Properties

Label 6069.2.a.z.1.6
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9,6,3,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.244764\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.244764 q^{2} -1.00000 q^{3} -1.94009 q^{4} -2.06843 q^{5} -0.244764 q^{6} -1.00000 q^{7} -0.964391 q^{8} +1.00000 q^{9} -0.506278 q^{10} +3.04983 q^{11} +1.94009 q^{12} -6.80516 q^{13} -0.244764 q^{14} +2.06843 q^{15} +3.64413 q^{16} +0.244764 q^{18} -0.484930 q^{19} +4.01295 q^{20} +1.00000 q^{21} +0.746487 q^{22} +0.437369 q^{23} +0.964391 q^{24} -0.721577 q^{25} -1.66566 q^{26} -1.00000 q^{27} +1.94009 q^{28} -8.45427 q^{29} +0.506278 q^{30} -2.11063 q^{31} +2.82073 q^{32} -3.04983 q^{33} +2.06843 q^{35} -1.94009 q^{36} -8.74194 q^{37} -0.118693 q^{38} +6.80516 q^{39} +1.99478 q^{40} -3.31075 q^{41} +0.244764 q^{42} +6.29062 q^{43} -5.91694 q^{44} -2.06843 q^{45} +0.107052 q^{46} -11.1100 q^{47} -3.64413 q^{48} +1.00000 q^{49} -0.176616 q^{50} +13.2026 q^{52} +0.0579193 q^{53} -0.244764 q^{54} -6.30837 q^{55} +0.964391 q^{56} +0.484930 q^{57} -2.06930 q^{58} -8.36804 q^{59} -4.01295 q^{60} +12.4737 q^{61} -0.516605 q^{62} -1.00000 q^{63} -6.59786 q^{64} +14.0760 q^{65} -0.746487 q^{66} -11.2390 q^{67} -0.437369 q^{69} +0.506278 q^{70} -2.15979 q^{71} -0.964391 q^{72} +6.96494 q^{73} -2.13971 q^{74} +0.721577 q^{75} +0.940808 q^{76} -3.04983 q^{77} +1.66566 q^{78} -2.30069 q^{79} -7.53765 q^{80} +1.00000 q^{81} -0.810352 q^{82} -17.2398 q^{83} -1.94009 q^{84} +1.53972 q^{86} +8.45427 q^{87} -2.94123 q^{88} -12.6380 q^{89} -0.506278 q^{90} +6.80516 q^{91} -0.848535 q^{92} +2.11063 q^{93} -2.71932 q^{94} +1.00305 q^{95} -2.82073 q^{96} +4.63222 q^{97} +0.244764 q^{98} +3.04983 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 6 q^{4} + 3 q^{5} - 9 q^{7} + 9 q^{8} + 9 q^{9} + 12 q^{10} + 18 q^{11} - 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} + 15 q^{20} + 9 q^{21} + 6 q^{22} - 9 q^{24} + 3 q^{26} - 9 q^{27} - 6 q^{28}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.244764 0.173074 0.0865370 0.996249i \(-0.472420\pi\)
0.0865370 + 0.996249i \(0.472420\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.94009 −0.970045
\(5\) −2.06843 −0.925032 −0.462516 0.886611i \(-0.653053\pi\)
−0.462516 + 0.886611i \(0.653053\pi\)
\(6\) −0.244764 −0.0999243
\(7\) −1.00000 −0.377964
\(8\) −0.964391 −0.340964
\(9\) 1.00000 0.333333
\(10\) −0.506278 −0.160099
\(11\) 3.04983 0.919558 0.459779 0.888033i \(-0.347929\pi\)
0.459779 + 0.888033i \(0.347929\pi\)
\(12\) 1.94009 0.560056
\(13\) −6.80516 −1.88741 −0.943706 0.330786i \(-0.892686\pi\)
−0.943706 + 0.330786i \(0.892686\pi\)
\(14\) −0.244764 −0.0654158
\(15\) 2.06843 0.534068
\(16\) 3.64413 0.911033
\(17\) 0 0
\(18\) 0.244764 0.0576913
\(19\) −0.484930 −0.111250 −0.0556252 0.998452i \(-0.517715\pi\)
−0.0556252 + 0.998452i \(0.517715\pi\)
\(20\) 4.01295 0.897323
\(21\) 1.00000 0.218218
