Properties

Label 608.2.s.c.335.3
Level $608$
Weight $2$
Character 608.335
Analytic conductor $4.855$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(335,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.335"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.3
Character \(\chi\) \(=\) 608.335
Dual form 608.2.s.c.559.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27630 + 0.736872i) q^{3} +(-2.34524 + 1.35403i) q^{5} +3.01597i q^{7} +(-0.414040 + 0.717138i) q^{9} +3.11370 q^{11} +(0.218909 - 0.379162i) q^{13} +(1.99549 - 3.45629i) q^{15} +(-3.22274 - 5.58194i) q^{17} +(-3.58731 - 2.47613i) q^{19} +(-2.22238 - 3.84928i) q^{21} +(1.81421 + 1.04744i) q^{23} +(1.16678 - 2.02092i) q^{25} -5.64161i q^{27} +(-1.58443 + 2.74431i) q^{29} -9.77556 q^{31} +(-3.97402 + 2.29440i) q^{33} +(-4.08371 - 7.07319i) q^{35} -8.36258 q^{37} +0.645232i q^{39} +(4.66208 - 2.69165i) q^{41} +(2.43347 + 4.21489i) q^{43} -2.24248i q^{45} +(1.22865 + 0.709359i) q^{47} -2.09609 q^{49} +(8.22635 + 4.74949i) q^{51} +(1.63792 - 2.83695i) q^{53} +(-7.30239 + 4.21604i) q^{55} +(6.40307 + 0.516904i) q^{57} +(1.70599 - 0.984956i) q^{59} +(9.56035 + 5.51967i) q^{61} +(-2.16287 - 1.24873i) q^{63} +1.18563i q^{65} +(-4.49875 - 2.59735i) q^{67} -3.08731 q^{69} +(-4.40927 - 7.63707i) q^{71} +(-6.90160 - 11.9539i) q^{73} +3.43906i q^{75} +9.39085i q^{77} +(0.939415 + 1.62711i) q^{79} +(2.91502 + 5.04897i) q^{81} -3.79468 q^{83} +(15.1162 + 8.72734i) q^{85} -4.67009i q^{87} +(10.7709 + 6.21857i) q^{89} +(1.14354 + 0.660224i) q^{91} +(12.4765 - 7.20333i) q^{93} +(11.7659 + 0.949828i) q^{95} +(-16.1008 + 9.29578i) q^{97} +(-1.28920 + 2.23296i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 6 q^{3} + 8 q^{9} + 16 q^{11} - 22 q^{17} - 4 q^{19} + 16 q^{25} + 36 q^{33} + 28 q^{35} + 6 q^{41} - 30 q^{43} - 68 q^{49} + 42 q^{51} - 26 q^{57} + 18 q^{59} - 78 q^{67} + 14 q^{73} + 6 q^{81}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.27630 + 0.736872i −0.736872 + 0.425433i −0.820931 0.571028i \(-0.806545\pi\)
0.0840591 + 0.996461i \(0.473212\pi\)
\(4\) 0 0
\(5\) −2.34524 + 1.35403i −1.04882 + 0.605539i −0.922320 0.386427i \(-0.873709\pi\)
−0.126504 + 0.991966i \(0.540376\pi\)
\(6\) 0 0
\(7\) 3.01597i 1.13993i 0.821669 + 0.569965i \(0.193043\pi\)
−0.821669 + 0.569965i \(0.806957\pi\)
\(8\) 0 0
\(9\) −0.414040 + 0.717138i −0.138013 + 0.239046i
\(10\) 0 0
\(11\) 3.11370 0.938817 0.469409 0.882981i \(-0.344467\pi\)
0.469409 + 0.882981i \(0.344467\pi\)
\(12\) 0 0
\(13\) 0.218909 0.379162i 0.0607144 0.105160i −0.834071 0.551658i \(-0.813995\pi\)
0.894785 + 0.446497i \(0.147329\pi\)
\(14\) 0 0
\(15\) 1.99549 3.45629i 0.515233 0.892409i
\(16\) 0 0
\(17\) −3.22274 5.58194i −0.781629 1.35382i −0.930993 0.365038i \(-0.881056\pi\)
0.149364 0.988782i \(-0.452277\pi\)
\(18\) 0 0
\(19\) −3.58731 2.47613i −0.822984 0.568064i
\(20\) 0 0
\(21\) −2.22238 3.84928i −0.484964 0.839982i
\(22\) 0 0
\(23\) 1.81421 + 1.04744i 0.378290 + 0.218406i 0.677074 0.735915i \(-0.263248\pi\)
−0.298784 + 0.954321i \(0.596581\pi\)
\(24\) 0 0
\(25\) 1.16678 2.02092i 0.233355 0.404183i
\(26\) 0 0
\(27\) 5.64161i 1.08573i
\(28\) 0 0
\(29\) −1.58443 + 2.74431i −0.294221 + 0.509606i −0.974803 0.223066i \(-0.928394\pi\)
0.680582 + 0.732672i \(0.261727\pi\)
\(30\) 0 0
\(31\) −9.77556 −1.75574 −0.877871 0.478897i \(-0.841037\pi\)
−0.877871 + 0.478897i \(0.841037\pi\)
\(32\) 0 0
\(33\) −3.97402 + 2.29440i −0.691788 + 0.399404i
\(34\) 0 0
\(35\) −4.08371 7.07319i −0.690272 1.19559i
\(36\) 0 0
\(37\) −8.36258 −1.37480 −0.687400 0.726279i \(-0.741248\pi\)
−0.687400 + 0.726279i \(0.741248\pi\)
\(38\) 0 0
\(39\) 0.645232i 0.103320i
\(40\) 0 0
\(41\) 4.66208 2.69165i 0.728094 0.420365i −0.0896306 0.995975i \(-0.528569\pi\)
0.817724 + 0.575610i \(0.195235\pi\)
\(42\) 0 0
\(43\) 2.43347 + 4.21489i 0.371100 + 0.642764i 0.989735 0.142914i \(-0.0456473\pi\)
−0.618635 + 0.785679i \(0.712314\pi\)
\(44\) 0 0
\(45\) 2.24248i 0.334290i
\(46\) 0 0
\(47\) 1.22865 + 0.709359i 0.179216 + 0.103471i 0.586924 0.809642i \(-0.300339\pi\)
−0.407708 + 0.913112i \(0.633672\pi\)
\(48\) 0 0
\(49\) −2.09609 −0.299441
\(50\) 0 0
\(51\) 8.22635 + 4.74949i 1.15192 + 0.665061i
\(52\) 0 0
\(53\) 1.63792 2.83695i 0.224985 0.389686i −0.731330 0.682024i \(-0.761100\pi\)
0.956315 + 0.292338i \(0.0944333\pi\)
\(54\) 0 0
\(55\) −7.30239 + 4.21604i −0.984655 + 0.568491i
\(56\) 0 0
\(57\) 6.40307 + 0.516904i 0.848107 + 0.0684655i
\(58\) 0 0
\(59\) 1.70599 0.984956i 0.222102 0.128230i −0.384821 0.922991i \(-0.625737\pi\)
0.606923 + 0.794761i \(0.292404\pi\)
\(60\) 0 0
\(61\) 9.56035 + 5.51967i 1.22408 + 0.706722i 0.965785 0.259345i \(-0.0835067\pi\)
0.258293 + 0.966067i \(0.416840\pi\)
\(62\) 0 0
\(63\) −2.16287 1.24873i −0.272496 0.157326i
\(64\) 0 0
\(65\) 1.18563i 0.147060i
\(66\) 0 0
\(67\) −4.49875 2.59735i −0.549609 0.317317i 0.199355 0.979927i \(-0.436115\pi\)
−0.748964 + 0.662610i \(0.769449\pi\)
\(68\) 0 0
\(69\) −3.08731 −0.371668
\(70\) 0 0
\(71\) −4.40927 7.63707i −0.523284 0.906354i −0.999633 0.0270976i \(-0.991374\pi\)
0.476349 0.879256i \(-0.341960\pi\)
\(72\) 0 0
\(73\) −6.90160 11.9539i −0.807772 1.39910i −0.914404 0.404803i \(-0.867340\pi\)
