Properties

Label 608.2.bf.a.529.6
Level $608$
Weight $2$
Character 608.529
Analytic conductor $4.855$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(17,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 529.6
Character \(\chi\) \(=\) 608.529
Dual form 608.2.bf.a.177.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.467226 - 1.28369i) q^{3} +(-1.73333 - 0.305632i) q^{5} +(-1.91364 - 3.31452i) q^{7} +(0.868569 - 0.728816i) q^{9} +(-2.26499 - 1.30769i) q^{11} +(-2.03996 + 5.60474i) q^{13} +(0.417517 + 2.36785i) q^{15} +(2.13151 + 1.78855i) q^{17} +(0.713969 + 4.30003i) q^{19} +(-3.36072 + 4.00515i) q^{21} +(1.10686 + 6.27729i) q^{23} +(-1.78746 - 0.650581i) q^{25} +(-4.89056 - 2.82357i) q^{27} +(-2.78015 - 3.31326i) q^{29} +(-2.41499 - 4.18289i) q^{31} +(-0.620412 + 3.51853i) q^{33} +(2.30393 + 6.33001i) q^{35} -7.50278i q^{37} +8.14787 q^{39} +(-6.78504 + 2.46955i) q^{41} +(-3.24204 - 0.571659i) q^{43} +(-1.72826 + 0.997812i) q^{45} +(-3.73496 + 3.13400i) q^{47} +(-3.82402 + 6.62340i) q^{49} +(1.30005 - 3.57186i) q^{51} +(1.49917 - 0.264344i) q^{53} +(3.52629 + 2.95890i) q^{55} +(5.18633 - 2.92560i) q^{57} +(-4.81703 + 5.74071i) q^{59} +(5.64385 - 0.995163i) q^{61} +(-4.07780 - 1.48420i) q^{63} +(5.24890 - 9.09135i) q^{65} +(-2.11430 - 2.51972i) q^{67} +(7.54096 - 4.35377i) q^{69} +(-0.236392 + 1.34065i) q^{71} +(10.5450 - 3.83807i) q^{73} +2.59851i q^{75} +10.0098i q^{77} +(6.51619 - 2.37170i) q^{79} +(-0.748928 + 4.24738i) q^{81} +(-5.89196 + 3.40173i) q^{83} +(-3.14796 - 3.75160i) q^{85} +(-2.95424 + 5.11690i) q^{87} +(-6.91135 - 2.51553i) q^{89} +(22.4807 - 3.96396i) q^{91} +(-4.24120 + 5.05446i) q^{93} +(0.0766864 - 7.67156i) q^{95} +(-9.33891 - 7.83628i) q^{97} +(-2.92036 + 0.514939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 6 q^{7} - 12 q^{9} + 12 q^{15} - 12 q^{17} + 12 q^{23} - 12 q^{25} - 30 q^{31} - 30 q^{33} + 24 q^{39} - 24 q^{41} + 48 q^{47} - 24 q^{49} + 42 q^{55} - 12 q^{57} - 30 q^{63} - 6 q^{65} + 12 q^{71}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.467226 1.28369i −0.269753 0.741140i −0.998416 0.0562672i \(-0.982080\pi\)
0.728663 0.684872i \(-0.240142\pi\)
\(4\) 0 0
\(5\) −1.73333 0.305632i −0.775167 0.136683i −0.227949 0.973673i \(-0.573202\pi\)
−0.547218 + 0.836990i \(0.684313\pi\)
\(6\) 0 0
\(7\) −1.91364 3.31452i −0.723287 1.25277i −0.959675 0.281112i \(-0.909297\pi\)
0.236388 0.971659i \(-0.424036\pi\)
\(8\) 0 0
\(9\) 0.868569 0.728816i 0.289523 0.242939i
\(10\) 0 0
\(11\) −2.26499 1.30769i −0.682919 0.394283i 0.118035 0.993009i \(-0.462341\pi\)
−0.800954 + 0.598726i \(0.795674\pi\)
\(12\) 0 0
\(13\) −2.03996 + 5.60474i −0.565782 + 1.55447i 0.245242 + 0.969462i \(0.421133\pi\)
−0.811024 + 0.585012i \(0.801090\pi\)
\(14\) 0 0
\(15\) 0.417517 + 2.36785i 0.107802 + 0.611377i
\(16\) 0 0
\(17\) 2.13151 + 1.78855i 0.516967 + 0.433787i 0.863573 0.504224i \(-0.168221\pi\)
−0.346606 + 0.938011i \(0.612666\pi\)
\(18\) 0 0
\(19\) 0.713969 + 4.30003i 0.163796 + 0.986494i
\(20\) 0 0
\(21\) −3.36072 + 4.00515i −0.733369 + 0.873995i
\(22\) 0 0
\(23\) 1.10686 + 6.27729i 0.230796 + 1.30891i 0.851290 + 0.524696i \(0.175821\pi\)
−0.620494 + 0.784211i \(0.713068\pi\)
\(24\) 0 0
\(25\) −1.78746 0.650581i −0.357492 0.130116i
\(26\) 0 0
\(27\) −4.89056 2.82357i −0.941189 0.543396i
\(28\) 0 0
\(29\) −2.78015 3.31326i −0.516261 0.615256i 0.443431 0.896308i \(-0.353761\pi\)
−0.959693 + 0.281052i \(0.909317\pi\)
\(30\) 0 0
\(31\) −2.41499 4.18289i −0.433746 0.751270i 0.563447 0.826153i \(-0.309475\pi\)
−0.997192 + 0.0748828i \(0.976142\pi\)
\(32\) 0 0
\(33\) −0.620412 + 3.51853i −0.108000 + 0.612497i
\(34\) 0 0
\(35\) 2.30393 + 6.33001i 0.389436 + 1.06997i
\(36\) 0 0
\(37\) 7.50278i 1.23345i −0.787179 0.616725i \(-0.788459\pi\)
0.787179 0.616725i \(-0.211541\pi\)
\(38\) 0 0
\(39\) 8.14787 1.30470
\(40\) 0 0
\(41\) −6.78504 + 2.46955i −1.05964 + 0.385679i −0.812295 0.583247i \(-0.801782\pi\)
−0.247350 + 0.968926i \(0.579560\pi\)
\(42\) 0 0
\(43\) −3.24204 0.571659i −0.494407 0.0871772i −0.0791149 0.996866i \(-0.525209\pi\)
−0.415292 + 0.909688i \(0.636321\pi\)
\(44\) 0 0
\(45\) −1.72826 + 0.997812i −0.257634 + 0.148745i
\(46\) 0 0
\(47\) −3.73496 + 3.13400i −0.544800 + 0.457141i −0.873175 0.487406i \(-0.837943\pi\)
0.328376 + 0.944547i \(0.393499\pi\)
\(48\) 0 0
\(49\) −3.82402 + 6.62340i −0.546289 + 0.946200i
\(50\) 0 0
\(51\) 1.30005 3.57186i 0.182043 0.500160i
\(52\) 0 0
\(53\) 1.49917 0.264344i 0.205927 0.0363104i −0.0697332 0.997566i \(-0.522215\pi\)
0.275660 + 0.961255i \(0.411104\pi\)
\(54\) 0 0
\(55\) 3.52629 + 2.95890i 0.475484 + 0.398979i
\(56\) 0 0
\(57\) 5.18633 2.92560i 0.686946 0.387505i
\(58\) 0 0
\(59\) −4.81703 + 5.74071i −0.627124 + 0.747377i −0.982278 0.187431i \(-0.939984\pi\)
0.355154 + 0.934808i \(0.384428\pi\)
\(60\) 0 0
\(61\) 5.64385 0.995163i 0.722621 0.127418i 0.199771 0.979843i \(-0.435980\pi\)
0.522850 + 0.852425i \(0.324869\pi\)
\(62\) 0 0
\(63\) −4.07780 1.48420i −0.513755 0.186991i
\(64\) 0 0
\(65\) 5.24890 9.09135i 0.651045 1.12764i
\(66\) 0 0
\(67\) −2.11430 2.51972i −0.258302 0.307833i 0.621271 0.783596i \(-0.286617\pi\)
−0.879574 + 0.475763i \(0.842172\pi\)
\(68\) 0 0
\(69\) 7.54096 4.35377i 0.907825 0.524133i
\(70\) 0 0
\(71\) −0.236392 + 1.34065i −0.0280546 + 0.159106i −0.995617 0.0935279i \(-0.970186\pi\)
0.967562 + 0.252633i \(0.0812967\pi\)
\(72\) 0 0
\(73\) 10.5450 3.83807i 1.23420 0.449212i 0.359166 0.933274i \(-0.383061\pi\)
0.875034 + 0.484062i \(0.160839\pi\)
