.311941\pi\)
\(450\) 0 0
\(451\) −1.36809 0.789866i −0.0644208 0.0371933i
\(452\) 0 0
\(453\) −9.48312 5.47508i −0.445556 0.257242i
\(454\) 0 0
\(455\) 2.72502 0.127751
\(456\) 0 0
\(457\) 5.76335 0.269598 0.134799 0.990873i \(-0.456961\pi\)
0.134799 + 0.990873i \(0.456961\pi\)
\(458\) 0 0
\(459\) −1.42035 0.820037i −0.0662960 0.0382760i
\(460\) 0 0
\(461\) −23.7050 13.6861i −1.10405 0.637424i −0.166769 0.985996i \(-0.553333\pi\)
−0.937282 + 0.348572i \(0.886667\pi\)
\(462\) 0 0
\(463\) 9.63243i 0.447657i −0.974629 0.223828i \(-0.928144\pi\)
0.974629 0.223828i \(-0.0718555\pi\)
\(464\) 0 0
\(465\) 2.81428 + 4.87447i 0.130509 + 0.226048i
\(466\) 0 0
\(467\) −14.1545 −0.654992 −0.327496 0.944853i \(-0.606205\pi\)
−0.327496 + 0.944853i \(0.606205\pi\)
\(468\) 0 0
\(469\) 2.91706 + 5.05249i 0.134697 + 0.233302i
\(470\) 0 0
\(471\) −22.2841 38.5973i −1.02680 1.77847i
\(472\) 0 0
\(473\) 5.94671 10.3000i 0.273430 0.473594i
\(474\) 0 0
\(475\) −14.0133 15.3404i −0.642974 0.703864i
\(476\) 0 0
\(477\) −4.12221 + 7.13987i −0.188743 + 0.326912i
\(478\) 0 0
\(479\) 20.5947 11.8903i 0.940995 0.543284i 0.0507227 0.998713i \(-0.483848\pi\)
0.890272 + 0.455429i \(0.150514\pi\)
\(480\) 0 0
\(481\) 19.7513 + 34.2103i 0.900582 + 1.55985i
\(482\) 0 0
\(483\) 23.9665i 1.09051i
\(484\) 0 0
\(485\) −0.676923 1.17246i −0.0307375 0.0532389i
\(486\) 0 0
\(487\) −7.31176 −0.331327 −0.165664 0.986182i \(-0.552977\pi\)
−0.165664 + 0.986182i \(0.552977\pi\)
\(488\) 0 0
\(489\) 27.5346 + 15.8971i 1.24516 + 0.718892i
\(490\) 0 0
\(491\) −7.42662 + 12.8633i −0.335159 + 0.580512i −0.983515 0.180825i \(-0.942123\pi\)
0.648357 + 0.761337i \(0.275457\pi\)
\(492\) 0 0
\(493\) 3.76971 0.169779
\(494\) 0 0
\(495\) 1.65066i 0.0741917i
\(496\) 0 0
\(497\) −17.9841 10.3831i −0.806696 0.465746i
\(498\) 0 0
\(499\) 1.07280 1.85814i 0.0480251 0.0831819i −0.841014 0.541014i \(-0.818041\pi\)
0.889039 + 0.457832i \(0.151374\pi\)
\(500\) 0 0
\(501\) 24.0290i 1.07353i
\(502\) 0 0
\(503\) −17.1288 + 9.88932i −0.763736 + 0.440943i −0.830635 0.556817i \(-0.812023\pi\)
0.0668997 + 0.997760i \(0.478689\pi\)
\(504\) 0 0
\(505\) 0.365884 0.0162816
\(506\) 0 0
\(507\) −0.0784624 + 0.0453003i −0.00348464 + 0.00201186i
\(508\) 0 0
\(509\) −7.29492 12.6352i −0.323342 0.560044i 0.657834 0.753163i \(-0.271473\pi\)
−0.981175 + 0.193119i \(0.938140\pi\)
\(510\) 0 0
\(511\) −1.34208 0.774853i −0.0593703 0.0342775i
\(512\) 0 0
\(513\) 0.566688 + 2.57498i 0.0250199 + 0.113688i
\(514\) 0 0
\(515\) 1.69910 + 0.980974i 0.0748712 + 0.0432269i
\(516\) 0 0
\(517\) −9.03822 + 5.21822i −0.397500 + 0.229497i
\(518\) 0 0
\(519\) −32.1858 + 18.5825i −1.41280 + 0.815679i