0.106632 0.994299i \(-0.465993\pi\)
\(74\) 0 0
\(75\) 3.43906i 0.397108i
\(76\) 0 0
\(77\) 9.39085i 1.07019i
\(78\) 0 0
\(79\) 0.939415 + 1.62711i 0.105692 + 0.183065i 0.914021 0.405667i \(-0.132961\pi\)
−0.808328 + 0.588732i \(0.799627\pi\)
\(80\) 0 0
\(81\) 2.91502 + 5.04897i 0.323891 + 0.560996i
\(82\) 0 0
\(83\) −3.79468 −0.416520 −0.208260 0.978073i \(-0.566780\pi\)
−0.208260 + 0.978073i \(0.566780\pi\)
\(84\) 0 0
\(85\) 15.1162 + 8.72734i 1.63958 + 0.946613i
\(86\) 0 0
\(87\) 4.67009i 0.500686i
\(88\) 0 0
\(89\) 10.7709 + 6.21857i 1.14171 + 0.659167i 0.946854 0.321664i \(-0.104242\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(90\) 0 0
\(91\) 1.14354 + 0.660224i 0.119876 + 0.0692102i
\(92\) 0 0
\(93\) 12.4765 7.20333i 1.29376 0.746951i
\(94\) 0 0
\(95\) 11.7659 + 0.949828i 1.20715 + 0.0974503i
\(96\) 0 0
\(97\) −16.1008 + 9.29578i −1.63479 + 0.943844i −0.652197 + 0.758050i \(0.726152\pi\)
−0.982589 + 0.185794i \(0.940514\pi\)
\(98\) 0 0
\(99\) −1.28920 + 2.23296i −0.129569 + 0.224421i
\(100\) 0 0
\(101\) 1.29368 + 0.746904i 0.128726 + 0.0743198i 0.562980 0.826470i \(-0.309655\pi\)
−0.434254 + 0.900790i \(0.642988\pi\)
\(102\) 0 0
\(103\) −5.61948 −0.553704 −0.276852 0.960913i \(-0.589291\pi\)
−0.276852 + 0.960913i \(0.589291\pi\)
\(104\) 0 0
\(105\) 10.4241 + 6.01834i 1.01728 + 0.587329i
\(106\) 0 0
\(107\) 9.01090i 0.871117i 0.900160 + 0.435558i \(0.143449\pi\)
−0.900160 + 0.435558i \(0.856551\pi\)
\(108\) 0 0
\(109\) −5.62286 9.73908i −0.538573 0.932835i −0.998981 0.0451280i \(-0.985630\pi\)
0.460409 0.887707i \(-0.347703\pi\)
\(110\) 0 0
\(111\) 10.6732 6.16215i 1.01305 0.584885i
\(112\) 0 0
\(113\) 4.22083i 0.397063i 0.980095 + 0.198531i \(0.0636171\pi\)
−0.980095 + 0.198531i \(0.936383\pi\)
\(114\) 0 0
\(115\) −5.67303 −0.529013
\(116\) 0 0
\(117\) 0.181274 + 0.313976i 0.0167588 + 0.0290271i
\(118\) 0 0
\(119\) 16.8350 9.71969i 1.54326 0.891002i
\(120\) 0 0
\(121\) −1.30484 −0.118622
\(122\) 0 0
\(123\) −3.96680 + 6.87070i −0.357675 + 0.619510i
\(124\) 0 0
\(125\) 7.22088i 0.645855i
\(126\) 0 0
\(127\) −7.86010 + 13.6141i −0.697471 + 1.20806i 0.271869 + 0.962334i \(0.412358\pi\)
−0.969340 + 0.245721i \(0.920975\pi\)
\(128\) 0 0
\(129\) −6.21166 3.58631i −0.546906 0.315757i
\(130\) 0 0
\(131\) 5.08127 + 8.80102i 0.443953 + 0.768948i 0.997979 0.0635510i \(-0.0202425\pi\)
−0.554026 + 0.832499i \(0.686909\pi\)
\(132\) 0 0
\(133\) 7.46795 10.8192i 0.647553 0.938145i
\(134\) 0 0
\(135\) 7.63889 + 13.2309i 0.657451 + 1.13874i
\(136\) 0 0
\(137\) −7.17527 + 12.4279i −0.613024 + 1.06179i 0.377703 + 0.925927i \(0.376714\pi\)
−0.990728 + 0.135863i \(0.956619\pi\)
\(138\) 0 0
\(139\) −5.30773 + 9.19326i −0.450196 + 0.779763i −0.998398 0.0565836i \(-0.981979\pi\)
0.548202 + 0.836346i \(0.315313\pi\)
\(140\) 0 0
\(141\) −2.09083 −0.176079
\(142\) 0 0
\(143\) 0.681618 1.18060i 0.0569998 0.0987265i
\(144\) 0 0
\(145\) 8.58144i 0.712650i
\(146\) 0 0
\(147\) 2.67523 1.54455i 0.220650 0.127392i
\(148\) 0 0
\(149\) −16.0045 + 9.24023i −1.31114 + 0.756989i −0.982286 0.187390i \(-0.939997\pi\)
−0.328858 + 0.944379i \(0.606664\pi\)
\(150\) 0 0
\(151\) 18.5105 1.50637 0.753183 0.657811i \(-0.228517\pi\)
0.753183 + 0.657811i \(0.228517\pi\)
\(152\) 0 0
\(153\) 5.33737 0.431501
\(154\) 0 0
\(155\) 22.9261 13.2364i 1.84147 1.06317i
\(156\) 0 0
\(157\) −21.2242 + 12.2538i −1.69388 + 0.977961i −0.742545 + 0.669796i \(0.766382\pi\)
−0.951333 + 0.308165i \(0.900285\pi\)
\(158\) 0 0
\(159\) 4.82774i 0.382864i
\(160\) 0 0
\(161\) −3.15904 + 5.47162i −0.248967 + 0.431224i
\(162\) 0 0
\(163\) 6.00269 0.470167 0.235084 0.971975i \(-0.424464\pi\)
0.235084 + 0.971975i \(0.424464\pi\)
\(164\) 0 0
\(165\) 6.21336 10.7619i 0.483709 0.837809i
\(166\) 0 0
\(167\) 3.39245 5.87589i 0.262515 0.454690i −0.704394 0.709809i \(-0.748781\pi\)
0.966910 + 0.255119i \(0.0821146\pi\)
\(168\) 0 0
\(169\) 6.40416 + 11.0923i 0.492628 + 0.853256i
\(170\) 0 0
\(171\) 3.26102 1.54738i 0.249376 0.118331i
\(172\) 0 0
\(173\) −8.69543 15.0609i −0.661101 1.14506i −0.980327 0.197382i \(-0.936756\pi\)
0.319225 0.947679i \(-0.396577\pi\)
\(174\) 0 0
\(175\) 6.09502 + 3.51896i 0.460741 + 0.266009i
\(176\) 0 0
\(177\) −1.45157 + 2.51420i −0.109107 + 0.188979i
\(178\) 0 0
\(179\) 3.28473i 0.245513i 0.992437 + 0.122756i \(0.0391733\pi\)
−0.992437 + 0.122756i \(0.960827\pi\)
\(180\) 0 0
\(181\) 4.17326 7.22829i 0.310196 0.537275i −0.668209 0.743974i \(-0.732939\pi\)
0.978405 + 0.206699i \(0.0662721\pi\)
\(182\) 0 0
\(183\) −16.2692 −1.20265
\(184\) 0 0
\(185\) 19.6123 11.3232i 1.44192 0.832495i
\(186\) 0 0
\(187\) −10.0347 17.3805i −0.733806 1.27099i
\(188\) 0 0
\(189\) 17.0149 1.23765
\(190\) 0 0
\(191\) 4.43183i 0.320676i 0.987062 + 0.160338i \(0.0512584\pi\)
−0.987062 + 0.160338i \(0.948742\pi\)
\(192\) 0 0
\(193\) −6.12690 + 3.53737i −0.441024 + 0.254625i −0.704032 0.710168i \(-0.748619\pi\)
0.263008 + 0.964794i \(0.415286\pi\)
\(194\) 0 0
\(195\) −0.873661 1.51322i −0.0625641 0.108364i
\(196\) 0 0
\(197\) 11.2899i 0.804372i 0.915558 + 0.402186i \(0.131750\pi\)
−0.915558 + 0.402186i \(0.868250\pi\)
\(198\) 0 0
\(199\) 6.12926 + 3.53873i 0.434492 + 0.250854i 0.701258 0.712907i \(-0.252622\pi\)