\(74\) 0 0
\(75\) 2.59851i 0.300050i
\(76\) 0 0
\(77\) 10.0098i 1.14072i
\(78\) 0 0
\(79\) 6.51619 2.37170i 0.733128 0.266837i 0.0516399 0.998666i \(-0.483555\pi\)
0.681488 + 0.731829i \(0.261333\pi\)
\(80\) 0 0
\(81\) −0.748928 + 4.24738i −0.0832143 + 0.471932i
\(82\) 0 0
\(83\) −5.89196 + 3.40173i −0.646727 + 0.373388i −0.787201 0.616696i \(-0.788471\pi\)
0.140474 + 0.990084i \(0.455137\pi\)
\(84\) 0 0
\(85\) −3.14796 3.75160i −0.341444 0.406918i
\(86\) 0 0
\(87\) −2.95424 + 5.11690i −0.316728 + 0.548589i
\(88\) 0 0
\(89\) −6.91135 2.51553i −0.732602 0.266645i −0.0513361 0.998681i \(-0.516348\pi\)
−0.681266 + 0.732036i \(0.738570\pi\)
\(90\) 0 0
\(91\) 22.4807 3.96396i 2.35662 0.415536i
\(92\) 0 0
\(93\) −4.24120 + 5.05446i −0.439792 + 0.524123i
\(94\) 0 0
\(95\) 0.0766864 7.67156i 0.00786786 0.787085i
\(96\) 0 0
\(97\) −9.33891 7.83628i −0.948223 0.795653i 0.0307745 0.999526i \(-0.490203\pi\)
−0.978997 + 0.203873i \(0.934647\pi\)
\(98\) 0 0
\(99\) −2.92036 + 0.514939i −0.293507 + 0.0517533i
\(100\) 0 0
\(101\) 4.36652 11.9969i 0.434485 1.19374i −0.508546 0.861035i \(-0.669817\pi\)
0.943031 0.332704i \(-0.107961\pi\)
\(102\) 0 0
\(103\) 2.02806 3.51270i 0.199831 0.346117i −0.748643 0.662974i \(-0.769294\pi\)
0.948473 + 0.316857i \(0.102627\pi\)
\(104\) 0 0
\(105\) 7.04932 5.91508i 0.687943 0.577253i
\(106\) 0 0
\(107\) −1.10131 + 0.635844i −0.106468 + 0.0614693i −0.552288 0.833653i \(-0.686245\pi\)
0.445820 + 0.895122i \(0.352912\pi\)
\(108\) 0 0
\(109\) −3.33109 0.587360i −0.319060 0.0562589i 0.0118246 0.999930i \(-0.496236\pi\)
−0.330885 + 0.943671i \(0.607347\pi\)
\(110\) 0 0
\(111\) −9.63126 + 3.50549i −0.914159 + 0.332727i
\(112\) 0 0
\(113\) −15.3010 −1.43939 −0.719697 0.694288i \(-0.755719\pi\)
−0.719697 + 0.694288i \(0.755719\pi\)
\(114\) 0 0
\(115\) 11.2189i 1.04617i
\(116\) 0 0
\(117\) 2.31298 + 6.35485i 0.213835 + 0.587506i
\(118\) 0 0
\(119\) 1.84924 10.4876i 0.169520 0.961394i
\(120\) 0 0
\(121\) −2.07989 3.60248i −0.189081 0.327498i
\(122\) 0 0
\(123\) 6.34028 + 7.55606i 0.571684 + 0.681307i
\(124\) 0 0
\(125\) 10.5207 + 6.07413i 0.941001 + 0.543287i
\(126\) 0 0
\(127\) −10.6056 3.86013i −0.941097 0.342531i −0.174498 0.984657i \(-0.555830\pi\)
−0.766599 + 0.642126i \(0.778053\pi\)
\(128\) 0 0
\(129\) 0.780930 + 4.42887i 0.0687571 + 0.389941i
\(130\) 0 0
\(131\) 7.04562 8.39664i 0.615579 0.733618i −0.364725 0.931115i \(-0.618837\pi\)
0.980303 + 0.197497i \(0.0632813\pi\)
\(132\) 0 0
\(133\) 12.8862 10.5952i 1.11738 0.918717i
\(134\) 0 0
\(135\) 7.61396 + 6.38887i 0.655305 + 0.549867i
\(136\) 0 0
\(137\) 3.48972 + 19.7912i 0.298147 + 1.69087i 0.654130 + 0.756382i \(0.273035\pi\)
−0.355984 + 0.934492i \(0.615854\pi\)
\(138\) 0 0
\(139\) 5.65104 15.5261i 0.479315 1.31691i −0.430761 0.902466i \(-0.641755\pi\)
0.910076 0.414441i \(-0.136023\pi\)
\(140\) 0 0
\(141\) 5.76816 + 3.33025i 0.485767 + 0.280458i
\(142\) 0 0
\(143\) 11.9497 10.0270i 0.999287 0.838501i
\(144\) 0 0
\(145\) 3.80627 + 6.59266i 0.316094 + 0.547490i
\(146\) 0 0
\(147\) 10.2891 + 1.81424i 0.848630 + 0.149636i
\(148\) 0 0
\(149\) −6.28070 17.2561i −0.514535 1.41367i −0.876464 0.481468i \(-0.840104\pi\)
0.361929 0.932206i \(-0.382118\pi\)
\(150\) 0 0
\(151\) −13.2947 −1.08191 −0.540954 0.841052i \(-0.681937\pi\)
−0.540954 + 0.841052i \(0.681937\pi\)
\(152\) 0 0
\(153\) 3.15489 0.255057
\(154\) 0 0
\(155\) 2.90754 + 7.98841i 0.233540 + 0.641645i
\(156\) 0 0
\(157\) −0.992527 0.175009i −0.0792123 0.0139673i 0.133902 0.990995i \(-0.457249\pi\)
−0.213114 + 0.977027i \(0.568361\pi\)
\(158\) 0 0
\(159\) −1.03979 1.80096i −0.0824604 0.142826i
\(160\) 0 0
\(161\) 18.6881 15.6812i 1.47283 1.23585i
\(162\) 0 0
\(163\) −12.9858 7.49734i −1.01712 0.587237i −0.103854 0.994593i \(-0.533118\pi\)
−0.913270 + 0.407356i \(0.866451\pi\)
\(164\) 0 0
\(165\) 2.15075 5.90914i 0.167436 0.460026i
\(166\) 0 0
\(167\) 0.413879 + 2.34722i 0.0320269 + 0.181634i 0.996625 0.0820914i \(-0.0261600\pi\)
−0.964598 + 0.263725i \(0.915049\pi\)
\(168\) 0 0
\(169\) −17.2931 14.5106i −1.33024 1.11620i
\(170\) 0 0
\(171\) 3.75406 + 3.21452i 0.287080 + 0.245820i
\(172\) 0 0
\(173\) −11.5139 + 13.7218i −0.875388 + 1.04325i 0.123317 + 0.992367i \(0.460647\pi\)
−0.998705 + 0.0508794i \(0.983798\pi\)
\(174\) 0 0
\(175\) 1.26418 + 7.16954i 0.0955633 + 0.541966i
\(176\) 0 0
\(177\) 9.61994 + 3.50137i 0.723079 + 0.263179i
\(178\) 0 0
\(179\) 19.7528 + 11.4043i 1.47639 + 0.852394i 0.999645 0.0266474i \(-0.00848313\pi\)
0.476745 + 0.879042i \(0.341816\pi\)
\(180\) 0 0
\(181\) 3.56113 + 4.24399i 0.264696 + 0.315453i 0.881979 0.471289i \(-0.156211\pi\)
−0.617283 + 0.786741i \(0.711767\pi\)
\(182\) 0 0
\(183\) −3.91443 6.78000i −0.289363 0.501192i
\(184\) 0 0
\(185\) −2.29309 + 13.0048i −0.168591 + 0.956129i
\(186\) 0 0
\(187\) −2.48897 6.83839i −0.182012 0.500073i
\(188\) 0 0
\(189\) 21.6131i 1.57213i
\(190\) 0 0
\(191\) 1.52320 0.110215 0.0551073 0.998480i \(-0.482450\pi\)
0.0551073 + 0.998480i \(0.482450\pi\)
\(192\) 0 0
\(193\) 9.17926 3.34098i 0.660738 0.240489i 0.0101828 0.999948i \(-0.496759\pi\)
0.650555 + 0.759459i \(0.274536\pi\)
\(194\) 0 0
\(195\) −14.1229 2.49025i −1.01136 0.178331i
\(196\) 0 0
\(197\) −5.18292 + 2.99236i −0.369268 + 0.213197i −0.673138 0.739517i \(-0.735054\pi\)
0.303871 + 0.952713i \(0.401721\pi\)
\(198\) 0 0
\(199\) −3.61157 + 3.03047i −0.256017 + 0.214824i −0.761758 0.647861i \(-0.775664\pi\)
0.505741 + 0.862685i \(0.331219\pi\)
\(200\) 0 0