\(520\) 0 0
\(521\) 27.1524i 1.18957i 0.803885 + 0.594784i \(0.202763\pi\)
−0.803885 + 0.594784i \(0.797237\pi\)
\(522\) 0 0
\(523\) −1.66719 + 0.962550i −0.0729009 + 0.0420894i −0.536007 0.844213i \(-0.680068\pi\)
0.463106 + 0.886303i \(0.346735\pi\)
\(524\) 0 0
\(525\) −17.9057 −0.781468
\(526\) 0 0
\(527\) −6.58894 + 11.4124i −0.287019 + 0.497131i
\(528\) 0 0
\(529\) 8.85283 15.3336i 0.384906 0.666676i
\(530\) 0 0
\(531\) 14.0783i 0.610947i
\(532\) 0 0
\(533\) 4.57334i 0.198093i
\(534\) 0 0
\(535\) −1.00312 + 1.73745i −0.0433686 + 0.0751167i
\(536\) 0 0
\(537\) −3.42944 + 5.93997i −0.147991 + 0.256329i
\(538\) 0 0
\(539\) −5.65222 −0.243458
\(540\) 0 0
\(541\) −30.5146 + 17.6176i −1.31193 + 0.757441i −0.982415 0.186711i \(-0.940217\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(542\) 0 0
\(543\) 1.46311i 0.0627880i
\(544\) 0 0
\(545\) 7.58879 4.38139i 0.325068 0.187678i
\(546\) 0 0
\(547\) 7.93165 4.57934i 0.339133 0.195798i −0.320756 0.947162i \(-0.603937\pi\)
0.659888 + 0.751364i \(0.270604\pi\)
\(548\) 0 0
\(549\) 25.8919 + 14.9487i 1.10504 + 0.637995i
\(550\) 0 0
\(551\) −4.08733 4.47439i −0.174126 0.190616i
\(552\) 0 0
\(553\) −15.7761 9.10833i −0.670868 0.387326i
\(554\) 0 0
\(555\) 6.35335 + 11.0043i 0.269685 + 0.467108i
\(556\) 0 0
\(557\) −26.0361 + 15.0319i −1.10318 + 0.636924i −0.937056 0.349180i \(-0.886460\pi\)
−0.166129 + 0.986104i \(0.553127\pi\)
\(558\) 0 0
\(559\) −34.4315 −1.45630
\(560\) 0 0
\(561\) −7.00104 + 4.04205i −0.295584 + 0.170656i
\(562\) 0 0
\(563\) 35.3632i 1.49038i 0.666851 + 0.745191i \(0.267642\pi\)
−0.666851 + 0.745191i \(0.732358\pi\)
\(564\) 0 0
\(565\) −1.69151 + 2.92978i −0.0711624 + 0.123257i
\(566\) 0 0
\(567\) 13.1532 + 7.59398i 0.552381 + 0.318917i
\(568\) 0 0
\(569\) 24.5320i 1.02844i −0.857660 0.514218i \(-0.828082\pi\)
0.857660 0.514218i \(-0.171918\pi\)
\(570\) 0 0
\(571\) −16.3080 −0.682467 −0.341233 0.939979i \(-0.610845\pi\)
−0.341233 + 0.939979i \(0.610845\pi\)
\(572\) 0 0
\(573\) −26.2562 + 45.4770i −1.09687 + 1.89983i
\(574\) 0 0
\(575\) −26.3373 15.2059i −1.09834 0.634128i
\(576\) 0 0
\(577\) −13.0747 −0.544305 −0.272153 0.962254i \(-0.587736\pi\)
−0.272153 + 0.962254i \(0.587736\pi\)
\(578\) 0 0
\(579\) −6.37315 11.0386i −0.264859 0.458750i
\(580\) 0 0
\(581\) 19.1076i 0.792719i
\(582\) 0 0
\(583\) −1.86574 3.23155i −0.0772710 0.133837i
\(584\) 0 0
\(585\) 4.13846 2.38934i 0.171104 0.0987870i
\(586\) 0 0
\(587\) −8.90580 + 15.4253i −0.367582 + 0.636671i −0.989187 0.146660i \(-0.953148\pi\)
0.621605 + 0.783331i \(0.286481\pi\)
\(588\) 0 0
\(589\) 20.6898 4.55330i 0.852510 0.187615i
\(590\) 0 0
\(591\) −1.09505 + 1.89668i −0.0450443 + 0.0780191i