−0.266766 + 0.963761i \(0.585955\pi\)
\(200\) 0 0
\(201\) 7.65566 0.539989
\(202\) 0 0
\(203\) −8.27677 4.77860i −0.580916 0.335392i
\(204\) 0 0
\(205\) −7.28913 + 12.6251i −0.509095 + 0.881779i
\(206\) 0 0
\(207\) −1.50231 + 0.867362i −0.104418 + 0.0602858i
\(208\) 0 0
\(209\) −11.1698 7.70995i −0.772632 0.533308i
\(210\) 0 0
\(211\) −15.7615 + 9.09989i −1.08506 + 0.626462i −0.932258 0.361794i \(-0.882164\pi\)
−0.152806 + 0.988256i \(0.548831\pi\)
\(212\) 0 0
\(213\) 11.2551 + 6.49813i 0.771186 + 0.445244i
\(214\) 0 0
\(215\) −11.4141 6.58996i −0.778438 0.449431i
\(216\) 0 0
\(217\) 29.4828i 2.00142i
\(218\) 0 0
\(219\) 17.6170 + 10.1712i 1.19045 + 0.687306i
\(220\) 0 0
\(221\) −2.82195 −0.189825
\(222\) 0 0
\(223\) −0.772936 1.33877i −0.0517596 0.0896503i 0.838985 0.544155i \(-0.183150\pi\)
−0.890744 + 0.454505i \(0.849816\pi\)
\(224\) 0 0
\(225\) 0.966184 + 1.67348i 0.0644123 + 0.111565i
\(226\) 0 0
\(227\) 3.30271i 0.219209i 0.993975 + 0.109604i \(0.0349584\pi\)
−0.993975 + 0.109604i \(0.965042\pi\)
\(228\) 0 0
\(229\) 8.81252i 0.582348i 0.956670 + 0.291174i \(0.0940458\pi\)
−0.956670 + 0.291174i \(0.905954\pi\)
\(230\) 0 0
\(231\) −6.91985 11.9855i −0.455293 0.788590i
\(232\) 0 0
\(233\) 3.15790 + 5.46965i 0.206881 + 0.358329i 0.950730 0.310019i \(-0.100335\pi\)
−0.743849 + 0.668347i \(0.767002\pi\)
\(234\) 0 0
\(235\) −3.84197 −0.250622
\(236\) 0 0
\(237\) −2.39795 1.38446i −0.155764 0.0899301i
\(238\) 0 0
\(239\) 26.2612i 1.69870i −0.527834 0.849348i \(-0.676996\pi\)
0.527834 0.849348i \(-0.323004\pi\)
\(240\) 0 0
\(241\) 1.61651 + 0.933290i 0.104128 + 0.0601185i 0.551160 0.834400i \(-0.314185\pi\)
−0.447031 + 0.894518i \(0.647519\pi\)
\(242\) 0 0
\(243\) 7.21645 + 4.16642i 0.462935 + 0.267276i
\(244\) 0 0
\(245\) 4.91583 2.83816i 0.314061 0.181323i
\(246\) 0 0
\(247\) −1.72415 + 0.818120i −0.109705 + 0.0520558i
\(248\) 0 0
\(249\) 4.84315 2.79619i 0.306922 0.177202i
\(250\) 0 0
\(251\) −10.1173 + 17.5236i −0.638596 + 1.10608i 0.347145 + 0.937811i \(0.387151\pi\)
−0.985741 + 0.168269i \(0.946182\pi\)
\(252\) 0 0
\(253\) 5.64893 + 3.26141i 0.355145 + 0.205043i
\(254\) 0 0
\(255\) −25.7237 −1.61088
\(256\) 0 0
\(257\) −10.3865 5.99663i −0.647890 0.374060i 0.139757 0.990186i \(-0.455368\pi\)
−0.787647 + 0.616126i \(0.788701\pi\)
\(258\) 0 0
\(259\) 25.2213i 1.56718i
\(260\) 0 0
\(261\) −1.31204 2.27251i −0.0812129 0.140665i
\(262\) 0 0
\(263\) −24.8302 + 14.3357i −1.53109 + 0.883978i −0.531783 + 0.846881i \(0.678478\pi\)
−0.999312 + 0.0370975i \(0.988189\pi\)
\(264\) 0 0
\(265\) 8.87113i 0.544949i
\(266\) 0 0
\(267\) −18.3292 −1.12173
\(268\) 0 0
\(269\) −7.77990 13.4752i −0.474349 0.821596i 0.525220 0.850967i \(-0.323983\pi\)
−0.999569 + 0.0293704i \(0.990650\pi\)
\(270\) 0 0
\(271\) 2.99285 1.72792i 0.181803 0.104964i −0.406337 0.913723i \(-0.633194\pi\)
0.588139 + 0.808760i \(0.299861\pi\)
\(272\) 0 0
\(273\) −1.94600 −0.117777
\(274\) 0 0
\(275\) 3.63300 6.29253i 0.219078 0.379454i
\(276\) 0 0
\(277\) 1.41483i 0.0850090i 0.999096 + 0.0425045i \(0.0135337\pi\)
−0.999096 + 0.0425045i \(0.986466\pi\)
\(278\) 0 0
\(279\) 4.04747 7.01043i 0.242316 0.419703i
\(280\) 0 0
\(281\) 4.69854 + 2.71270i 0.280291 + 0.161826i 0.633555 0.773697i \(-0.281595\pi\)
−0.353264 + 0.935524i \(0.614928\pi\)
\(282\) 0 0
\(283\) −8.05693 13.9550i −0.478935 0.829540i 0.520773 0.853695i \(-0.325644\pi\)
−0.999708 + 0.0241553i \(0.992310\pi\)
\(284\) 0 0
\(285\) −15.7167 + 7.45766i −0.930974 + 0.441754i
\(286\) 0 0
\(287\) 8.11794 + 14.0607i 0.479187 + 0.829976i
\(288\) 0 0
\(289\) −12.2721 + 21.2559i −0.721887 + 1.25034i
\(290\) 0 0
\(291\) 13.6996 23.7284i 0.803085 1.39098i
\(292\) 0 0
\(293\) 23.7978 1.39028 0.695142 0.718872i \(-0.255341\pi\)
0.695142 + 0.718872i \(0.255341\pi\)
\(294\) 0 0
\(295\) −2.66731 + 4.61992i −0.155297 + 0.268982i
\(296\) 0 0
\(297\) 17.5663i 1.01930i
\(298\) 0 0
\(299\) 0.794296 0.458587i 0.0459353 0.0265208i
\(300\) 0 0
\(301\) −12.7120 + 7.33927i −0.732707 + 0.423028i
\(302\) 0 0
\(303\) −2.20149 −0.126472
\(304\) 0 0
\(305\) −29.8951 −1.71179
\(306\) 0 0
\(307\) 1.43431 0.828099i 0.0818604 0.0472621i −0.458511 0.888689i \(-0.651617\pi\)
0.540371 + 0.841427i \(0.318284\pi\)
\(308\) 0 0
\(309\) 7.17214 4.14084i 0.408009 0.235564i
\(310\) 0 0
\(311\) 0.650991i 0.0369143i −0.999830 0.0184572i \(-0.994125\pi\)
0.999830 0.0184572i \(-0.00587543\pi\)
\(312\) 0 0
\(313\) 9.66128 16.7338i 0.546088 0.945852i −0.452450 0.891790i \(-0.649450\pi\)
0.998538 0.0540617i \(-0.0172168\pi\)
\(314\) 0 0
\(315\) 6.76327 0.381067
\(316\) 0 0
\(317\) 10.4707 18.1358i 0.588093 1.01861i −0.406389 0.913700i \(-0.633212\pi\)
0.994482 0.104907i \(-0.0334545\pi\)
\(318\) 0 0
\(319\) −4.93345 + 8.54498i −0.276220 + 0.478427i
\(320\) 0 0
\(321\) −6.63988 11.5006i −0.370602 0.641901i
\(322\) 0 0
\(323\) −2.26070 + 28.0041i −0.125789 + 1.55819i
\(324\) 0 0
\(325\) −0.510836 0.884793i −0.0283361 0.0490795i
\(326\) 0 0
\(327\) 14.3529 + 8.28666i 0.793718 + 0.458253i
\(328\) 0 0
\(329\) −2.13941 + 3.70556i −0.117949 + 0.204294i
\(330\) 0 0
\(331\) 7.37076i 0.405134i −0.979268 0.202567i \(-0.935072\pi\)
0.979268 0.202567i \(-0.0649284\pi\)
\(332\) 0 0