\(201\) −2.24669 + 3.89138i −0.158469 + 0.274477i
\(202\) 0 0
\(203\) −5.66165 + 15.5552i −0.397370 + 1.09176i
\(204\) 0 0
\(205\) 12.5154 2.20681i 0.874117 0.154130i
\(206\) 0 0
\(207\) 5.53637 + 4.64557i 0.384805 + 0.322889i
\(208\) 0 0
\(209\) 4.00598 10.6732i 0.277099 0.738278i
\(210\) 0 0
\(211\) 14.2288 16.9573i 0.979553 1.16739i −0.00633485 0.999980i \(-0.502016\pi\)
0.985888 0.167406i \(-0.0535391\pi\)
\(212\) 0 0
\(213\) 1.83143 0.322930i 0.125487 0.0221268i
\(214\) 0 0
\(215\) 5.44479 + 1.98174i 0.371332 + 0.135154i
\(216\) 0 0
\(217\) −9.24285 + 16.0091i −0.627446 + 1.08677i
\(218\) 0 0
\(219\) −9.85379 11.7433i −0.665857 0.793538i
\(220\) 0 0
\(221\) −14.3725 + 8.29799i −0.966801 + 0.558183i
\(222\) 0 0
\(223\) −4.15766 + 23.5792i −0.278417 + 1.57898i 0.449476 + 0.893292i \(0.351611\pi\)
−0.727894 + 0.685690i \(0.759500\pi\)
\(224\) 0 0
\(225\) −2.02668 + 0.737653i −0.135112 + 0.0491769i
\(226\) 0 0
\(227\) 1.68680i 0.111957i 0.998432 + 0.0559784i \(0.0178278\pi\)
−0.998432 + 0.0559784i \(0.982172\pi\)
\(228\) 0 0
\(229\) 3.60123i 0.237976i −0.992896 0.118988i \(-0.962035\pi\)
0.992896 0.118988i \(-0.0379650\pi\)
\(230\) 0 0
\(231\) 12.8495 4.67683i 0.845433 0.307713i
\(232\) 0 0
\(233\) −0.677514 + 3.84237i −0.0443854 + 0.251722i −0.998925 0.0463631i \(-0.985237\pi\)
0.954539 + 0.298085i \(0.0963480\pi\)
\(234\) 0 0
\(235\) 7.43175 4.29072i 0.484794 0.279896i
\(236\) 0 0
\(237\) −6.08906 7.25666i −0.395527 0.471371i
\(238\) 0 0
\(239\) 1.71193 2.96514i 0.110735 0.191799i −0.805332 0.592825i \(-0.798013\pi\)
0.916067 + 0.401025i \(0.131346\pi\)
\(240\) 0 0
\(241\) 8.46332 + 3.08040i 0.545171 + 0.198426i 0.599900 0.800075i \(-0.295207\pi\)
−0.0547288 + 0.998501i \(0.517429\pi\)
\(242\) 0 0
\(243\) −10.8818 + 1.91875i −0.698066 + 0.123088i
\(244\) 0 0
\(245\) 8.65260 10.3118i 0.552794 0.658795i
\(246\) 0 0
\(247\) −25.5570 4.77027i −1.62615 0.303525i
\(248\) 0 0
\(249\) 7.11964 + 5.97409i 0.451189 + 0.378593i
\(250\) 0 0
\(251\) 5.43707 0.958702i 0.343185 0.0605127i 0.000600364 1.00000i \(-0.499809\pi\)
0.342584 + 0.939487i \(0.388698\pi\)
\(252\) 0 0
\(253\) 5.70174 15.6654i 0.358466 0.984876i
\(254\) 0 0
\(255\) −3.34508 + 5.79385i −0.209477 + 0.362825i
\(256\) 0 0
\(257\) −16.0217 + 13.4438i −0.999404 + 0.838600i −0.986902 0.161322i \(-0.948424\pi\)
−0.0125022 + 0.999922i \(0.503980\pi\)
\(258\) 0 0
\(259\) −24.8681 + 14.3576i −1.54523 + 0.892139i
\(260\) 0 0
\(261\) −4.82951 0.851573i −0.298939 0.0527110i
\(262\) 0 0
\(263\) 1.63905 0.596565i 0.101068 0.0367857i −0.290991 0.956726i \(-0.593985\pi\)
0.392059 + 0.919940i \(0.371763\pi\)
\(264\) 0 0
\(265\) −2.67934 −0.164590
\(266\) 0 0
\(267\) 10.0474i 0.614889i
\(268\) 0 0
\(269\) 3.49933 + 9.61432i 0.213358 + 0.586195i 0.999492 0.0318599i \(-0.0101430\pi\)
−0.786135 + 0.618055i \(0.787921\pi\)
\(270\) 0 0
\(271\) 3.72486 21.1247i 0.226269 1.28323i −0.633976 0.773353i \(-0.718578\pi\)
0.860244 0.509882i \(-0.170311\pi\)
\(272\) 0 0
\(273\) −15.5921 27.0063i −0.943676 1.63449i
\(274\) 0 0
\(275\) 3.19781 + 3.81100i 0.192835 + 0.229812i
\(276\) 0 0
\(277\) −12.5634 7.25348i −0.754862 0.435820i 0.0725863 0.997362i \(-0.476875\pi\)
−0.827448 + 0.561543i \(0.810208\pi\)
\(278\) 0 0
\(279\) −5.14615 1.87304i −0.308092 0.112136i
\(280\) 0 0
\(281\) −4.40069 24.9576i −0.262523 1.48884i −0.775996 0.630738i \(-0.782752\pi\)
0.513473 0.858106i \(-0.328359\pi\)
\(282\) 0 0
\(283\) −7.08527 + 8.44390i −0.421176 + 0.501938i −0.934355 0.356344i \(-0.884023\pi\)
0.513179 + 0.858282i \(0.328468\pi\)
\(284\) 0 0
\(285\) −9.88375 + 3.48591i −0.585463 + 0.206487i
\(286\) 0 0
\(287\) 21.1695 + 17.7633i 1.24959 + 1.04853i
\(288\) 0 0
\(289\) −1.60759 9.11711i −0.0945643 0.536301i
\(290\) 0 0
\(291\) −5.69599 + 15.6496i −0.333905 + 0.917395i
\(292\) 0 0
\(293\) −9.23806 5.33360i −0.539693 0.311592i 0.205261 0.978707i \(-0.434196\pi\)
−0.744955 + 0.667115i \(0.767529\pi\)
\(294\) 0 0
\(295\) 10.1040 8.47828i 0.588279 0.493624i
\(296\) 0 0
\(297\) 7.38470 + 12.7907i 0.428504 + 0.742191i
\(298\) 0 0
\(299\) −37.4405 6.60177i −2.16524 0.381790i
\(300\) 0 0
\(301\) 4.30932 + 11.8398i 0.248385 + 0.682432i
\(302\) 0 0
\(303\) −17.4405 −1.00193
\(304\) 0 0
\(305\) −10.0868 −0.577567
\(306\) 0 0
\(307\) −1.80674 4.96398i −0.103116 0.283309i 0.877396 0.479766i \(-0.159279\pi\)
−0.980512 + 0.196457i \(0.937056\pi\)
\(308\) 0 0
\(309\) −5.45679 0.962179i −0.310426 0.0547365i
\(310\) 0 0
\(311\) 3.54816 + 6.14559i 0.201197 + 0.348484i 0.948915 0.315533i \(-0.102183\pi\)
−0.747717 + 0.664017i \(0.768850\pi\)
\(312\) 0 0
\(313\) 19.4806 16.3462i 1.10111 0.923942i 0.103612 0.994618i \(-0.466960\pi\)
0.997499 + 0.0706759i \(0.0225156\pi\)
\(314\) 0 0
\(315\) 6.61454 + 3.81890i 0.372687 + 0.215171i
\(316\) 0 0
\(317\) 0.393337 1.08068i 0.0220920 0.0606973i −0.928156 0.372190i \(-0.878607\pi\)
0.950248 + 0.311493i \(0.100829\pi\)
\(318\) 0 0
\(319\) 1.96429 + 11.1401i 0.109979 + 0.623724i
\(320\) 0 0
\(321\) 1.33079 + 1.11666i 0.0742774 + 0.0623261i
\(322\) 0 0
\(323\) −6.16898 + 10.4425i −0.343251 + 0.581038i
\(324\) 0 0
\(325\) 7.29267 8.69107i 0.404525 0.482094i
\(326\) 0 0
\(327\) 0.802379 + 4.55052i 0.0443716 + 0.251644i
\(328\) 0 0
\(329\) 17.5351 + 6.38224i 0.966740 + 0.351864i
\(330\) 0 0
\(331\) 3.68736 + 2.12890i 0.202676 + 0.117015i 0.597903 0.801568i \(-0.296001\pi\)
−0.395227 + 0.918583i \(0.629334\pi\)
\(332\) 0 0
\(333\) −5.46815 6.51668i −0.299653 0.357112i
\(334\) 0 0