\(592\) 0 0
\(593\) −14.1110 24.4410i −0.579471 1.00367i −0.995540 0.0943399i \(-0.969926\pi\)
0.416069 0.909333i \(-0.363407\pi\)
\(594\) 0 0
\(595\) 1.02611 + 1.77728i 0.0420665 + 0.0728613i
\(596\) 0 0
\(597\) −48.1031 −1.96873
\(598\) 0 0
\(599\) 18.3746 + 31.8258i 0.750766 + 1.30037i 0.947452 + 0.319899i \(0.103649\pi\)
−0.196685 + 0.980467i \(0.563018\pi\)
\(600\) 0 0
\(601\) 13.0119i 0.530767i 0.964143 + 0.265384i \(0.0854986\pi\)
−0.964143 + 0.265384i \(0.914501\pi\)
\(602\) 0 0
\(603\) 8.86022 + 5.11545i 0.360816 + 0.208317i
\(604\) 0 0
\(605\) 3.95474 + 2.28327i 0.160783 + 0.0928281i
\(606\) 0 0
\(607\) −28.9061 −1.17326 −0.586631 0.809854i \(-0.699546\pi\)
−0.586631 + 0.809854i \(0.699546\pi\)
\(608\) 0 0
\(609\) −5.22264 −0.211632
\(610\) 0 0
\(611\) 26.1657 + 15.1068i 1.05855 + 0.611155i
\(612\) 0 0
\(613\) −25.3842 14.6556i −1.02526 0.591934i −0.109636 0.993972i \(-0.534969\pi\)
−0.915623 + 0.402038i \(0.868302\pi\)
\(614\) 0 0
\(615\) 1.47109i 0.0593202i
\(616\) 0 0
\(617\) −2.44550 4.23572i −0.0984519 0.170524i 0.812592 0.582833i \(-0.198056\pi\)
−0.911044 + 0.412309i \(0.864722\pi\)
\(618\) 0 0
\(619\) 31.8807 1.28139 0.640696 0.767795i \(-0.278646\pi\)
0.640696 + 0.767795i \(0.278646\pi\)
\(620\) 0 0
\(621\) 1.92959 + 3.34215i 0.0774319 + 0.134116i
\(622\) 0 0
\(623\) −10.0979 17.4901i −0.404565 0.700727i
\(624\) 0 0
\(625\) −10.7771 + 18.6665i −0.431085 + 0.746662i
\(626\) 0 0
\(627\) 12.3886 + 3.92715i 0.494751 + 0.156835i
\(628\) 0 0
\(629\) −14.8748 + 25.7639i −0.593098 + 1.02728i
\(630\) 0 0
\(631\) −7.83877 + 4.52572i −0.312057 + 0.180166i −0.647846 0.761771i \(-0.724330\pi\)
0.335790 + 0.941937i \(0.390997\pi\)
\(632\) 0 0
\(633\) −29.8585 51.7165i −1.18677 2.05555i
\(634\) 0 0
\(635\) 7.35711i 0.291958i
\(636\) 0 0
\(637\) 8.18161 + 14.1710i 0.324167 + 0.561474i
\(638\) 0 0
\(639\) −36.4163 −1.44061
\(640\) 0 0
\(641\) −33.2407 19.1916i −1.31293 0.758021i −0.330350 0.943859i \(-0.607167\pi\)
−0.982580 + 0.185838i \(0.940500\pi\)
\(642\) 0 0
\(643\) 14.9780 25.9427i 0.590677 1.02308i −0.403465 0.914995i \(-0.632194\pi\)
0.994141 0.108087i \(-0.0344724\pi\)
\(644\) 0 0
\(645\) −11.0755 −0.436097
\(646\) 0 0
\(647\) 14.7012i 0.577963i 0.957335 + 0.288982i \(0.0933167\pi\)
−0.957335 + 0.288982i \(0.906683\pi\)
\(648\) 0 0
\(649\) 5.51826 + 3.18597i 0.216610 + 0.125060i
\(650\) 0 0
\(651\) 9.12846 15.8110i 0.357773 0.619680i
\(652\) 0 0
\(653\) 12.1042i 0.473673i −0.971550 0.236836i \(-0.923889\pi\)
0.971550 0.236836i \(-0.0761105\pi\)
\(654\) 0 0
\(655\) −3.46672 + 2.00151i −0.135456 + 0.0782056i
\(656\) 0 0
\(657\) −2.71762 −0.106024
\(658\) 0 0