\(333\) 3.46244 5.99713i 0.189741 0.328641i
\(334\) 0 0
\(335\) 14.0675 0.768592
\(336\) 0 0
\(337\) −9.00098 + 5.19672i −0.490315 + 0.283083i −0.724705 0.689059i \(-0.758024\pi\)
0.234390 + 0.972143i \(0.424691\pi\)
\(338\) 0 0
\(339\) −3.11021 5.38705i −0.168924 0.292584i
\(340\) 0 0
\(341\) −30.4382 −1.64832
\(342\) 0 0
\(343\) 14.7901i 0.798588i
\(344\) 0 0
\(345\) 7.24048 4.18029i 0.389814 0.225060i
\(346\) 0 0
\(347\) −9.25966 16.0382i −0.497085 0.860976i 0.502910 0.864339i \(-0.332263\pi\)
−0.999994 + 0.00336302i \(0.998930\pi\)
\(348\) 0 0
\(349\) 16.1158i 0.862661i 0.902194 + 0.431330i \(0.141956\pi\)
−0.902194 + 0.431330i \(0.858044\pi\)
\(350\) 0 0
\(351\) −2.13908 1.23500i −0.114176 0.0659194i
\(352\) 0 0
\(353\) 32.0716 1.70700 0.853500 0.521093i \(-0.174476\pi\)
0.853500 + 0.521093i \(0.174476\pi\)
\(354\) 0 0
\(355\) 20.6816 + 11.9405i 1.09767 + 0.633737i
\(356\) 0 0
\(357\) −14.3243 + 24.8105i −0.758124 + 1.31311i
\(358\) 0 0
\(359\) −3.07083 + 1.77294i −0.162072 + 0.0935724i −0.578842 0.815440i \(-0.696495\pi\)
0.416770 + 0.909012i \(0.363162\pi\)
\(360\) 0 0
\(361\) 6.73752 + 17.7653i 0.354607 + 0.935016i
\(362\) 0 0
\(363\) 1.66537 0.961501i 0.0874092 0.0504657i
\(364\) 0 0
\(365\) 32.3719 + 18.6899i 1.69442 + 0.978275i
\(366\) 0 0
\(367\) −30.3020 17.4948i −1.58175 0.913224i −0.994604 0.103742i \(-0.966918\pi\)
−0.587145 0.809481i \(-0.699748\pi\)
\(368\) 0 0
\(369\) 4.45780i 0.232064i
\(370\) 0 0
\(371\) 8.55617 + 4.93991i 0.444214 + 0.256467i
\(372\) 0 0
\(373\) −6.14462 −0.318157 −0.159078 0.987266i \(-0.550852\pi\)
−0.159078 + 0.987266i \(0.550852\pi\)
\(374\) 0 0
\(375\) 5.32086 + 9.21601i 0.274768 + 0.475913i
\(376\) 0 0
\(377\) 0.693692 + 1.20151i 0.0357270 + 0.0618809i
\(378\) 0 0
\(379\) 16.1488i 0.829507i −0.909934 0.414753i \(-0.863868\pi\)
0.909934 0.414753i \(-0.136132\pi\)
\(380\) 0 0
\(381\) 23.1675i 1.18691i
\(382\) 0 0
\(383\) −5.82205 10.0841i −0.297493 0.515272i 0.678069 0.734998i \(-0.262817\pi\)
−0.975562 + 0.219726i \(0.929484\pi\)
\(384\) 0 0
\(385\) −12.7155 22.0238i −0.648040 1.12244i
\(386\) 0 0
\(387\) −4.03021 −0.204867
\(388\) 0 0
\(389\) −12.0060 6.93167i −0.608729 0.351450i 0.163739 0.986504i \(-0.447645\pi\)
−0.772468 + 0.635054i \(0.780978\pi\)
\(390\) 0 0
\(391\) 13.5025i 0.682848i
\(392\) 0 0
\(393\) −12.9704 7.48849i −0.654272 0.377744i
\(394\) 0 0
\(395\) −4.40631 2.54399i −0.221706 0.128002i
\(396\) 0 0
\(397\) −10.1183 + 5.84182i −0.507825 + 0.293193i −0.731939 0.681370i \(-0.761384\pi\)
0.224114 + 0.974563i \(0.428051\pi\)
\(398\) 0 0
\(399\) −1.55897 + 19.3115i −0.0780459 + 0.966783i
\(400\) 0 0
\(401\) 21.4038 12.3575i 1.06886 0.617105i 0.140988 0.990011i \(-0.454972\pi\)
0.927869 + 0.372907i \(0.121639\pi\)
\(402\) 0 0
\(403\) −2.13996 + 3.70652i −0.106599 + 0.184635i
\(404\) 0 0
\(405\) −13.6729 7.89403i −0.679410 0.392258i
\(406\) 0 0
\(407\) −26.0386 −1.29069
\(408\) 0 0
\(409\) 16.4212 + 9.48080i 0.811978 + 0.468796i 0.847642 0.530568i \(-0.178021\pi\)
−0.0356645 + 0.999364i \(0.511355\pi\)
\(410\) 0 0
\(411\) 21.1490i 1.04320i
\(412\) 0 0
\(413\) 2.97060 + 5.14523i 0.146174 + 0.253180i
\(414\) 0 0
\(415\) 8.89945 5.13810i 0.436857 0.252219i
\(416\) 0 0
\(417\) 15.6445i 0.766113i
\(418\) 0 0
\(419\) −8.83253 −0.431497 −0.215749 0.976449i \(-0.569219\pi\)
−0.215749 + 0.976449i \(0.569219\pi\)
\(420\) 0 0
\(421\) 0.915408 + 1.58553i 0.0446143 + 0.0772742i 0.887470 0.460865i \(-0.152461\pi\)
−0.842856 + 0.538139i \(0.819127\pi\)
\(422\) 0 0
\(423\) −1.01742 + 0.587406i −0.0494685 + 0.0285607i
\(424\) 0 0
\(425\) −15.0409 −0.729588
\(426\) 0 0
\(427\) −16.6472 + 28.8338i −0.805613 + 1.39536i
\(428\) 0 0
\(429\) 2.00906i 0.0969984i
\(430\) 0 0
\(431\) 11.5493 20.0040i 0.556310 0.963557i −0.441490 0.897266i \(-0.645550\pi\)
0.997800 0.0662911i \(-0.0211166\pi\)
\(432\) 0 0
\(433\) 1.33452 + 0.770486i 0.0641330 + 0.0370272i 0.531724 0.846918i \(-0.321545\pi\)
−0.467591 + 0.883945i \(0.654878\pi\)
\(434\) 0 0
\(435\) 6.32342 + 10.9525i 0.303185 + 0.525132i
\(436\) 0 0
\(437\) −3.91455 8.24971i −0.187258 0.394637i
\(438\) 0 0
\(439\) 18.4223 + 31.9083i 0.879246 + 1.52290i 0.852169 + 0.523266i \(0.175287\pi\)
0.0270772 + 0.999633i \(0.491380\pi\)
\(440\) 0 0
\(441\) 0.867864 1.50318i 0.0413269 0.0715802i
\(442\) 0 0
\(443\) 12.8595 22.2732i 0.610971 1.05823i −0.380106 0.924943i \(-0.624113\pi\)
0.991077 0.133290i \(-0.0425541\pi\)
\(444\) 0 0
\(445\) −33.6804 −1.59661
\(446\) 0 0
\(447\) 13.6177 23.5866i 0.644097 1.11561i
\(448\) 0 0
\(449\) 12.6228i 0.595707i −0.954612 0.297853i \(-0.903729\pi\)
0.954612 0.297853i \(-0.0962706\pi\)
\(450\) 0 0
\(451\) 14.5163 8.38100i 0.683547 0.394646i
\(452\) 0 0
\(453\) −23.6250 + 13.6399i −1.11000 + 0.640858i
\(454\) 0 0
\(455\) −3.57584 −0.167638
\(456\) 0 0
\(457\) 3.27588 0.153239 0.0766197 0.997060i \(-0.475587\pi\)
0.0766197 + 0.997060i \(0.475587\pi\)
\(458\) 0 0
\(459\) −31.4911 + 18.1814i −1.46988 + 0.848636i
\(460\) 0 0
\(461\) 14.3820 8.30348i 0.669839 0.386732i −0.126177 0.992008i \(-0.540271\pi\)
0.796015 + 0.605276i \(0.206937\pi\)
\(462\) 0 0
\(463\) 29.2576i 1.35972i 0.733344 + 0.679858i \(0.237958\pi\)
−0.733344 + 0.679858i \(0.762042\pi\)
\(464\) 0 0