\(335\) 2.89466 + 5.01369i 0.158152 + 0.273927i
\(336\) 0 0
\(337\) −4.68326 + 26.5601i −0.255114 + 1.44682i 0.540667 + 0.841237i \(0.318172\pi\)
−0.795781 + 0.605585i \(0.792939\pi\)
\(338\) 0 0
\(339\) 7.14900 + 19.6417i 0.388281 + 1.06679i
\(340\) 0 0
\(341\) 12.6323i 0.684075i
\(342\) 0 0
\(343\) 2.48025 0.133921
\(344\) 0 0
\(345\) −14.4016 + 5.24175i −0.775355 + 0.282206i
\(346\) 0 0
\(347\) −17.6565 3.11331i −0.947849 0.167131i −0.321706 0.946840i \(-0.604256\pi\)
−0.626143 + 0.779708i \(0.715367\pi\)
\(348\) 0 0
\(349\) −17.4551 + 10.0777i −0.934352 + 0.539449i −0.888185 0.459485i \(-0.848034\pi\)
−0.0461670 + 0.998934i \(0.514701\pi\)
\(350\) 0 0
\(351\) 25.8019 21.6504i 1.37720 1.15561i
\(352\) 0 0
\(353\) −5.89589 + 10.2120i −0.313806 + 0.543529i −0.979183 0.202979i \(-0.934938\pi\)
0.665377 + 0.746508i \(0.268271\pi\)
\(354\) 0 0
\(355\) 0.819490 2.25153i 0.0434940 0.119499i
\(356\) 0 0
\(357\) −14.3268 + 2.52620i −0.758255 + 0.133701i
\(358\) 0 0
\(359\) −9.80756 8.22952i −0.517623 0.434338i 0.346179 0.938169i \(-0.387479\pi\)
−0.863802 + 0.503831i \(0.831923\pi\)
\(360\) 0 0
\(361\) −17.9805 + 6.14017i −0.946342 + 0.323167i
\(362\) 0 0
\(363\) −3.65269 + 4.35311i −0.191717 + 0.228479i
\(364\) 0 0
\(365\) −19.4510 + 3.42973i −1.01811 + 0.179520i
\(366\) 0 0
\(367\) 31.4886 + 11.4609i 1.64369 + 0.598256i 0.987679 0.156492i \(-0.0500187\pi\)
0.656015 + 0.754748i \(0.272241\pi\)
\(368\) 0 0
\(369\) −4.09342 + 7.09002i −0.213095 + 0.369092i
\(370\) 0 0
\(371\) −3.74504 4.46316i −0.194433 0.231716i
\(372\) 0 0
\(373\) 27.8103 16.0563i 1.43996 0.831363i 0.442117 0.896957i \(-0.354228\pi\)
0.997846 + 0.0655941i \(0.0208942\pi\)
\(374\) 0 0
\(375\) 2.88177 16.3433i 0.148814 0.843966i
\(376\) 0 0
\(377\) 24.2413 8.82312i 1.24849 0.454414i
\(378\) 0 0
\(379\) 4.90569i 0.251989i 0.992031 + 0.125994i \(0.0402121\pi\)
−0.992031 + 0.125994i \(0.959788\pi\)
\(380\) 0 0
\(381\) 15.4179i 0.789883i
\(382\) 0 0
\(383\) 3.08105 1.12141i 0.157434 0.0573015i −0.262101 0.965041i \(-0.584415\pi\)
0.419535 + 0.907739i \(0.362193\pi\)
\(384\) 0 0
\(385\) 3.05931 17.3502i 0.155917 0.884249i
\(386\) 0 0
\(387\) −3.23257 + 1.86633i −0.164321 + 0.0948707i
\(388\) 0 0
\(389\) −11.9048 14.1876i −0.603598 0.719340i 0.374560 0.927203i \(-0.377794\pi\)
−0.978158 + 0.207863i \(0.933349\pi\)
\(390\) 0 0
\(391\) −8.86798 + 15.3598i −0.448473 + 0.776778i
\(392\) 0 0
\(393\) −14.0706 5.12128i −0.709768 0.258334i
\(394\) 0 0
\(395\) −12.0195 + 2.11937i −0.604769 + 0.106637i
\(396\) 0 0
\(397\) −8.96487 + 10.6839i −0.449934 + 0.536210i −0.942563 0.334029i \(-0.891592\pi\)
0.492629 + 0.870240i \(0.336036\pi\)
\(398\) 0 0
\(399\) −19.6217 11.5916i −0.982314 0.580308i
\(400\) 0 0
\(401\) 18.4067 + 15.4451i 0.919188 + 0.771291i 0.973845 0.227215i \(-0.0729619\pi\)
−0.0546563 + 0.998505i \(0.517406\pi\)
\(402\) 0 0
\(403\) 28.3705 5.00248i 1.41323 0.249191i
\(404\) 0 0
\(405\) 2.59627 7.13320i 0.129010 0.354452i
\(406\) 0 0
\(407\) −9.81132 + 16.9937i −0.486329 + 0.842346i
\(408\) 0 0
\(409\) 27.4590 23.0409i 1.35776 1.13930i 0.381095 0.924536i \(-0.375547\pi\)
0.976667 0.214762i \(-0.0688974\pi\)
\(410\) 0 0
\(411\) 23.7753 13.7267i 1.17275 0.677086i
\(412\) 0 0
\(413\) 28.2457 + 4.98049i 1.38988 + 0.245074i
\(414\) 0 0
\(415\) 11.2524 4.09553i 0.552357 0.201041i
\(416\) 0 0
\(417\) −22.5710 −1.10531
\(418\) 0 0
\(419\) 16.1004i 0.786557i −0.919419 0.393279i \(-0.871341\pi\)
0.919419 0.393279i \(-0.128659\pi\)
\(420\) 0 0
\(421\) 0.928735 + 2.55168i 0.0452638 + 0.124361i 0.960265 0.279090i \(-0.0900328\pi\)
−0.915001 + 0.403451i \(0.867811\pi\)
\(422\) 0 0
\(423\) −0.959958 + 5.44419i −0.0466748 + 0.264706i
\(424\) 0 0
\(425\) −2.64639 4.58368i −0.128369 0.222341i
\(426\) 0 0
\(427\) −14.0988 16.8023i −0.682288 0.813119i
\(428\) 0 0
\(429\) −18.4548 10.6549i −0.891007 0.514423i
\(430\) 0 0
\(431\) −27.2647 9.92353i −1.31329 0.478000i −0.411990 0.911188i \(-0.635166\pi\)
−0.901303 + 0.433189i \(0.857388\pi\)
\(432\) 0 0
\(433\) 4.76510 + 27.0242i 0.228996 + 1.29870i 0.854897 + 0.518798i \(0.173620\pi\)
−0.625901 + 0.779903i \(0.715269\pi\)
\(434\) 0 0
\(435\) 6.68455 7.96634i 0.320500 0.381957i
\(436\) 0 0
\(437\) −26.2023 + 9.24131i −1.25343 + 0.442072i
\(438\) 0 0
\(439\) 2.72236 + 2.28433i 0.129931 + 0.109025i 0.705437 0.708772i \(-0.250751\pi\)
−0.575506 + 0.817797i \(0.695195\pi\)
\(440\) 0 0
\(441\) 1.50581 + 8.53989i 0.0717054 + 0.406661i
\(442\) 0 0
\(443\) 11.4208 31.3785i 0.542620 1.49084i −0.300856 0.953670i \(-0.597272\pi\)
0.843476 0.537167i \(-0.180506\pi\)
\(444\) 0 0
\(445\) 11.2108 + 6.47256i 0.531443 + 0.306829i
\(446\) 0 0
\(447\) −19.2170 + 16.1250i −0.908932 + 0.762685i
\(448\) 0 0
\(449\) −5.75115 9.96129i −0.271414 0.470102i 0.697810 0.716283i \(-0.254158\pi\)
−0.969224 + 0.246180i \(0.920825\pi\)
\(450\) 0 0
\(451\) 18.5974 + 3.27923i 0.875718 + 0.154413i
\(452\) 0 0
\(453\) 6.21162 + 17.0663i 0.291847 + 0.801844i
\(454\) 0 0
\(455\) −40.1779 −1.88357
\(456\) 0 0
\(457\) −10.9250 −0.511048 −0.255524 0.966803i \(-0.582248\pi\)
−0.255524 + 0.966803i \(0.582248\pi\)
\(458\) 0 0
\(459\) −5.37419 14.7655i −0.250846 0.689193i
\(460\) 0 0
\(461\) 40.6685 + 7.17095i 1.89412 + 0.333985i 0.994676 0.103050i \(-0.0328602\pi\)
0.899445 + 0.437035i \(0.143971\pi\)
\(462\) 0 0
\(463\) 5.45960 + 9.45631i 0.253729 + 0.439472i 0.964550 0.263902i \(-0.0850095\pi\)
−0.710820 + 0.703374i \(0.751676\pi\)
\(464\) 0 0
\(465\) 8.89618 7.46478i 0.412550 0.346171i