\(659\) 8.35717 4.82502i 0.325549 0.187956i −0.328314 0.944569i \(-0.606480\pi\)
0.653863 + 0.756613i \(0.273147\pi\)
\(660\) 0 0
\(661\) −18.5479 32.1258i −0.721428 1.24955i −0.960427 0.278530i \(-0.910153\pi\)
0.238999 0.971020i \(-0.423181\pi\)
\(662\) 0 0
\(663\) 20.2681 + 11.7018i 0.787146 + 0.454459i
\(664\) 0 0
\(665\) 0.996943 3.14495i 0.0386598 0.121956i
\(666\) 0 0
\(667\) −7.68194 4.43517i −0.297446 0.171730i
\(668\) 0 0
\(669\) 7.26697 4.19559i 0.280957 0.162211i
\(670\) 0 0
\(671\) −11.7188 + 6.76588i −0.452401 + 0.261194i
\(672\) 0 0
\(673\) 10.8787i 0.419342i −0.977772 0.209671i \(-0.932761\pi\)
0.977772 0.209671i \(-0.0672392\pi\)
\(674\) 0 0
\(675\) 2.49697 1.44162i 0.0961082 0.0554881i
\(676\) 0 0
\(677\) 37.4698 1.44008 0.720040 0.693932i \(-0.244123\pi\)
0.720040 + 0.693932i \(0.244123\pi\)
\(678\) 0 0
\(679\) −2.19568 + 3.80304i −0.0842626 + 0.145947i
\(680\) 0 0
\(681\) −6.34580 + 10.9913i −0.243172 + 0.421186i
\(682\) 0 0
\(683\) 51.9840i 1.98911i 0.104201 + 0.994556i \(0.466771\pi\)
−0.104201 + 0.994556i \(0.533229\pi\)
\(684\) 0 0
\(685\) 8.60787i 0.328890i
\(686\) 0 0
\(687\) 1.44887 2.50952i 0.0552779 0.0957441i
\(688\) 0 0
\(689\) −5.40133 + 9.35537i −0.205774 + 0.356411i
\(690\) 0 0
\(691\) 7.12137 0.270910 0.135455 0.990784i \(-0.456750\pi\)
0.135455 + 0.990784i \(0.456750\pi\)
\(692\) 0 0
\(693\) 4.63681 2.67706i 0.176138 0.101693i
\(694\) 0 0
\(695\) 4.02049i 0.152506i
\(696\) 0 0
\(697\) −2.98277 + 1.72210i −0.112980 + 0.0652293i
\(698\) 0 0
\(699\) −23.2100 + 13.4003i −0.877884 + 0.506847i
\(700\) 0 0
\(701\) 6.27811 + 3.62467i 0.237121 + 0.136902i 0.613853 0.789421i \(-0.289619\pi\)
−0.376732 + 0.926322i \(0.622952\pi\)
\(702\) 0 0
\(703\) 46.7082 10.2793i 1.76163 0.387690i
\(704\) 0 0
\(705\) 8.41665 + 4.85936i 0.316990 + 0.183014i
\(706\) 0 0
\(707\) −0.593395 1.02779i −0.0223169 0.0386540i
\(708\) 0 0
\(709\) 16.8968 9.75535i 0.634571 0.366370i −0.147949 0.988995i \(-0.547267\pi\)
0.782520 + 0.622625i \(0.213934\pi\)
\(710\) 0 0
\(711\) −31.9454 −1.19804
\(712\) 0 0
\(713\) 26.8540 15.5041i 1.00569 0.580635i
\(714\) 0 0
\(715\) 2.16286i 0.0808864i
\(716\) 0 0
\(717\) 24.3624 42.1970i 0.909831 1.57587i
\(718\) 0 0
\(719\) 37.0563 + 21.3944i 1.38197 + 0.797878i 0.992392 0.123117i \(-0.0392891\pi\)
0.389573 + 0.920995i \(0.372622\pi\)
\(720\) 0 0
\(721\) 6.36383i 0.237001i
\(722\) 0 0
\(723\) −15.1731 −0.564292
\(724\) 0 0
\(725\) −3.31357 + 5.73928i −0.123063 + 0.213151i
\(726\) 0 0
\(727\) −21.7487 12.5566i −0.806614 0.465699i 0.0391646 0.999233i \(-0.487530\pi\)
−0.845779 + 0.533534i \(0.820864\pi\)
\(728\) 0 0
\(729\) 22.2837 0.825320
\(730\) 0 0
\(731\) −12.9653 22.4565i −0.479538 0.830585i