\(465\) −19.5070 + 33.7871i −0.904616 + 1.56684i
\(466\) 0 0
\(467\) 7.69409 0.356040 0.178020 0.984027i \(-0.443031\pi\)
0.178020 + 0.984027i \(0.443031\pi\)
\(468\) 0 0
\(469\) 7.83354 13.5681i 0.361719 0.626516i
\(470\) 0 0
\(471\) 18.0590 31.2791i 0.832114 1.44126i
\(472\) 0 0
\(473\) 7.57710 + 13.1239i 0.348395 + 0.603438i
\(474\) 0 0
\(475\) −9.18964 + 4.36055i −0.421650 + 0.200076i
\(476\) 0 0
\(477\) 1.35633 + 2.34923i 0.0621019 + 0.107564i
\(478\) 0 0
\(479\) −30.9763 17.8841i −1.41534 0.817148i −0.419456 0.907776i \(-0.637779\pi\)
−0.995885 + 0.0906279i \(0.971113\pi\)
\(480\) 0 0
\(481\) −1.83064 + 3.17077i −0.0834702 + 0.144575i
\(482\) 0 0
\(483\) 9.31123i 0.423676i
\(484\) 0 0
\(485\) 25.1735 43.6017i 1.14307 1.97985i
\(486\) 0 0
\(487\) 2.98739 0.135372 0.0676858 0.997707i \(-0.478438\pi\)
0.0676858 + 0.997707i \(0.478438\pi\)
\(488\) 0 0
\(489\) −7.66123 + 4.42321i −0.346453 + 0.200025i
\(490\) 0 0
\(491\) 16.2391 + 28.1269i 0.732858 + 1.26935i 0.955657 + 0.294483i \(0.0951475\pi\)
−0.222798 + 0.974865i \(0.571519\pi\)
\(492\) 0 0
\(493\) 20.4248 0.919887
\(494\) 0 0
\(495\) 6.98244i 0.313837i
\(496\) 0 0
\(497\) 23.0332 13.2982i 1.03318 0.596507i
\(498\) 0 0
\(499\) 4.86494 + 8.42632i 0.217785 + 0.377214i 0.954130 0.299391i \(-0.0967836\pi\)
−0.736346 + 0.676605i \(0.763450\pi\)
\(500\) 0 0
\(501\) 9.99919i 0.446731i
\(502\) 0 0
\(503\) 15.8302 + 9.13954i 0.705832 + 0.407512i 0.809516 0.587098i \(-0.199730\pi\)
−0.103684 + 0.994610i \(0.533063\pi\)
\(504\) 0 0
\(505\) −4.04531 −0.180014
\(506\) 0 0
\(507\) −16.3472 9.43809i −0.726007 0.419160i
\(508\) 0 0
\(509\) 2.39384 4.14625i 0.106105 0.183779i −0.808084 0.589067i \(-0.799495\pi\)
0.914189 + 0.405288i \(0.132829\pi\)
\(510\) 0 0
\(511\) 36.0527 20.8150i 1.59488 0.920803i
\(512\) 0 0
\(513\) −13.9694 + 20.2382i −0.616763 + 0.893537i
\(514\) 0 0
\(515\) 13.1790 7.60892i 0.580738 0.335289i
\(516\) 0 0
\(517\) 3.82564 + 2.20874i 0.168252 + 0.0971401i
\(518\) 0 0
\(519\) 22.1959 + 12.8148i 0.974294 + 0.562509i
\(520\) 0 0
\(521\) 14.4161i 0.631582i −0.948829 0.315791i \(-0.897730\pi\)
0.948829 0.315791i \(-0.102270\pi\)
\(522\) 0 0
\(523\) 13.5585 + 7.82801i 0.592873 + 0.342295i 0.766233 0.642563i \(-0.222129\pi\)
−0.173360 + 0.984859i \(0.555462\pi\)
\(524\) 0 0
\(525\) −10.3721 −0.452676
\(526\) 0 0
\(527\) 31.5041 + 54.5666i 1.37234 + 2.37696i
\(528\) 0 0
\(529\) −9.30575 16.1180i −0.404598 0.700784i
\(530\) 0 0
\(531\) 1.63125i 0.0707900i
\(532\) 0 0
\(533\) 2.35691i 0.102089i
\(534\) 0 0
\(535\) −12.2010 21.1328i −0.527495 0.913649i
\(536\) 0 0
\(537\) −2.42043 4.19230i −0.104449 0.180911i
\(538\) 0 0
\(539\) −6.52660 −0.281120
\(540\) 0 0
\(541\) 7.10566 + 4.10246i 0.305496 + 0.176378i 0.644909 0.764259i \(-0.276895\pi\)
−0.339413 + 0.940637i \(0.610228\pi\)
\(542\) 0 0
\(543\) 12.3006i 0.527870i
\(544\) 0 0
\(545\) 26.3740 + 15.2270i 1.12974 + 0.652254i
\(546\) 0 0
\(547\) −25.9507 14.9826i −1.10957 0.640611i −0.170853 0.985297i \(-0.554652\pi\)
−0.938718 + 0.344685i \(0.887986\pi\)
\(548\) 0 0
\(549\) −7.91674 + 4.57073i −0.337878 + 0.195074i
\(550\) 0 0
\(551\) 12.4791 5.92143i 0.531629 0.252261i
\(552\) 0 0
\(553\) −4.90733 + 2.83325i −0.208681 + 0.120482i
\(554\) 0 0
\(555\) −16.6874 + 28.9035i −0.708342 + 1.22688i
\(556\) 0 0
\(557\) 33.2847 + 19.2169i 1.41032 + 0.814247i 0.995418 0.0956198i \(-0.0304833\pi\)
0.414900 + 0.909867i \(0.363817\pi\)
\(558\) 0 0
\(559\) 2.13083 0.0901246
\(560\) 0 0
\(561\) 25.6144 + 14.7885i 1.08144 + 0.624371i
\(562\) 0 0
\(563\) 0.0334791i 0.00141098i 1.00000 0.000705488i \(0.000224564\pi\)
−1.00000 0.000705488i \(0.999775\pi\)
\(564\) 0 0
\(565\) −5.71512 9.89888i −0.240437 0.416449i
\(566\) 0 0
\(567\) −15.2275 + 8.79162i −0.639496 + 0.369213i
\(568\) 0 0
\(569\) 0.534632i 0.0224129i 0.999937 + 0.0112065i \(0.00356720\pi\)
−0.999937 + 0.0112065i \(0.996433\pi\)
\(570\) 0 0
\(571\) 37.1365 1.55411 0.777057 0.629430i \(-0.216712\pi\)
0.777057 + 0.629430i \(0.216712\pi\)
\(572\) 0 0
\(573\) −3.26569 5.65634i −0.136426 0.236297i
\(574\) 0 0
\(575\) 4.23356 2.44425i 0.176552 0.101932i
\(576\) 0 0
\(577\) −25.7080 −1.07024 −0.535118 0.844777i \(-0.679733\pi\)
−0.535118 + 0.844777i \(0.679733\pi\)
\(578\) 0 0
\(579\) 5.21318 9.02949i 0.216652 0.375253i
\(580\) 0 0
\(581\) 11.4447i 0.474804i
\(582\) 0 0
\(583\) 5.09999 8.83344i 0.211220 0.365844i
\(584\) 0 0
\(585\) −0.850264 0.490900i −0.0351541 0.0202962i
\(586\) 0 0
\(587\) 9.70642 + 16.8120i 0.400627 + 0.693906i 0.993802 0.111168i \(-0.0354590\pi\)
−0.593175 + 0.805074i \(0.702126\pi\)
\(588\) 0 0
\(589\) 35.0679 + 24.2056i 1.44495 + 0.997374i
\(590\) 0 0
\(591\) −8.31921 14.4093i −0.342207 0.592719i
\(592\) 0 0
\(593\) −14.9132 + 25.8304i −0.612411 + 1.06073i 0.378422 + 0.925633i \(0.376467\pi\)
−0.990833 + 0.135093i \(0.956867\pi\)
\(594\) 0 0
\(595\) −26.3214 + 45.5900i −1.07907 + 1.86901i
\(596\) 0 0
\(597\) −10.4304 −0.426886
\(598\) 0 0
\(599\) −3.62259 + 6.27451i −0.148015 + 0.256369i −0.930494 0.366308i \(-0.880622\pi\)
0.782479 + 0.622677i \(0.213955\pi\)
\(600\) 0 0
\(601\) 23.7575i 0.969088i 0.874767 + 0.484544i \(0.161015\pi\)
−0.874767 + 0.484544i \(0.838985\pi\)