\(466\) 0 0
\(467\) 18.6654 + 10.7765i 0.863734 + 0.498677i 0.865261 0.501322i \(-0.167153\pi\)
−0.00152700 + 0.999999i \(0.500486\pi\)
\(468\) 0 0
\(469\) −4.30566 + 11.8297i −0.198817 + 0.546245i
\(470\) 0 0
\(471\) 0.239076 + 1.35587i 0.0110160 + 0.0624751i
\(472\) 0 0
\(473\) 6.59562 + 5.53439i 0.303267 + 0.254471i
\(474\) 0 0
\(475\) 1.52133 8.15062i 0.0698034 0.373976i
\(476\) 0 0
\(477\) 1.10947 1.32222i 0.0507993 0.0605402i
\(478\) 0 0
\(479\) 5.48301 + 31.0957i 0.250525 + 1.42080i 0.807303 + 0.590137i \(0.200926\pi\)
−0.556778 + 0.830661i \(0.687963\pi\)
\(480\) 0 0
\(481\) 42.0511 + 15.3054i 1.91737 + 0.697864i
\(482\) 0 0
\(483\) −28.8613 16.6631i −1.31324 0.758197i
\(484\) 0 0
\(485\) 13.7924 + 16.4371i 0.626279 + 0.746370i
\(486\) 0 0
\(487\) −8.73788 15.1345i −0.395951 0.685808i 0.597271 0.802040i \(-0.296252\pi\)
−0.993222 + 0.116232i \(0.962918\pi\)
\(488\) 0 0
\(489\) −3.55699 + 20.1727i −0.160852 + 0.912240i
\(490\) 0 0
\(491\) 3.77132 + 10.3616i 0.170197 + 0.467613i 0.995240 0.0974577i \(-0.0310711\pi\)
−0.825042 + 0.565071i \(0.808849\pi\)
\(492\) 0 0
\(493\) 12.0347i 0.542015i
\(494\) 0 0
\(495\) 5.21932 0.234591
\(496\) 0 0
\(497\) 4.89597 1.78199i 0.219614 0.0799331i
\(498\) 0 0
\(499\) 27.4017 + 4.83166i 1.22667 + 0.216295i 0.749193 0.662351i \(-0.230441\pi\)
0.477474 + 0.878646i \(0.341552\pi\)
\(500\) 0 0
\(501\) 2.81974 1.62798i 0.125977 0.0727326i
\(502\) 0 0
\(503\) 5.06697 4.25169i 0.225925 0.189573i −0.522798 0.852457i \(-0.675112\pi\)
0.748723 + 0.662883i \(0.230667\pi\)
\(504\) 0 0
\(505\) −11.2352 + 19.4600i −0.499962 + 0.865960i
\(506\) 0 0
\(507\) −10.5474 + 28.9787i −0.468425 + 1.28699i
\(508\) 0 0
\(509\) −12.0534 + 2.12533i −0.534256 + 0.0942038i −0.434266 0.900785i \(-0.642992\pi\)
−0.0999901 + 0.994988i \(0.531881\pi\)
\(510\) 0 0
\(511\) −32.9007 27.6069i −1.45544 1.22126i
\(512\) 0 0
\(513\) 8.64971 23.0455i 0.381894 1.01748i
\(514\) 0 0
\(515\) −4.58888 + 5.46882i −0.202210 + 0.240985i
\(516\) 0 0
\(517\) 12.5579 2.21430i 0.552297 0.0973849i
\(518\) 0 0
\(519\) 22.9941 + 8.36918i 1.00933 + 0.367366i
\(520\) 0 0
\(521\) −6.12941 + 10.6165i −0.268534 + 0.465115i −0.968484 0.249077i \(-0.919873\pi\)
0.699949 + 0.714193i \(0.253206\pi\)
\(522\) 0 0
\(523\) 6.53118 + 7.78356i 0.285589 + 0.340351i 0.889697 0.456551i \(-0.150915\pi\)
−0.604109 + 0.796902i \(0.706471\pi\)
\(524\) 0 0
\(525\) 8.61282 4.97261i 0.375894 0.217023i
\(526\) 0 0
\(527\) 2.33373 13.2352i 0.101659 0.576535i
\(528\) 0 0
\(529\) −16.5664 + 6.02967i −0.720277 + 0.262159i
\(530\) 0 0
\(531\) 8.49693i 0.368735i
\(532\) 0 0
\(533\) 43.0661i 1.86540i
\(534\) 0 0
\(535\) 2.10327 0.765527i 0.0909322 0.0330966i
\(536\) 0 0
\(537\) 5.41056 30.6848i 0.233483 1.32415i
\(538\) 0 0
\(539\) 17.3227 10.0013i 0.746142 0.430785i
\(540\) 0 0
\(541\) −14.8292 17.6728i −0.637557 0.759811i 0.346425 0.938078i \(-0.387395\pi\)
−0.983982 + 0.178267i \(0.942951\pi\)
\(542\) 0 0
\(543\) 3.78412 6.55429i 0.162392 0.281271i
\(544\) 0 0
\(545\) 5.59434 + 2.03617i 0.239635 + 0.0872200i
\(546\) 0 0
\(547\) −13.3611 + 2.35593i −0.571281 + 0.100732i −0.451824 0.892107i \(-0.649227\pi\)
−0.119457 + 0.992839i \(0.538115\pi\)
\(548\) 0 0
\(549\) 4.17678 4.97770i 0.178261 0.212443i
\(550\) 0 0
\(551\) 12.2622 14.3203i 0.522386 0.610065i
\(552\) 0 0
\(553\) −20.3307 17.0595i −0.864548 0.725442i
\(554\) 0 0
\(555\) 17.7655 3.13254i 0.754103 0.132969i
\(556\) 0 0
\(557\) −12.9729 + 35.6427i −0.549679 + 1.51023i 0.284466 + 0.958686i \(0.408184\pi\)
−0.834145 + 0.551545i \(0.814039\pi\)
\(558\) 0 0
\(559\) 9.81762 17.0046i 0.415241 0.719219i
\(560\) 0 0
\(561\) −7.61548 + 6.39014i −0.321526 + 0.269792i
\(562\) 0 0
\(563\) 24.8787 14.3637i 1.04851 0.605360i 0.126281 0.991995i \(-0.459696\pi\)
0.922233 + 0.386635i \(0.126363\pi\)
\(564\) 0 0
\(565\) 26.5216 + 4.67647i 1.11577 + 0.196740i
\(566\) 0 0
\(567\) 15.5112 5.64562i 0.651410 0.237094i
\(568\) 0 0
\(569\) −14.4506 −0.605800 −0.302900 0.953022i \(-0.597955\pi\)
−0.302900 + 0.953022i \(0.597955\pi\)
\(570\) 0 0
\(571\) 38.7437i 1.62137i 0.585480 + 0.810687i \(0.300906\pi\)
−0.585480 + 0.810687i \(0.699094\pi\)
\(572\) 0 0
\(573\) −0.711676 1.95531i −0.0297307 0.0816844i
\(574\) 0 0
\(575\) 2.10543 11.9405i 0.0878026 0.497953i
\(576\) 0 0
\(577\) −15.5793 26.9841i −0.648575 1.12336i −0.983463 0.181107i \(-0.942032\pi\)
0.334889 0.942258i \(-0.391301\pi\)
\(578\) 0 0
\(579\) −8.57757 10.2223i −0.356472 0.424826i
\(580\) 0 0
\(581\) 22.5502 + 13.0194i 0.935539 + 0.540134i
\(582\) 0 0
\(583\) −3.74127 1.36171i −0.154948 0.0563964i
\(584\) 0 0
\(585\) −2.06690 11.7219i −0.0854556 0.484643i
\(586\) 0 0
\(587\) 11.8358 14.1054i 0.488517 0.582192i −0.464323 0.885666i \(-0.653702\pi\)
0.952840 + 0.303474i \(0.0981467\pi\)
\(588\) 0 0
\(589\) 16.2623 13.3710i 0.670078 0.550942i
\(590\) 0 0
\(591\) 6.26286 + 5.25516i 0.257619 + 0.216168i
\(592\) 0 0
\(593\) 1.95725 + 11.1001i 0.0803747 + 0.455828i 0.998259 + 0.0589799i \(0.0187848\pi\)
−0.917884 + 0.396848i \(0.870104\pi\)
\(594\) 0 0
\(595\) −6.41067 + 17.6132i −0.262812 + 0.722070i
\(596\) 0 0
\(597\) 5.57760 + 3.22023i 0.228276 + 0.131795i
\(598\) 0 0
\(599\) 23.7426 19.9224i 0.970095 0.814007i −0.0124703 0.999922i \(-0.503970\pi\)
0.982566 + 0.185916i \(0.0595251\pi\)
\(600\) 0 0
\(601\) −11.2846 19.5455i −0.460307 0.797276i 0.538669 0.842518i \(-0.318927\pi\)
−0.998976 + 0.0452420i \(0.985594\pi\)
\(602\) 0 0
\(603\) −3.67282 0.647618i −0.149569 0.0263730i