\(732\) 0 0
\(733\) 0.990917i 0.0366004i −0.999833 0.0183002i \(-0.994175\pi\)
0.999833 0.0183002i \(-0.00582545\pi\)
\(734\) 0 0
\(735\) 2.63176 + 4.55833i 0.0970738 + 0.168137i
\(736\) 0 0
\(737\) −4.01019 + 2.31529i −0.147717 + 0.0852846i
\(738\) 0 0
\(739\) 8.15940 14.1325i 0.300149 0.519872i −0.676021 0.736882i \(-0.736297\pi\)
0.976169 + 0.217010i \(0.0696304\pi\)
\(740\) 0 0
\(741\) −8.08653 36.7446i −0.297066 1.34984i
\(742\) 0 0
\(743\) 21.4854 37.2138i 0.788223 1.36524i −0.138832 0.990316i \(-0.544335\pi\)
0.927055 0.374926i \(-0.122332\pi\)
\(744\) 0 0
\(745\) 4.48817 + 7.77374i 0.164434 + 0.284808i
\(746\) 0 0
\(747\) 16.7539 + 29.0186i 0.612993 + 1.06174i
\(748\) 0 0
\(749\) 6.50749 0.237778
\(750\) 0 0
\(751\) 10.3838 + 17.9853i 0.378910 + 0.656292i 0.990904 0.134571i \(-0.0429656\pi\)
−0.611994 + 0.790863i \(0.709632\pi\)
\(752\) 0 0
\(753\) 58.2751i 2.12366i
\(754\) 0 0
\(755\) −1.91075 1.10317i −0.0695393 0.0401485i
\(756\) 0 0
\(757\) 10.7348 + 6.19774i 0.390163 + 0.225261i 0.682231 0.731137i \(-0.261010\pi\)
−0.292068 + 0.956398i \(0.594343\pi\)
\(758\) 0 0
\(759\) 19.0223 0.690467
\(760\) 0 0
\(761\) 46.1918 1.67445 0.837226 0.546858i \(-0.184176\pi\)
0.837226 + 0.546858i \(0.184176\pi\)
\(762\) 0 0
\(763\) −24.6152 14.2116i −0.891130 0.514494i
\(764\) 0 0
\(765\) 3.11669 + 1.79942i 0.112684 + 0.0650583i
\(766\) 0 0
\(767\) 18.4468i 0.666075i
\(768\) 0 0
\(769\) 7.84569 + 13.5891i 0.282923 + 0.490037i 0.972103 0.234553i \(-0.0753627\pi\)
−0.689181 + 0.724590i \(0.742029\pi\)
\(770\) 0 0
\(771\) −19.6076 −0.706151
\(772\) 0 0
\(773\) 2.97659 + 5.15560i 0.107060 + 0.185434i 0.914578 0.404409i \(-0.132523\pi\)
−0.807518 + 0.589843i \(0.799190\pi\)
\(774\) 0 0
\(775\) −11.5833 20.0629i −0.416086 0.720682i
\(776\) 0 0
\(777\) 20.6079 35.6939i 0.739304 1.28051i
\(778\) 0 0
\(779\) 5.27810 + 1.67315i 0.189108 + 0.0599468i
\(780\) 0 0
\(781\) 8.24113 14.2741i 0.294891 0.510766i
\(782\) 0 0
\(783\) 0.728302 0.420485i 0.0260274 0.0150269i
\(784\) 0 0
\(785\) −4.49002 7.77694i −0.160256 0.277571i
\(786\) 0 0
\(787\) 5.02671i 0.179183i 0.995979 + 0.0895915i \(0.0285561\pi\)
−0.995979 + 0.0895915i \(0.971444\pi\)
\(788\) 0 0
\(789\) 26.3436 + 45.6285i 0.937857 + 1.62442i
\(790\) 0 0
\(791\) 10.9733 0.390164
\(792\) 0 0
\(793\) 33.9261 + 19.5873i 1.20475 + 0.695564i
\(794\) 0 0
\(795\) −1.73743 + 3.00932i −0.0616203 + 0.106729i
\(796\) 0 0
\(797\) −23.2783 −0.824558 −0.412279 0.911058i \(-0.635267\pi\)
−0.412279 + 0.911058i \(0.635267\pi\)
\(798\) 0 0
\(799\) 22.7540i 0.804978i
\(800\) 0 0
\(801\) −30.6713 17.7081i −1.08372 0.625684i
\(802\) 0 0
\(803\) 0.615005 1.06522i 0.0217031 0.0375908i