\(602\) 0 0
\(603\) 3.72532 2.15082i 0.151707 0.0875880i
\(604\) 0 0
\(605\) 3.06017 1.76679i 0.124414 0.0718303i
\(606\) 0 0
\(607\) −15.5235 −0.630081 −0.315041 0.949078i \(-0.602018\pi\)
−0.315041 + 0.949078i \(0.602018\pi\)
\(608\) 0 0
\(609\) 14.0849 0.570747
\(610\) 0 0
\(611\) 0.537924 0.310570i 0.0217621 0.0125643i
\(612\) 0 0
\(613\) 6.02011 3.47571i 0.243150 0.140383i −0.373474 0.927641i \(-0.621833\pi\)
0.616624 + 0.787258i \(0.288500\pi\)
\(614\) 0 0
\(615\) 21.4846i 0.866344i
\(616\) 0 0
\(617\) −13.4941 + 23.3725i −0.543253 + 0.940943i 0.455461 + 0.890256i \(0.349474\pi\)
−0.998715 + 0.0506869i \(0.983859\pi\)
\(618\) 0 0
\(619\) 21.2410 0.853747 0.426874 0.904311i \(-0.359615\pi\)
0.426874 + 0.904311i \(0.359615\pi\)
\(620\) 0 0
\(621\) 5.90923 10.2351i 0.237129 0.410720i
\(622\) 0 0
\(623\) −18.7550 + 32.4847i −0.751405 + 1.30147i
\(624\) 0 0
\(625\) 15.6111 + 27.0393i 0.624446 + 1.08157i
\(626\) 0 0
\(627\) 19.9373 + 1.60948i 0.796218 + 0.0642766i
\(628\) 0 0
\(629\) 26.9504 + 46.6795i 1.07458 + 1.86123i
\(630\) 0 0
\(631\) 7.72930 + 4.46251i 0.307699 + 0.177650i 0.645896 0.763425i \(-0.276484\pi\)
−0.338198 + 0.941075i \(0.609817\pi\)
\(632\) 0 0
\(633\) 13.4109 23.2284i 0.533036 0.923245i
\(634\) 0 0
\(635\) 42.5711i 1.68938i
\(636\) 0 0
\(637\) −0.458852 + 0.794756i −0.0181804 + 0.0314894i
\(638\) 0 0
\(639\) 7.30245 0.288880
\(640\) 0 0
\(641\) 1.70881 0.986580i 0.0674938 0.0389675i −0.465873 0.884851i \(-0.654260\pi\)
0.533367 + 0.845884i \(0.320926\pi\)
\(642\) 0 0
\(643\) 6.70192 + 11.6081i 0.264298 + 0.457777i 0.967379 0.253332i \(-0.0815265\pi\)
−0.703082 + 0.711109i \(0.748193\pi\)
\(644\) 0 0
\(645\) 19.4238 0.764812
\(646\) 0 0
\(647\) 25.2982i 0.994575i 0.867586 + 0.497288i \(0.165671\pi\)
−0.867586 + 0.497288i \(0.834329\pi\)
\(648\) 0 0
\(649\) 5.31196 3.06686i 0.208513 0.120385i
\(650\) 0 0
\(651\) 21.7250 + 37.6289i 0.851472 + 1.47479i
\(652\) 0 0
\(653\) 2.28865i 0.0895618i 0.998997 + 0.0447809i \(0.0142590\pi\)
−0.998997 + 0.0447809i \(0.985741\pi\)
\(654\) 0 0
\(655\) −23.8336 13.7603i −0.931257 0.537661i
\(656\) 0 0
\(657\) 11.4302 0.445933
\(658\) 0 0
\(659\) 6.55373 + 3.78380i 0.255297 + 0.147396i 0.622187 0.782868i \(-0.286244\pi\)
−0.366890 + 0.930264i \(0.619578\pi\)
\(660\) 0 0
\(661\) −7.23786 + 12.5363i −0.281520 + 0.487607i −0.971759 0.235974i \(-0.924172\pi\)
0.690239 + 0.723581i \(0.257505\pi\)
\(662\) 0 0
\(663\) 3.60165 2.07941i 0.139876 0.0807577i
\(664\) 0 0
\(665\) −2.86465 + 35.4855i −0.111086 + 1.37607i
\(666\) 0 0
\(667\) −5.74899 + 3.31918i −0.222602 + 0.128519i
\(668\) 0 0
\(669\) 1.97300 + 1.13911i 0.0762804 + 0.0440405i
\(670\) 0 0
\(671\) 29.7681 + 17.1866i 1.14919 + 0.663482i
\(672\) 0 0
\(673\) 26.5226i 1.02237i 0.859470 + 0.511186i \(0.170794\pi\)
−0.859470 + 0.511186i \(0.829206\pi\)
\(674\) 0 0
\(675\) −11.4012 6.58249i −0.438833 0.253360i
\(676\) 0 0
\(677\) −6.15109 −0.236405 −0.118203 0.992989i \(-0.537713\pi\)
−0.118203 + 0.992989i \(0.537713\pi\)
\(678\) 0 0
\(679\) −28.0358 48.5595i −1.07592 1.86354i
\(680\) 0 0
\(681\) −2.43367 4.21525i −0.0932586 0.161529i
\(682\) 0 0
\(683\) 2.04240i 0.0781501i −0.999236 0.0390750i \(-0.987559\pi\)
0.999236 0.0390750i \(-0.0124411\pi\)
\(684\) 0 0
\(685\) 38.8620i 1.48484i
\(686\) 0 0
\(687\) −6.49370 11.2474i −0.247750 0.429115i
\(688\) 0 0
\(689\) −0.717109 1.24207i −0.0273197 0.0473191i
\(690\) 0 0
\(691\) −45.7370 −1.73992 −0.869960 0.493123i \(-0.835855\pi\)
−0.869960 + 0.493123i \(0.835855\pi\)
\(692\) 0 0
\(693\) −6.73454 3.88819i −0.255824 0.147700i
\(694\) 0 0
\(695\) 28.7473i 1.09045i
\(696\) 0 0
\(697\) −30.0493 17.3490i −1.13820 0.657139i
\(698\) 0 0
\(699\) −8.06086 4.65394i −0.304890 0.176028i
\(700\) 0 0
\(701\) 24.5743 14.1880i 0.928159 0.535873i 0.0419298 0.999121i \(-0.486649\pi\)
0.886229 + 0.463248i \(0.153316\pi\)
\(702\) 0 0
\(703\) 29.9991 + 20.7069i 1.13144 + 0.780974i
\(704\) 0 0
\(705\) 4.90350 2.83104i 0.184676 0.106623i
\(706\) 0 0
\(707\) −2.25264 + 3.90169i −0.0847193 + 0.146738i
\(708\) 0 0
\(709\) −4.47396 2.58304i −0.168023 0.0970082i 0.413630 0.910445i \(-0.364261\pi\)
−0.581653 + 0.813437i \(0.697594\pi\)
\(710\) 0 0
\(711\) −1.55582 −0.0583479
\(712\) 0 0
\(713\) −17.7350 10.2393i −0.664179 0.383464i
\(714\) 0 0
\(715\) 3.69172i 0.138062i
\(716\) 0 0
\(717\) 19.3511 + 33.5171i 0.722681 + 1.25172i
\(718\) 0 0
\(719\) −30.3540 + 17.5249i −1.13201 + 0.653568i −0.944441 0.328682i \(-0.893395\pi\)
−0.187573 + 0.982251i \(0.560062\pi\)
\(720\) 0 0
\(721\) 16.9482i 0.631184i
\(722\) 0 0
\(723\) −2.75086 −0.102306
\(724\) 0 0
\(725\) 3.69735 + 6.40400i 0.137316 + 0.237839i
\(726\) 0 0
\(727\) −7.95388 + 4.59217i −0.294993 + 0.170314i −0.640191 0.768215i \(-0.721145\pi\)
0.345198 + 0.938530i \(0.387812\pi\)
\(728\) 0 0
\(729\) −29.7706 −1.10261
\(730\) 0 0
\(731\) 15.6848 27.1670i 0.580125 1.00481i
\(732\) 0 0
\(733\) 1.04212i 0.0384918i 0.999815 + 0.0192459i \(0.00612653\pi\)
−0.999815 + 0.0192459i \(0.993873\pi\)
\(734\) 0 0
\(735\) −4.18272 + 7.24468i −0.154282 + 0.267224i
\(736\) 0 0
\(737\) −14.0078 8.08739i −0.515983 0.297903i
\(738\) 0 0
\(739\) −3.24715 5.62423i −0.119448 0.206891i 0.800101 0.599865i \(-0.204779\pi\)