\(604\) 0 0
\(605\) 2.50410 + 6.87995i 0.101806 + 0.279710i
\(606\) 0 0
\(607\) 15.7003 0.637257 0.318628 0.947880i \(-0.396778\pi\)
0.318628 + 0.947880i \(0.396778\pi\)
\(608\) 0 0
\(609\) 22.6134 0.916341
\(610\) 0 0
\(611\) −9.94610 27.3267i −0.402376 1.10552i
\(612\) 0 0
\(613\) −27.8884 4.91748i −1.12640 0.198615i −0.420752 0.907176i \(-0.638234\pi\)
−0.705650 + 0.708561i \(0.749345\pi\)
\(614\) 0 0
\(615\) −8.68040 15.0349i −0.350028 0.606266i
\(616\) 0 0
\(617\) 20.1984 16.9484i 0.813155 0.682318i −0.138203 0.990404i \(-0.544133\pi\)
0.951359 + 0.308086i \(0.0996883\pi\)
\(618\) 0 0
\(619\) 8.70164 + 5.02389i 0.349748 + 0.201927i 0.664574 0.747222i \(-0.268613\pi\)
−0.314826 + 0.949149i \(0.601946\pi\)
\(620\) 0 0
\(621\) 12.3112 33.8248i 0.494032 1.35734i
\(622\) 0 0
\(623\) 4.88807 + 27.7216i 0.195836 + 1.11064i
\(624\) 0 0
\(625\) −9.09362 7.63045i −0.363745 0.305218i
\(626\) 0 0
\(627\) −15.5727 0.155668i −0.621915 0.00621679i
\(628\) 0 0
\(629\) 13.4191 15.9923i 0.535054 0.637653i
\(630\) 0 0
\(631\) −1.03255 5.85590i −0.0411053 0.233120i 0.957333 0.288987i \(-0.0933186\pi\)
−0.998438 + 0.0558677i \(0.982207\pi\)
\(632\) 0 0
\(633\) −28.4160 10.3426i −1.12943 0.411080i
\(634\) 0 0
\(635\) 17.2032 + 9.93228i 0.682689 + 0.394151i
\(636\) 0 0
\(637\) −29.3216 34.9441i −1.16176 1.38454i
\(638\) 0 0
\(639\) 0.771762 + 1.33673i 0.0305304 + 0.0528803i
\(640\) 0 0
\(641\) −1.53945 + 8.73067i −0.0608047 + 0.344841i 0.939194 + 0.343386i \(0.111574\pi\)
−0.999999 + 0.00145435i \(0.999537\pi\)
\(642\) 0 0
\(643\) −11.2379 30.8759i −0.443180 1.21763i −0.937389 0.348284i \(-0.886765\pi\)
0.494209 0.869343i \(-0.335458\pi\)
\(644\) 0 0
\(645\) 7.91536i 0.311667i
\(646\) 0 0
\(647\) 4.85643 0.190926 0.0954629 0.995433i \(-0.469567\pi\)
0.0954629 + 0.995433i \(0.469567\pi\)
\(648\) 0 0
\(649\) 18.4176 6.70345i 0.722953 0.263133i
\(650\) 0 0
\(651\) 24.8692 + 4.38512i 0.974702 + 0.171866i
\(652\) 0 0
\(653\) 22.9690 13.2611i 0.898846 0.518949i 0.0220202 0.999758i \(-0.492990\pi\)
0.876826 + 0.480809i \(0.159657\pi\)
\(654\) 0 0
\(655\) −14.7786 + 12.4007i −0.577449 + 0.484537i
\(656\) 0 0
\(657\) 6.36182 11.0190i 0.248198 0.429892i
\(658\) 0 0
\(659\) 1.53725 4.22355i 0.0598827 0.164526i −0.906144 0.422970i \(-0.860987\pi\)
0.966026 + 0.258444i \(0.0832097\pi\)
\(660\) 0 0
\(661\) 14.3356 2.52775i 0.557589 0.0983179i 0.112250 0.993680i \(-0.464194\pi\)
0.445339 + 0.895362i \(0.353083\pi\)
\(662\) 0 0
\(663\) 17.3673 + 14.5729i 0.674489 + 0.565963i
\(664\) 0 0
\(665\) −25.5743 + 14.4264i −0.991728 + 0.559432i
\(666\) 0 0
\(667\) 17.7211 21.1191i 0.686162 0.817736i
\(668\) 0 0
\(669\) 32.2110 5.67967i 1.24535 0.219589i
\(670\) 0 0
\(671\) −14.0846 5.12638i −0.543730 0.197902i
\(672\) 0 0
\(673\) −1.27655 + 2.21106i −0.0492076 + 0.0852300i −0.889580 0.456779i \(-0.849003\pi\)
0.840372 + 0.542009i \(0.182336\pi\)
\(674\) 0 0
\(675\) 6.90471 + 8.22872i 0.265763 + 0.316723i
\(676\) 0 0
\(677\) −26.8658 + 15.5109i −1.03253 + 0.596134i −0.917710 0.397252i \(-0.869964\pi\)
−0.114825 + 0.993386i \(0.536631\pi\)
\(678\) 0 0
\(679\) −8.10219 + 45.9498i −0.310933 + 1.76339i
\(680\) 0 0
\(681\) 2.16533 0.788115i 0.0829756 0.0302006i
\(682\) 0 0
\(683\) 39.1949i 1.49975i 0.661578 + 0.749876i \(0.269887\pi\)
−0.661578 + 0.749876i \(0.730113\pi\)
\(684\) 0 0
\(685\) 35.3711i 1.35146i
\(686\) 0 0
\(687\) −4.62287 + 1.68259i −0.176374 + 0.0641947i
\(688\) 0 0
\(689\) −1.57666 + 8.94169i −0.0600660 + 0.340651i
\(690\) 0 0
\(691\) −0.357391 + 0.206340i −0.0135958 + 0.00784954i −0.506782 0.862074i \(-0.669165\pi\)
0.493187 + 0.869923i \(0.335832\pi\)
\(692\) 0 0
\(693\) 7.29529 + 8.69419i 0.277125 + 0.330265i
\(694\) 0 0
\(695\) −14.5404 + 25.1847i −0.551548 + 0.955309i
\(696\) 0 0
\(697\) −18.8793 6.87150i −0.715104 0.260277i
\(698\) 0 0
\(699\) 5.24897 0.925536i 0.198534 0.0350070i
\(700\) 0 0
\(701\) 0.701629 0.836169i 0.0265002 0.0315817i −0.752632 0.658442i \(-0.771216\pi\)
0.779132 + 0.626860i \(0.215660\pi\)
\(702\) 0 0
\(703\) 32.2622 5.35675i 1.21679 0.202034i
\(704\) 0 0
\(705\) −8.98027 7.53534i −0.338216 0.283797i
\(706\) 0 0
\(707\) −48.1200 + 8.48485i −1.80974 + 0.319106i
\(708\) 0 0
\(709\) −15.5133 + 42.6225i −0.582615 + 1.60072i 0.201080 + 0.979575i \(0.435555\pi\)
−0.783695 + 0.621146i \(0.786667\pi\)
\(710\) 0 0
\(711\) 3.93123 6.80908i 0.147433 0.255361i
\(712\) 0 0
\(713\) 23.5842 19.7895i 0.883235 0.741122i
\(714\) 0 0
\(715\) −23.7773 + 13.7279i −0.889222 + 0.513393i
\(716\) 0 0
\(717\) −4.60619 0.812195i −0.172021 0.0303320i
\(718\) 0 0
\(719\) −27.5011 + 10.0096i −1.02562 + 0.373295i −0.799411 0.600785i \(-0.794855\pi\)
−0.226207 + 0.974079i \(0.572633\pi\)
\(720\) 0 0
\(721\) −15.5239 −0.578140
\(722\) 0 0
\(723\) 12.3035i 0.457574i
\(724\) 0 0
\(725\) 2.81386 + 7.73102i 0.104504 + 0.287123i
\(726\) 0 0
\(727\) 4.42851 25.1153i 0.164244 0.931476i −0.785596 0.618740i \(-0.787643\pi\)
0.949840 0.312736i \(-0.101246\pi\)
\(728\) 0 0
\(729\) 14.0167 + 24.2776i 0.519137 + 0.899171i
\(730\) 0 0
\(731\) −5.88800 7.01705i −0.217776 0.259535i
\(732\) 0 0
\(733\) 24.3750 + 14.0729i 0.900312 + 0.519795i 0.877301 0.479940i \(-0.159342\pi\)
0.0230105 + 0.999735i \(0.492675\pi\)
\(734\) 0 0
\(735\) −17.2798 6.28935i −0.637377 0.231986i
\(736\) 0 0
\(737\) 1.49384 + 8.47198i 0.0550262 + 0.312069i
\(738\) 0 0
\(739\) −23.3977 + 27.8843i −0.860699 + 1.02574i 0.138674 + 0.990338i \(0.455716\pi\)
−0.999373 + 0.0354033i \(0.988728\pi\)