\(804\) 0 0
\(805\) 4.82900i 0.170200i
\(806\) 0 0
\(807\) −8.06521 + 4.65645i −0.283909 + 0.163915i
\(808\) 0 0
\(809\) −38.1510 −1.34132 −0.670659 0.741766i \(-0.733989\pi\)
−0.670659 + 0.741766i \(0.733989\pi\)
\(810\) 0 0
\(811\) −43.8993 + 25.3453i −1.54151 + 0.889993i −0.542770 + 0.839881i \(0.682625\pi\)
−0.998744 + 0.0501122i \(0.984042\pi\)
\(812\) 0 0
\(813\) −2.50855 4.34494i −0.0879788 0.152384i
\(814\) 0 0
\(815\) 5.54793 + 3.20310i 0.194336 + 0.112200i
\(816\) 0 0
\(817\) −12.5967 + 39.7375i −0.440704 + 1.39024i
\(818\) 0 0
\(819\) −13.4236 7.75012i −0.469059 0.270811i
\(820\) 0 0
\(821\) 17.8048 10.2796i 0.621391 0.358760i −0.156019 0.987754i \(-0.549866\pi\)
0.777410 + 0.628994i \(0.216533\pi\)
\(822\) 0 0
\(823\) 16.8787 9.74491i 0.588354 0.339686i −0.176093 0.984374i \(-0.556346\pi\)
0.764446 + 0.644687i \(0.223012\pi\)
\(824\) 0 0
\(825\) 14.2118i 0.494793i
\(826\) 0 0
\(827\) −12.7206 + 7.34424i −0.442338 + 0.255384i −0.704589 0.709616i \(-0.748869\pi\)
0.262251 + 0.965000i \(0.415535\pi\)
\(828\) 0 0
\(829\) 35.2405 1.22395 0.611976 0.790876i \(-0.290375\pi\)
0.611976 + 0.790876i \(0.290375\pi\)
\(830\) 0 0
\(831\) 33.3557 57.7738i 1.15710 2.00415i
\(832\) 0 0
\(833\) −6.16161 + 10.6722i −0.213487 + 0.369771i
\(834\) 0 0
\(835\) 4.84158i 0.167550i
\(836\) 0 0
\(837\) 2.93981i 0.101615i
\(838\) 0 0
\(839\) 3.11351 5.39276i 0.107490 0.186179i −0.807263 0.590192i \(-0.799052\pi\)
0.914753 + 0.404014i \(0.132385\pi\)
\(840\) 0 0
\(841\) 13.5335 23.4407i 0.466673 0.808301i
\(842\) 0 0
\(843\) 55.5771 1.91418
\(844\) 0 0
\(845\) −0.0158093 + 0.00912753i −0.000543858 + 0.000313997i
\(846\) 0 0
\(847\) 14.8121i 0.508951i
\(848\) 0 0
\(849\) 5.84328 3.37362i 0.200541 0.115782i
\(850\) 0 0
\(851\) 60.6240 35.0013i 2.07816 1.19983i
\(852\) 0 0
\(853\) 28.3047 + 16.3417i 0.969134 + 0.559530i 0.898972 0.438006i \(-0.144315\pi\)
0.0701616 + 0.997536i \(0.477649\pi\)
\(854\) 0 0
\(855\) −1.24350 5.65034i −0.0425266 0.193238i
\(856\) 0 0
\(857\) 45.5110 + 26.2758i 1.55463 + 0.897564i 0.997755 + 0.0669647i \(0.0213315\pi\)
0.556871 + 0.830599i \(0.312002\pi\)
\(858\) 0 0
\(859\) −12.3600 21.4082i −0.421718 0.730437i 0.574390 0.818582i \(-0.305239\pi\)
−0.996108 + 0.0881450i \(0.971906\pi\)
\(860\) 0 0
\(861\) 4.13239 2.38584i 0.140832 0.0813091i
\(862\) 0 0
\(863\) 25.0075 0.851266 0.425633 0.904896i \(-0.360051\pi\)
0.425633 + 0.904896i \(0.360051\pi\)
\(864\) 0 0
\(865\) −6.48509 + 3.74417i −0.220500 + 0.127306i
\(866\) 0 0
\(867\) 23.1311i 0.785572i
\(868\) 0 0
\(869\) 7.22934 12.5216i 0.245238 0.424765i
\(870\) 0 0
\(871\) 11.6095 + 6.70277i 0.393374 + 0.227115i
\(872\) 0 0