\(22\) 0.746487 0.159152
\(23\) 0.437369 0.0911977 0.0455988 0.998960i \(-0.485480\pi\)
0.0455988 + 0.998960i \(0.485480\pi\)
\(24\) 0.964391 0.196855
\(25\) −0.721577 −0.144315
\(26\) −1.66566 −0.326662
\(27\) −1.00000 −0.192450
\(28\) 1.94009 0.366643
\(29\) −8.45427 −1.56992 −0.784959 0.619547i \(-0.787316\pi\)
−0.784959 + 0.619547i \(0.787316\pi\)
\(30\) 0.506278 0.0924332
\(31\) −2.11063 −0.379080 −0.189540 0.981873i \(-0.560700\pi\)
−0.189540 + 0.981873i \(0.560700\pi\)
\(32\) 2.82073 0.498640
\(33\) −3.04983 −0.530907
\(34\) 0 0
\(35\) 2.06843 0.349629
\(36\) −1.94009 −0.323348
\(37\) −8.74194 −1.43717 −0.718583 0.695441i \(-0.755209\pi\)
−0.718583 + 0.695441i \(0.755209\pi\)
\(38\) −0.118693 −0.0192546
\(39\) 6.80516 1.08970
\(40\) 1.99478 0.315402
\(41\) −3.31075 −0.517053 −0.258526 0.966004i \(-0.583237\pi\)
−0.258526 + 0.966004i \(0.583237\pi\)
\(42\) 0.244764 0.0377678
\(43\) 6.29062 0.959311 0.479655 0.877457i \(-0.340762\pi\)
0.479655 + 0.877457i \(0.340762\pi\)
\(44\) −5.91694 −0.892013
\(45\) −2.06843 −0.308344
\(46\) 0.107052 0.0157839
\(47\) −11.1100 −1.62056 −0.810280 0.586043i \(-0.800685\pi\)
−0.810280 + 0.586043i \(0.800685\pi\)
\(48\) −3.64413 −0.525985
\(49\) 1.00000 0.142857
\(50\) −0.176616 −0.0249772
\(51\) 0 0
\(52\) 13.2026 1.83087
\(53\) 0.0579193 0.00795582 0.00397791 0.999992i \(-0.498734\pi\)
0.00397791 + 0.999992i \(0.498734\pi\)
\(54\) −0.244764 −0.0333081
\(55\) −6.30837 −0.850621
\(56\) 0.964391 0.128872
\(57\) 0.484930 0.0642305
\(58\) −2.06930 −0.271712
\(59\) −8.36804 −1.08943 −0.544713 0.838623i \(-0.683361\pi\)
−0.544713 + 0.838623i \(0.683361\pi\)
\(60\) −4.01295 −0.518070
\(61\) 12.4737 1.59709 0.798546 0.601933i \(-0.205603\pi\)
0.798546 + 0.601933i \(0.205603\pi\)
\(62\) −0.516605 −0.0656089
\(63\) −1.00000 −0.125988
\(64\) −6.59786 −0.824732
\(65\) 14.0760 1.74592
\(66\) −0.746487 −0.0918862
\(67\) −11.2390 −1.37306 −0.686530 0.727101i \(-0.740867\pi\)
−0.686530 + 0.727101i \(0.740867\pi\)
\(68\) 0 0
\(69\) −0.437369 −0.0526530
\(70\) 0.506278 0.0605117
\(71\) −2.15979 −0.256320 −0.128160 0.991754i \(-0.540907\pi\)
−0.128160 + 0.991754i \(0.540907\pi\)
\(72\) −0.964391 −0.113655
\(73\) 6.96494 0.815185 0.407592 0.913164i \(-0.366368\pi\)
0.407592 + 0.913164i \(0.366368\pi\)
\(74\) −2.13971 −0.248736
\(75\) 0.721577 0.0833205
\(76\) 0.940808 0.107918
\(77\) −3.04983 −0.347560
\(78\) 1.66566 0.188598
\(79\) −2.30069 −0.258848 −0.129424 0.991589i \(-0.541313\pi\)
−0.129424 + 0.991589i \(0.541313\pi\)
\(80\) −7.53765 −0.842735
\(81\) 1.00000 0.111111
\(82\) −0.810352 −0.0894884
\(83\) −17.2398 −1.89231 −0.946157 0.323709i \(-0.895070\pi\)
−0.946157 + 0.323709i \(0.895070\pi\)
\(84\) −1.94009 −0.211681
\(85\) 0 0
\(86\) 1.53972 0.166032
\(87\) 8.45427 0.906393
\(88\) −2.94123 −0.313536
\(89\) −12.6380 −1.33962 −0.669812 0.742530i \(-0.733626\pi\)
−0.669812 + 0.742530i \(0.733626\pi\)
\(90\) −0.506278 −0.0533663