−0.919549 + 0.392975i \(0.871446\pi\)
\(740\) 0 0
\(741\) 1.59768 2.31464i 0.0586922 0.0850305i
\(742\) 0 0
\(743\) −21.4582 37.1666i −0.787224 1.36351i −0.927662 0.373422i \(-0.878184\pi\)
0.140438 0.990089i \(-0.455149\pi\)
\(744\) 0 0
\(745\) 25.0230 43.3412i 0.916773 1.58790i
\(746\) 0 0
\(747\) 1.57115 2.72131i 0.0574854 0.0995676i
\(748\) 0 0
\(749\) −27.1766 −0.993012
\(750\) 0 0
\(751\) 21.3186 36.9250i 0.777928 1.34741i −0.155205 0.987882i \(-0.549604\pi\)
0.933134 0.359529i \(-0.117063\pi\)
\(752\) 0 0
\(753\) 29.8205i 1.08672i
\(754\) 0 0
\(755\) −43.4117 + 25.0638i −1.57991 + 0.912164i
\(756\) 0 0
\(757\) 33.2731 19.2102i 1.20933 0.698208i 0.246718 0.969087i \(-0.420648\pi\)
0.962613 + 0.270879i \(0.0873144\pi\)
\(758\) 0 0
\(759\) −9.61296 −0.348928
\(760\) 0 0
\(761\) −5.18110 −0.187815 −0.0939074 0.995581i \(-0.529936\pi\)
−0.0939074 + 0.995581i \(0.529936\pi\)
\(762\) 0 0
\(763\) 29.3728 16.9584i 1.06337 0.613935i
\(764\) 0 0
\(765\) −12.5174 + 7.22694i −0.452569 + 0.261291i
\(766\) 0 0
\(767\) 0.862463i 0.0311417i
\(768\) 0 0
\(769\) 23.3360 40.4192i 0.841519 1.45755i −0.0470919 0.998891i \(-0.514995\pi\)
0.888611 0.458663i \(-0.151671\pi\)
\(770\) 0 0
\(771\) 17.6750 0.636549
\(772\) 0 0
\(773\) −16.0227 + 27.7521i −0.576296 + 0.998175i 0.419603 + 0.907708i \(0.362169\pi\)
−0.995899 + 0.0904668i \(0.971164\pi\)
\(774\) 0 0
\(775\) −11.4059 + 19.7556i −0.409712 + 0.709641i
\(776\) 0 0
\(777\) 18.5849 + 32.1899i 0.666728 + 1.15481i
\(778\) 0 0
\(779\) −23.3892 1.88815i −0.838004 0.0676500i
\(780\) 0 0
\(781\) −13.7292 23.7796i −0.491268 0.850901i
\(782\) 0 0
\(783\) 15.4823 + 8.93874i 0.553294 + 0.319444i
\(784\) 0 0
\(785\) 33.1840 57.4763i 1.18439 2.05142i
\(786\) 0 0
\(787\) 32.2037i 1.14794i −0.818878 0.573968i \(-0.805403\pi\)
0.818878 0.573968i \(-0.194597\pi\)
\(788\) 0 0
\(789\) 21.1272 36.5933i 0.752147 1.30276i
\(790\) 0 0
\(791\) −12.7299 −0.452624
\(792\) 0 0
\(793\) 4.18570 2.41661i 0.148638 0.0858164i
\(794\) 0 0
\(795\) −6.53688 11.3222i −0.231839 0.401558i
\(796\) 0 0
\(797\) −52.1341 −1.84668 −0.923342 0.383979i \(-0.874554\pi\)
−0.923342 + 0.383979i \(0.874554\pi\)
\(798\) 0 0
\(799\) 9.14431i 0.323503i
\(800\) 0 0
\(801\) −8.91915 + 5.14947i −0.315143 + 0.181948i
\(802\) 0 0
\(803\) −21.4896 37.2210i −0.758350 1.31350i
\(804\) 0 0
\(805\) 17.1097i 0.603038i
\(806\) 0 0
\(807\) 19.8590 + 11.4656i 0.699068 + 0.403607i
\(808\) 0 0
\(809\) −28.3362 −0.996249 −0.498124 0.867106i \(-0.665978\pi\)
−0.498124 + 0.867106i \(0.665978\pi\)
\(810\) 0 0
\(811\) 8.67018 + 5.00573i 0.304451 + 0.175775i 0.644441 0.764654i \(-0.277090\pi\)
−0.339990 + 0.940429i \(0.610424\pi\)
\(812\) 0 0
\(813\) −2.54651 + 4.41069i −0.0893101 + 0.154690i
\(814\) 0 0
\(815\) −14.0778 + 8.12780i −0.493123 + 0.284705i
\(816\) 0 0
\(817\) 1.70704 21.1457i 0.0597217 0.739794i
\(818\) 0 0
\(819\) −0.946943 + 0.546718i −0.0330889 + 0.0191039i
\(820\) 0 0
\(821\) −8.96021 5.17318i −0.312714 0.180545i 0.335427 0.942066i \(-0.391120\pi\)
−0.648140 + 0.761521i \(0.724453\pi\)
\(822\) 0 0
\(823\) −19.1933 11.0812i −0.669036 0.386268i 0.126676 0.991944i \(-0.459569\pi\)
−0.795711 + 0.605676i \(0.792903\pi\)
\(824\) 0 0
\(825\) 10.7082i 0.372812i
\(826\) 0 0
\(827\) 15.5457 + 8.97531i 0.540577 + 0.312102i 0.745313 0.666715i \(-0.232300\pi\)
−0.204736 + 0.978817i \(0.565634\pi\)
\(828\) 0 0
\(829\) −30.6699 −1.06521 −0.532605 0.846364i \(-0.678787\pi\)
−0.532605 + 0.846364i \(0.678787\pi\)
\(830\) 0 0
\(831\) −1.04255 1.80575i −0.0361656 0.0626407i
\(832\) 0 0
\(833\) 6.75514 + 11.7002i 0.234052 + 0.405389i
\(834\) 0 0
\(835\) 18.3739i 0.635853i
\(836\) 0 0
\(837\) 55.1499i 1.90626i
\(838\) 0 0
\(839\) 18.8792 + 32.6997i 0.651782 + 1.12892i 0.982690 + 0.185256i \(0.0593115\pi\)
−0.330908 + 0.943663i \(0.607355\pi\)
\(840\) 0 0
\(841\) 9.47916 + 16.4184i 0.326868 + 0.566151i
\(842\) 0 0
\(843\) −7.99566 −0.275385
\(844\) 0 0
\(845\) −30.0386 17.3428i −1.03336 0.596610i
\(846\) 0 0
\(847\) 3.93537i 0.135221i
\(848\) 0 0
\(849\) 20.5661 + 11.8739i 0.705827 + 0.407510i
\(850\) 0 0
\(851\) −15.1715 8.75927i −0.520073 0.300264i
\(852\) 0 0
\(853\) −3.05229 + 1.76224i −0.104508 + 0.0603379i −0.551343 0.834279i \(-0.685884\pi\)
0.446835 + 0.894616i \(0.352551\pi\)
\(854\) 0 0
\(855\) −5.55269 + 8.04448i −0.189898 + 0.275115i
\(856\) 0 0
\(857\) −31.7144 + 18.3103i −1.08334 + 0.625468i −0.931796 0.362982i \(-0.881759\pi\)
−0.151547 + 0.988450i \(0.548425\pi\)
\(858\) 0 0
\(859\) 2.99574 5.18877i 0.102213 0.177038i −0.810383 0.585900i \(-0.800741\pi\)
0.912596 + 0.408862i \(0.134074\pi\)
\(860\) 0 0
\(861\) −20.7218 11.9638i −0.706199 0.407724i
\(862\) 0 0
\(863\) 12.3914 0.421808 0.210904 0.977507i \(-0.432359\pi\)
0.210904 + 0.977507i \(0.432359\pi\)
\(864\) 0 0
\(865\) 40.7858 + 23.5477i 1.38676 + 0.800645i
\(866\) 0 0
\(867\) 36.1718i 1.22846i
\(868\) 0 0
\(869\) 2.92506 + 5.06635i 0.0992259 + 0.171864i
\(870\) 0 0
\(871\) −1.96963 + 1.13717i −0.0667385 + 0.0385315i
\(872\) 0 0
\(873\) 15.3953i 0.521052i
\(874\) 0 0
\(875\) 21.7780 0.736230
\(876\) 0 0
\(877\) 10.4760 + 18.1449i 0.353749 + 0.612711i 0.986903 0.161315i \(-0.0515735\pi\)