\(873\) 7.70085i 0.260634i
\(874\) 0 0
\(875\) −7.39223 −0.249903
\(876\) 0 0
\(877\) 1.76754 3.06146i 0.0596855 0.103378i −0.834639 0.550798i \(-0.814324\pi\)
0.894324 + 0.447419i \(0.147657\pi\)
\(878\) 0 0
\(879\) 17.9726 + 10.3765i 0.606202 + 0.349991i
\(880\) 0 0
\(881\) −5.22599 −0.176068 −0.0880341 0.996117i \(-0.528058\pi\)
−0.0880341 + 0.996117i \(0.528058\pi\)
\(882\) 0 0
\(883\) 2.22587 + 3.85532i 0.0749066 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809467\pi\)
\(884\) 0 0
\(885\) 5.93373i 0.199460i
\(886\) 0 0
\(887\) 23.1207 + 40.0463i 0.776318 + 1.34462i 0.934051 + 0.357141i \(0.116248\pi\)
−0.157732 + 0.987482i \(0.550418\pi\)
\(888\) 0 0
\(889\) −20.6666 + 11.9318i −0.693134 + 0.400181i
\(890\) 0 0
\(891\) −6.02739 + 10.4397i −0.201925 + 0.349744i
\(892\) 0 0
\(893\) 27.0075 24.6711i 0.903771 0.825588i
\(894\) 0 0
\(895\) −0.690997 + 1.19684i −0.0230975 + 0.0400060i
\(896\) 0 0
\(897\) −27.5349 47.6919i −0.919364 1.59239i
\(898\) 0 0
\(899\) −3.37857 5.85186i −0.112682 0.195170i
\(900\) 0 0
\(901\) −8.13553 −0.271034
\(902\) 0 0
\(903\) 17.9624 + 31.1118i 0.597751 + 1.03533i
\(904\) 0 0
\(905\) 0.294801i 0.00979952i
\(906\) 0 0
\(907\) −1.48781 0.858985i −0.0494018 0.0285221i 0.475096 0.879934i \(-0.342413\pi\)
−0.524497 + 0.851412i \(0.675747\pi\)
\(908\) 0 0
\(909\) −1.80237 1.04060i −0.0597807 0.0345144i
\(910\) 0 0
\(911\) 0.307661 0.0101933 0.00509664 0.999987i \(-0.498378\pi\)
0.00509664 + 0.999987i \(0.498378\pi\)
\(912\) 0 0
\(913\) −15.1659 −0.501916
\(914\) 0 0
\(915\) 10.9129 + 6.30058i 0.360770 + 0.208291i
\(916\) 0 0
\(917\) 11.2448 + 6.49216i 0.371334 + 0.214390i
\(918\) 0 0
\(919\) 28.6229i 0.944183i −0.881550 0.472091i \(-0.843499\pi\)
0.881550 0.472091i \(-0.156501\pi\)
\(920\) 0 0
\(921\) 12.4352 + 21.5384i 0.409754 + 0.709714i
\(922\) 0 0
\(923\) −47.7163 −1.57060
\(924\) 0 0
\(925\) −26.1499 45.2930i −0.859803 1.48922i
\(926\) 0 0
\(927\) −5.57991 9.66469i −0.183268 0.317430i
\(928\) 0 0
\(929\) −30.2173 + 52.3378i −0.991396 + 1.71715i −0.382337 + 0.924023i \(0.624881\pi\)
−0.609059 + 0.793125i \(0.708453\pi\)
\(930\) 0 0
\(931\) 19.3480 4.25799i 0.634105 0.139550i
\(932\) 0 0
\(933\) −24.9103 + 43.1460i −0.815528 + 1.41254i
\(934\) 0 0
\(935\) −1.41064 + 0.814431i −0.0461327 + 0.0266347i
\(936\) 0 0
\(937\) −10.5175 18.2168i −0.343592 0.595118i 0.641505 0.767119i \(-0.278310\pi\)
−0.985097 + 0.172000i \(0.944977\pi\)
\(938\) 0 0
\(939\) 57.4909i 1.87614i
\(940\) 0 0
\(941\) 17.6157 + 30.5113i 0.574256 + 0.994641i 0.996122 + 0.0879826i \(0.0280420\pi\)
−0.421866 + 0.906658i \(0.638625\pi\)
\(942\) 0 0
\(943\) 8.10441 0.263916
\(944\) 0 0
\(945\) 0.396486 + 0.228912i 0.0128977 + 0.00744649i