\(740\) 0 0
\(741\) 5.81733 + 35.0361i 0.213705 + 1.28708i
\(742\) 0 0
\(743\) −33.0844 27.7611i −1.21375 1.01845i −0.999128 0.0417571i \(-0.986704\pi\)
−0.214619 0.976698i \(-0.568851\pi\)
\(744\) 0 0
\(745\) 5.61248 + 31.8300i 0.205626 + 1.16616i
\(746\) 0 0
\(747\) −2.63834 + 7.24879i −0.0965320 + 0.265219i
\(748\) 0 0
\(749\) 4.21503 + 2.43355i 0.154014 + 0.0889199i
\(750\) 0 0
\(751\) 21.9887 18.4507i 0.802379 0.673276i −0.146397 0.989226i \(-0.546768\pi\)
0.948776 + 0.315950i \(0.102323\pi\)
\(752\) 0 0
\(753\) −3.77101 6.53159i −0.137423 0.238024i
\(754\) 0 0
\(755\) 23.0440 + 4.06329i 0.838658 + 0.147878i
\(756\) 0 0
\(757\) −9.23982 25.3862i −0.335827 0.922677i −0.986564 0.163374i \(-0.947762\pi\)
0.650737 0.759303i \(-0.274460\pi\)
\(758\) 0 0
\(759\) −22.7736 −0.826628
\(760\) 0 0
\(761\) 42.3246 1.53427 0.767133 0.641488i \(-0.221682\pi\)
0.767133 + 0.641488i \(0.221682\pi\)
\(762\) 0 0
\(763\) 4.42768 + 12.1649i 0.160293 + 0.440400i
\(764\) 0 0
\(765\) −5.46844 0.964234i −0.197712 0.0348620i
\(766\) 0 0
\(767\) −22.3486 38.7090i −0.806962 1.39770i
\(768\) 0 0
\(769\) −25.9294 + 21.7574i −0.935038 + 0.784590i −0.976715 0.214541i \(-0.931175\pi\)
0.0416766 + 0.999131i \(0.486730\pi\)
\(770\) 0 0
\(771\) 24.7434 + 14.2856i 0.891111 + 0.514483i
\(772\) 0 0
\(773\) −6.59542 + 18.1208i −0.237221 + 0.651759i 0.762766 + 0.646674i \(0.223841\pi\)
−0.999987 + 0.00508474i \(0.998381\pi\)
\(774\) 0 0
\(775\) 1.59539 + 9.04790i 0.0573080 + 0.325010i
\(776\) 0 0
\(777\) 30.0498 + 25.2147i 1.07803 + 0.904574i
\(778\) 0 0
\(779\) −15.4634 27.4127i −0.554035 0.982161i
\(780\) 0 0
\(781\) 2.28858 2.72742i 0.0818917 0.0975948i
\(782\) 0 0
\(783\) 4.24131 + 24.0536i 0.151572 + 0.859607i
\(784\) 0 0
\(785\) 1.66688 + 0.606696i 0.0594937 + 0.0216539i
\(786\) 0 0
\(787\) −19.0253 10.9843i −0.678179 0.391547i 0.120990 0.992654i \(-0.461393\pi\)
−0.799169 + 0.601107i \(0.794727\pi\)
\(788\) 0 0
\(789\) −1.53161 1.82530i −0.0545267 0.0649824i
\(790\) 0 0
\(791\) 29.2805 + 50.7154i 1.04110 + 1.80323i
\(792\) 0 0
\(793\) −5.93559 + 33.6624i −0.210779 + 1.19539i
\(794\) 0 0
\(795\) 1.25186 + 3.43944i 0.0443987 + 0.121984i
\(796\) 0 0
\(797\) 0.710570i 0.0251697i −0.999921 0.0125848i \(-0.995994\pi\)
0.999921 0.0125848i \(-0.00400599\pi\)
\(798\) 0 0
\(799\) −13.5664 −0.479945
\(800\) 0 0
\(801\) −7.83634 + 2.85220i −0.276884 + 0.100777i
\(802\) 0 0
\(803\) −28.9033 5.09643i −1.01997 0.179849i
\(804\) 0 0
\(805\) −37.1852 + 21.4689i −1.31061 + 0.756679i
\(806\) 0 0
\(807\) 10.7068 8.98411i 0.376899 0.316256i
\(808\) 0 0
\(809\) 7.13032 12.3501i 0.250689 0.434205i −0.713027 0.701137i \(-0.752676\pi\)
0.963716 + 0.266931i \(0.0860096\pi\)
\(810\) 0 0
\(811\) 4.63202 12.7264i 0.162652 0.446883i −0.831415 0.555652i \(-0.812469\pi\)
0.994067 + 0.108769i \(0.0346909\pi\)
\(812\) 0 0
\(813\) −28.8580 + 5.08844i −1.01209 + 0.178459i
\(814\) 0 0
\(815\) 20.2171 + 16.9642i 0.708175 + 0.594230i
\(816\) 0 0
\(817\) 0.143436 14.3490i 0.00501818 0.502009i
\(818\) 0 0
\(819\) 16.6371 19.8273i 0.581346 0.692822i
\(820\) 0 0
\(821\) 21.6215 3.81246i 0.754597 0.133056i 0.216900 0.976194i \(-0.430406\pi\)
0.537697 + 0.843138i \(0.319294\pi\)
\(822\) 0 0
\(823\) 37.4025 + 13.6134i 1.30377 + 0.474533i 0.898222 0.439541i \(-0.144859\pi\)
0.405547 + 0.914074i \(0.367081\pi\)
\(824\) 0 0
\(825\) 3.39805 5.88560i 0.118305 0.204910i
\(826\) 0 0
\(827\) 8.15261 + 9.71590i 0.283494 + 0.337855i 0.888933 0.458036i \(-0.151447\pi\)
−0.605439 + 0.795891i \(0.707003\pi\)
\(828\) 0 0
\(829\) −38.1089 + 22.0022i −1.32358 + 0.764168i −0.984297 0.176518i \(-0.943517\pi\)
−0.339280 + 0.940686i \(0.610183\pi\)
\(830\) 0 0
\(831\) −3.44129 + 19.5165i −0.119377 + 0.677021i
\(832\) 0 0
\(833\) −19.9972 + 7.27839i −0.692863 + 0.252181i
\(834\) 0 0
\(835\) 4.19500i 0.145174i
\(836\) 0 0
\(837\) 27.2756i 0.942783i
\(838\) 0 0
\(839\) −18.6755 + 6.79733i −0.644750 + 0.234670i −0.643639 0.765330i \(-0.722576\pi\)
−0.00111150 + 0.999999i \(0.500354\pi\)
\(840\) 0 0
\(841\) 1.78737 10.1367i 0.0616336 0.349541i
\(842\) 0 0
\(843\) −29.9817 + 17.3099i −1.03262 + 0.596186i
\(844\) 0 0
\(845\) 25.5396 + 30.4369i 0.878589 + 1.04706i
\(846\) 0 0
\(847\) −7.96032 + 13.7877i −0.273520 + 0.473750i
\(848\) 0 0
\(849\) 14.1498 + 5.15010i 0.485619 + 0.176751i
\(850\) 0 0
\(851\) 47.0972 8.30450i 1.61447 0.284675i
\(852\) 0 0
\(853\) −11.0526 + 13.1720i −0.378434 + 0.451000i −0.921319 0.388807i \(-0.872887\pi\)
0.542885 + 0.839807i \(0.317332\pi\)
\(854\) 0 0
\(855\) −5.52455 6.71917i −0.188936 0.229791i
\(856\) 0 0
\(857\) 5.45272 + 4.57537i 0.186261 + 0.156292i 0.731150 0.682216i \(-0.238984\pi\)
−0.544889 + 0.838508i \(0.683428\pi\)
\(858\) 0 0
\(859\) −20.8842 + 3.68245i −0.712559 + 0.125643i −0.518166 0.855280i \(-0.673385\pi\)
−0.194394 + 0.980924i \(0.562274\pi\)
\(860\) 0 0
\(861\) 12.9117 35.4746i 0.440029 1.20897i
\(862\) 0 0
\(863\) −2.52232 + 4.36878i −0.0858607 + 0.148715i −0.905758 0.423796i \(-0.860697\pi\)
0.819897 + 0.572511i \(0.194031\pi\)
\(864\) 0 0
\(865\) 24.1512 20.2653i 0.821165 0.689040i
\(866\) 0 0
\(867\) −10.9524 + 6.32340i −0.371965 + 0.214754i
\(868\) 0 0
\(869\) −17.8605 3.14929i −0.605877 0.106832i
\(870\) 0 0
\(871\) 18.4354 6.70995i 0.624661 0.227358i
\(872\) 0 0
\(873\) −13.8227 −0.467827
\(874\) 0 0
\(875\) 46.4948i 1.57181i
\(876\) 0 0
\(877\) −18.5385 50.9342i −0.626001 1.71992i −0.691798 0.722091i \(-0.743181\pi\)
0.0657963 0.997833i \(-0.479041\pi\)