−0.633154 + 0.774026i \(0.718240\pi\)
\(878\) 0 0
\(879\) −30.3732 + 17.5359i −1.02446 + 0.591473i
\(880\) 0 0
\(881\) 16.3102 0.549504 0.274752 0.961515i \(-0.411404\pi\)
0.274752 + 0.961515i \(0.411404\pi\)
\(882\) 0 0
\(883\) −3.10945 + 5.38572i −0.104641 + 0.181244i −0.913592 0.406633i \(-0.866703\pi\)
0.808950 + 0.587877i \(0.200036\pi\)
\(884\) 0 0
\(885\) 7.86187i 0.264274i
\(886\) 0 0
\(887\) −0.671412 + 1.16292i −0.0225438 + 0.0390470i −0.877077 0.480349i \(-0.840510\pi\)
0.854533 + 0.519396i \(0.173843\pi\)
\(888\) 0 0
\(889\) −41.0597 23.7058i −1.37710 0.795069i
\(890\) 0 0
\(891\) 9.07652 + 15.7210i 0.304075 + 0.526673i
\(892\) 0 0
\(893\) −2.65106 5.58698i −0.0887144 0.186961i
\(894\) 0 0
\(895\) −4.44762 7.70350i −0.148667 0.257500i
\(896\) 0 0
\(897\) −0.675839 + 1.17059i −0.0225656 + 0.0390848i
\(898\) 0 0
\(899\) 15.4887 26.8272i 0.516577 0.894737i
\(900\) 0 0
\(901\) −21.1143 −0.703419
\(902\) 0 0
\(903\) 10.8162 18.7342i 0.359941 0.623435i
\(904\) 0 0
\(905\) 22.6028i 0.751342i
\(906\) 0 0
\(907\) −5.49954 + 3.17516i −0.182609 + 0.105429i −0.588518 0.808484i \(-0.700288\pi\)
0.405909 + 0.913914i \(0.366955\pi\)
\(908\) 0 0
\(909\) −1.07127 + 0.618497i −0.0355317 + 0.0205142i
\(910\) 0 0
\(911\) −32.3135 −1.07059 −0.535296 0.844664i \(-0.679800\pi\)
−0.535296 + 0.844664i \(0.679800\pi\)
\(912\) 0 0
\(913\) −11.8155 −0.391037
\(914\) 0 0
\(915\) 38.1551 22.0289i 1.26137 0.728252i
\(916\) 0 0
\(917\) −26.5436 + 15.3250i −0.876547 + 0.506075i
\(918\) 0 0
\(919\) 38.7254i 1.27743i 0.769443 + 0.638716i \(0.220534\pi\)
−0.769443 + 0.638716i \(0.779466\pi\)
\(920\) 0 0
\(921\) −1.22041 + 2.11380i −0.0402137 + 0.0696522i
\(922\) 0 0
\(923\) −3.86091 −0.127083
\(924\) 0 0
\(925\) −9.75726 + 16.9001i −0.320817 + 0.555671i
\(926\) 0 0
\(927\) 2.32669 4.02994i 0.0764185 0.132361i
\(928\) 0 0
\(929\) −25.4113 44.0137i −0.833719 1.44404i −0.895069 0.445927i \(-0.852874\pi\)
0.0613502 0.998116i \(-0.480459\pi\)
\(930\) 0 0
\(931\) 7.51930 + 5.19019i 0.246435 + 0.170102i
\(932\) 0 0
\(933\) 0.479697 + 0.830860i 0.0157046 + 0.0272011i
\(934\) 0 0
\(935\) 47.0674 + 27.1744i 1.53927 + 0.888697i
\(936\) 0 0
\(937\) −16.1691 + 28.0057i −0.528221 + 0.914906i 0.471238 + 0.882006i \(0.343807\pi\)
−0.999459 + 0.0328994i \(0.989526\pi\)
\(938\) 0 0
\(939\) 28.4765i 0.929295i
\(940\) 0 0
\(941\) −14.0148 + 24.2743i −0.456868 + 0.791319i −0.998793 0.0491078i \(-0.984362\pi\)
0.541925 + 0.840427i \(0.317696\pi\)
\(942\) 0 0
\(943\) 11.2773 0.367241
\(944\) 0 0
\(945\) −39.9041 + 23.0387i −1.29808 + 0.749448i
\(946\) 0 0
\(947\) 7.39400 + 12.8068i 0.240273 + 0.416164i 0.960792 0.277271i \(-0.0894298\pi\)
−0.720519 + 0.693435i \(0.756097\pi\)
\(948\) 0 0
\(949\) −6.04329 −0.196174
\(950\) 0 0
\(951\) 30.8623i 1.00078i
\(952\) 0 0
\(953\) −6.69642 + 3.86618i −0.216918 + 0.125238i −0.604523 0.796588i \(-0.706636\pi\)
0.387604 + 0.921826i \(0.373303\pi\)
\(954\) 0 0
\(955\) −6.00082 10.3937i −0.194182 0.336333i
\(956\) 0 0
\(957\) 14.5413i 0.470053i
\(958\) 0 0
\(959\) −37.4823 21.6404i −1.21037 0.698805i
\(960\) 0 0
\(961\) 64.5615 2.08263
\(962\) 0 0
\(963\) −6.46206 3.73087i −0.208237 0.120226i
\(964\) 0 0
\(965\) 9.57939 16.5920i 0.308371 0.534115i
\(966\) 0 0
\(967\) 29.1031 16.8027i 0.935892 0.540338i 0.0472221 0.998884i \(-0.484963\pi\)
0.888670 + 0.458547i \(0.151630\pi\)
\(968\) 0 0
\(969\) −17.7501 37.4074i −0.570215 1.20170i
\(970\) 0 0
\(971\) −13.6746 + 7.89505i −0.438840 + 0.253364i −0.703105 0.711086i \(-0.748204\pi\)
0.264265 + 0.964450i \(0.414870\pi\)
\(972\) 0 0
\(973\) −27.7266 16.0080i −0.888875 0.513192i
\(974\) 0 0
\(975\) 1.30396 + 0.752841i 0.0417601 + 0.0241102i
\(976\) 0 0
\(977\) 32.5834i 1.04243i −0.853424 0.521217i \(-0.825478\pi\)
0.853424 0.521217i \(-0.174522\pi\)
\(978\) 0 0
\(979\) 33.5373 + 19.3628i 1.07186 + 0.618838i
\(980\) 0 0
\(981\) 9.31236 0.297321
\(982\) 0 0
\(983\) −3.64307 6.30998i −0.116196 0.201257i 0.802061 0.597242i \(-0.203737\pi\)
−0.918257 + 0.395985i \(0.870403\pi\)
\(984\) 0 0
\(985\) −15.2868 26.4776i −0.487079 0.843646i
\(986\) 0 0
\(987\) 6.30588i 0.200718i
\(988\) 0 0
\(989\) 10.1956i 0.324202i
\(990\) 0 0
\(991\) 1.76345 + 3.05438i 0.0560177 + 0.0970256i 0.892674 0.450702i \(-0.148826\pi\)
−0.836657 + 0.547728i \(0.815493\pi\)
\(992\) 0 0
\(993\) 5.43131 + 9.40730i 0.172357 + 0.298532i
\(994\) 0 0
\(995\) −19.1661 −0.607608
\(996\) 0 0
\(997\) 13.7973 + 7.96589i 0.436966 + 0.252282i 0.702310 0.711871i \(-0.252152\pi\)
−0.265344 + 0.964154i \(0.585485\pi\)
\(998\) 0 0
\(999\) 47.1784i 1.49266i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.s.c.335.3 28
4.3 odd 2 152.2.o.c.107.13 yes 28
8.3 odd 2 inner 608.2.s.c.335.4 28
8.5 even 2 152.2.o.c.107.9 yes 28
19.8 odd 6 inner 608.2.s.c.559.4 28
76.27 even 6 152.2.o.c.27.9 28
152.27 even 6 inner 608.2.s.c.559.3 28
152.141 odd 6 152.2.o.c.27.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.o.c.27.9 28 76.27 even 6
152.2.o.c.27.13 yes 28 152.141 odd 6
152.2.o.c.107.9 yes 28 8.5 even 2
152.2.o.c.107.13 yes 28 4.3 odd 2
608.2.s.c.335.3 28 1.1 even 1 trivial
608.2.s.c.335.4 28 8.3 odd 2 inner
608.2.s.c.559.3 28 152.27 even 6 inner
608.2.s.c.559.4 28 19.8 odd 6 inner