\(946\) 0 0
\(947\) 8.10653 14.0409i 0.263427 0.456268i −0.703724 0.710474i \(-0.748481\pi\)
0.967150 + 0.254205i \(0.0818139\pi\)
\(948\) 0 0
\(949\) −3.56089 −0.115591
\(950\) 0 0
\(951\) 45.3354i 1.47010i
\(952\) 0 0
\(953\) 32.1131 + 18.5405i 1.04024 + 0.600585i 0.919902 0.392148i \(-0.128268\pi\)
0.120341 + 0.992733i \(0.461601\pi\)
\(954\) 0 0
\(955\) −5.29034 + 9.16314i −0.171191 + 0.296512i
\(956\) 0 0
\(957\) 4.14524i 0.133996i
\(958\) 0 0
\(959\) −24.1800 + 13.9603i −0.780814 + 0.450803i
\(960\) 0 0
\(961\) −7.37886 −0.238028
\(962\) 0 0
\(963\) 9.88286 5.70587i 0.318471 0.183869i
\(964\) 0 0
\(965\) −1.28412 2.22417i −0.0413374 0.0715985i
\(966\) 0 0
\(967\) −0.859439 0.496197i −0.0276377 0.0159566i 0.486117 0.873893i \(-0.338413\pi\)
−0.513755 + 0.857937i \(0.671746\pi\)
\(968\) 0 0
\(969\) 20.9201 19.1104i 0.672050 0.613913i
\(970\) 0 0
\(971\) −31.4894 18.1804i −1.01054 0.583437i −0.0991922 0.995068i \(-0.531626\pi\)
−0.911351 + 0.411631i \(0.864959\pi\)
\(972\) 0 0
\(973\) 11.2938 6.52049i 0.362063 0.209037i
\(974\) 0 0
\(975\) −35.6312 + 20.5717i −1.14111 + 0.658822i
\(976\) 0 0
\(977\) 39.6271i 1.26778i −0.773421 0.633892i \(-0.781456\pi\)
0.773421 0.633892i \(-0.218544\pi\)
\(978\) 0 0
\(979\) 13.8820 8.01478i 0.443671 0.256154i
\(980\) 0 0
\(981\) −49.8438 −1.59139
\(982\) 0 0
\(983\) 21.5716 37.3631i 0.688027 1.19170i −0.284448 0.958691i \(-0.591810\pi\)
0.972475 0.233007i \(-0.0748564\pi\)
\(984\) 0 0
\(985\) −0.220641 + 0.382162i −0.00703021 + 0.0121767i
\(986\) 0 0
\(987\) 31.5239i 1.00342i
\(988\) 0 0
\(989\) 61.0161i 1.94020i
\(990\) 0 0
\(991\) 4.38682 7.59820i 0.139352 0.241365i −0.787899 0.615804i \(-0.788831\pi\)
0.927252 + 0.374439i \(0.122165\pi\)
\(992\) 0 0
\(993\) −19.1308 + 33.1356i −0.607098 + 1.05153i
\(994\) 0 0
\(995\) −9.69227 −0.307266
\(996\) 0 0
\(997\) −15.8403 + 9.14540i −0.501667 + 0.289638i −0.729402 0.684085i \(-0.760202\pi\)
0.227734 + 0.973723i \(0.426868\pi\)
\(998\) 0 0
\(999\) 6.63673i 0.209977i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.s.c.559.1 28
4.3 odd 2 152.2.o.c.27.10 yes 28
8.3 odd 2 inner 608.2.s.c.559.2 28
8.5 even 2 152.2.o.c.27.4 28
19.12 odd 6 inner 608.2.s.c.335.2 28
76.31 even 6 152.2.o.c.107.4 yes 28
152.69 odd 6 152.2.o.c.107.10 yes 28
152.107 even 6 inner 608.2.s.c.335.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.o.c.27.4 28 8.5 even 2
152.2.o.c.27.10 yes 28 4.3 odd 2
152.2.o.c.107.4 yes 28 76.31 even 6
152.2.o.c.107.10 yes 28 152.69 odd 6
608.2.s.c.335.1 28 152.107 even 6 inner
608.2.s.c.335.2 28 19.12 odd 6 inner
608.2.s.c.559.1 28 1.1 even 1 trivial
608.2.s.c.559.2 28 8.3 odd 2 inner