\(878\) 0 0
\(879\) −2.53044 + 14.3508i −0.0853495 + 0.484041i
\(880\) 0 0
\(881\) −21.6502 37.4992i −0.729412 1.26338i −0.957132 0.289653i \(-0.906460\pi\)
0.227719 0.973727i \(-0.426873\pi\)
\(882\) 0 0
\(883\) 29.3322 + 34.9568i 0.987108 + 1.17639i 0.984320 + 0.176393i \(0.0564430\pi\)
0.00278783 + 0.999996i \(0.499113\pi\)
\(884\) 0 0
\(885\) −15.6044 9.00918i −0.524535 0.302840i
\(886\) 0 0
\(887\) 9.47441 + 3.44840i 0.318120 + 0.115786i 0.496145 0.868240i \(-0.334749\pi\)
−0.178025 + 0.984026i \(0.556971\pi\)
\(888\) 0 0
\(889\) 7.50085 + 42.5394i 0.251570 + 1.42673i
\(890\) 0 0
\(891\) 7.25057 8.64090i 0.242903 0.289481i
\(892\) 0 0
\(893\) −16.1429 13.8228i −0.540203 0.462564i
\(894\) 0 0
\(895\) −30.7524 25.8044i −1.02794 0.862545i
\(896\) 0 0
\(897\) 9.01853 + 51.1466i 0.301120 + 1.70774i
\(898\) 0 0
\(899\) −7.14495 + 19.6306i −0.238297 + 0.654717i
\(900\) 0 0
\(901\) 3.66828 + 2.11788i 0.122208 + 0.0705570i
\(902\) 0 0
\(903\) 13.1852 11.0637i 0.438775 0.368176i
\(904\) 0 0
\(905\) −4.87549 8.44460i −0.162067 0.280708i
\(906\) 0 0
\(907\) −10.1146 1.78348i −0.335850 0.0592195i 0.00317994 0.999995i \(-0.498988\pi\)
−0.339030 + 0.940775i \(0.610099\pi\)
\(908\) 0 0
\(909\) −4.95092 13.6025i −0.164212 0.451168i
\(910\) 0 0
\(911\) −18.0080 −0.596631 −0.298316 0.954467i \(-0.596425\pi\)
−0.298316 + 0.954467i \(0.596425\pi\)
\(912\) 0 0
\(913\) 17.7936 0.588883
\(914\) 0 0
\(915\) 4.71280 + 12.9483i 0.155800 + 0.428058i
\(916\) 0 0
\(917\) −41.3136 7.28470i −1.36430 0.240562i
\(918\) 0 0
\(919\) −3.23798 5.60834i −0.106811 0.185002i 0.807666 0.589641i \(-0.200731\pi\)
−0.914477 + 0.404639i \(0.867397\pi\)
\(920\) 0 0
\(921\) −5.52806 + 4.63860i −0.182156 + 0.152847i
\(922\) 0 0
\(923\) −7.03175 4.05978i −0.231453 0.133629i
\(924\) 0 0
\(925\) −4.88117 + 13.4109i −0.160492 + 0.440948i
\(926\) 0 0
\(927\) −0.798604 4.52911i −0.0262296 0.148755i
\(928\) 0 0
\(929\) −5.56288 4.66781i −0.182512 0.153146i 0.546954 0.837162i \(-0.315787\pi\)
−0.729466 + 0.684017i \(0.760232\pi\)
\(930\) 0 0
\(931\) −31.2111 11.7145i −1.02290 0.383927i
\(932\) 0 0
\(933\) 6.23125 7.42611i 0.204002 0.243120i
\(934\) 0 0
\(935\) 2.22417 + 12.6139i 0.0727380 + 0.412518i
\(936\) 0 0
\(937\) −10.5825 3.85173i −0.345717 0.125831i 0.163325 0.986572i \(-0.447778\pi\)
−0.509042 + 0.860742i \(0.670000\pi\)
\(938\) 0 0
\(939\) −30.0853 17.3698i −0.981798 0.566841i
\(940\) 0 0
\(941\) 11.4013 + 13.5876i 0.371673 + 0.442942i 0.919168 0.393867i \(-0.128863\pi\)
−0.547495 + 0.836809i \(0.684418\pi\)
\(942\) 0 0
\(943\) −23.0122 39.8582i −0.749379 1.29796i
\(944\) 0 0
\(945\) 6.60567 37.4626i 0.214882 1.21866i
\(946\) 0 0
\(947\) −19.3370 53.1281i −0.628370 1.72643i −0.685508 0.728065i \(-0.740420\pi\)
0.0571383 0.998366i \(-0.481802\pi\)
\(948\) 0 0
\(949\) 66.9314i 2.17269i
\(950\) 0 0
\(951\) −1.57104 −0.0509446
\(952\) 0 0
\(953\) −14.6290 + 5.32453i −0.473880 + 0.172478i −0.567909 0.823091i \(-0.692248\pi\)
0.0940291 + 0.995569i \(0.470025\pi\)
\(954\) 0 0
\(955\) −2.64019 0.465537i −0.0854346 0.0150644i
\(956\) 0 0
\(957\) 13.3826 7.72647i 0.432599 0.249761i
\(958\) 0 0
\(959\) 58.9202 49.4399i 1.90263 1.59650i
\(960\) 0 0
\(961\) 3.83561 6.64346i 0.123729 0.214305i
\(962\) 0 0
\(963\) −0.493154 + 1.35493i −0.0158917 + 0.0436620i
\(964\) 0 0
\(965\) −16.9318 + 2.98552i −0.545052 + 0.0961074i
\(966\) 0 0
\(967\) 20.7509 + 17.4121i 0.667304 + 0.559935i 0.912266 0.409598i \(-0.134331\pi\)
−0.244962 + 0.969533i \(0.578775\pi\)
\(968\) 0 0
\(969\) 16.2873 + 3.04006i 0.523223 + 0.0976607i
\(970\) 0 0
\(971\) −26.6891 + 31.8069i −0.856495 + 1.02073i 0.143024 + 0.989719i \(0.454317\pi\)
−0.999519 + 0.0310118i \(0.990127\pi\)
\(972\) 0 0
\(973\) −62.2756 + 10.9809i −1.99647 + 0.352031i
\(974\) 0 0
\(975\) −14.5640 5.30085i −0.466421 0.169763i
\(976\) 0 0
\(977\) 22.2421 38.5244i 0.711587 1.23251i −0.252674 0.967551i \(-0.581310\pi\)
0.964261 0.264954i \(-0.0853567\pi\)
\(978\) 0 0
\(979\) 12.3646 + 14.7355i 0.395174 + 0.470950i
\(980\) 0 0
\(981\) −3.32135 + 1.91759i −0.106043 + 0.0612238i
\(982\) 0 0
\(983\) 1.03224 5.85410i 0.0329232 0.186717i −0.963911 0.266225i \(-0.914224\pi\)
0.996834 + 0.0795078i \(0.0253349\pi\)
\(984\) 0 0
\(985\) 9.89824 3.60266i 0.315384 0.114790i
\(986\) 0 0
\(987\) 25.4916i 0.811405i
\(988\) 0 0
\(989\) 20.9840i 0.667252i
\(990\) 0 0
\(991\) −8.99995 + 3.27572i −0.285893 + 0.104057i −0.480986 0.876728i \(-0.659721\pi\)
0.195093 + 0.980785i \(0.437499\pi\)
\(992\) 0 0
\(993\) 1.01002 5.72811i 0.0320520 0.181776i
\(994\) 0 0
\(995\) 7.18623 4.14897i 0.227819 0.131531i
\(996\) 0 0
\(997\) 19.6721 + 23.4443i 0.623021 + 0.742487i 0.981587 0.191017i \(-0.0611787\pi\)
−0.358566 + 0.933504i \(0.616734\pi\)
\(998\) 0 0
\(999\) −21.1846 + 36.6928i −0.670252 + 1.16091i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.bf.a.529.6 108
4.3 odd 2 152.2.t.a.149.6 yes 108
8.3 odd 2 152.2.t.a.149.4 yes 108
8.5 even 2 inner 608.2.bf.a.529.13 108
19.6 even 9 inner 608.2.bf.a.177.13 108
76.63 odd 18 152.2.t.a.101.4 108
152.101 even 18 inner 608.2.bf.a.177.6 108
152.139 odd 18 152.2.t.a.101.6 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.t.a.101.4 108 76.63 odd 18
152.2.t.a.101.6 yes 108 152.139 odd 18
152.2.t.a.149.4 yes 108 8.3 odd 2
152.2.t.a.149.6 yes 108 4.3 odd 2
608.2.bf.a.177.6 108 152.101 even 18 inner
608.2.bf.a.177.13 108 19.6 even 9 inner
608.2.bf.a.529.6 108 1.1 even 1 trivial
608.2.bf.a.529.13 108 8.5 even 2 inner