\(91\) 6.80516 0.713375
\(92\) −0.848535 −0.0884659
\(93\) 2.11063 0.218862
\(94\) −2.71932 −0.280477
\(95\) 1.00305 0.102910
\(96\) −2.82073 −0.287890
\(97\) 4.63222 0.470331 0.235165 0.971955i \(-0.424437\pi\)
0.235165 + 0.971955i \(0.424437\pi\)
\(98\) 0.244764 0.0247249
\(99\) 3.04983 0.306519
\(100\) 1.39992 0.139992
\(101\) −10.3253 −1.02741 −0.513704 0.857967i \(-0.671727\pi\)
−0.513704 + 0.857967i \(0.671727\pi\)
\(102\) 0 0
\(103\) −15.0477 −1.48269 −0.741347 0.671121i \(-0.765813\pi\)
−0.741347 + 0.671121i \(0.765813\pi\)
\(104\) 6.56283 0.643539
\(105\) −2.06843 −0.201859
\(106\) 0.0141765 0.00137695
\(107\) 13.1879 1.27492 0.637462 0.770482i \(-0.279984\pi\)
0.637462 + 0.770482i \(0.279984\pi\)
\(108\) 1.94009 0.186685
\(109\) 1.05221 0.100783 0.0503916 0.998730i \(-0.483953\pi\)
0.0503916 + 0.998730i \(0.483953\pi\)
\(110\) −1.54406 −0.147220
\(111\) 8.74194 0.829748
\(112\) −3.64413 −0.344338
\(113\) −13.9040 −1.30798 −0.653990 0.756503i \(-0.726906\pi\)
−0.653990 + 0.756503i \(0.726906\pi\)
\(114\) 0.118693 0.0111166
\(115\) −0.904669 −0.0843608
\(116\) 16.4021 1.52289
\(117\) −6.80516 −0.629137
\(118\) −2.04819 −0.188551
\(119\) 0 0
\(120\) −1.99478 −0.182098
\(121\) −1.69855 −0.154414
\(122\) 3.05311 0.276415
\(123\) 3.31075 0.298520
\(124\) 4.09481 0.367725
\(125\) 11.8347 1.05853
\(126\) −0.244764 −0.0218053
\(127\) −1.31580 −0.116758 −0.0583792 0.998294i \(-0.518593\pi\)
−0.0583792 + 0.998294i \(0.518593\pi\)
\(128\) −7.25638 −0.641379
\(129\) −6.29062 −0.553858
\(130\) 3.44530 0.302173
\(131\) 3.96658 0.346562 0.173281 0.984872i \(-0.444563\pi\)
0.173281 + 0.984872i \(0.444563\pi\)
\(132\) 5.91694 0.515004
\(133\) 0.484930 0.0420487
\(134\) −2.75089 −0.237641
\(135\) 2.06843 0.178023
\(136\) 0 0
\(137\) 19.1881 1.63935 0.819674 0.572831i \(-0.194155\pi\)
0.819674 + 0.572831i \(0.194155\pi\)
\(138\) −0.107052 −0.00911287
\(139\) −7.59329 −0.644054 −0.322027 0.946730i \(-0.604364\pi\)
−0.322027 + 0.946730i \(0.604364\pi\)
\(140\) −4.01295 −0.339156
\(141\) 11.1100 0.935630
\(142\) −0.528638 −0.0443623
\(143\) −20.7546 −1.73558
\(144\) 3.64413 0.303678
\(145\) 17.4871 1.45223
\(146\) 1.70476 0.141087
\(147\) −1.00000 −0.0824786
\(148\) 16.9602 1.39412
\(149\) 10.3536 0.848199 0.424099 0.905616i \(-0.360591\pi\)
0.424099 + 0.905616i \(0.360591\pi\)
\(150\) 0.176616 0.0144206
\(151\) 0.741505 0.0603428 0.0301714 0.999545i \(-0.490395\pi\)
0.0301714 + 0.999545i \(0.490395\pi\)
\(152\) 0.467662 0.0379324
\(153\) 0 0
\(154\) −0.746487 −0.0601536
\(155\) 4.36570 0.350661
\(156\) −13.2026 −1.05706
\(157\) 0.196509 0.0156831 0.00784155 0.999969i \(-0.497504\pi\)
0.00784155 + 0.999969i \(0.497504\pi\)
\(158\) −0.563125 −0.0447998
\(159\) −0.0579193 −0.00459330
\(160\) −5.83450 −0.461258
\(161\) −0.437369 −0.0344695
\(162\) 0.244764 0.0192304
\(163\) 5.24513 0.410830 0.205415 0.978675i \(-0.434146\pi\)
0.205415 + 0.978675i \(0.434146\pi\)
\(164\) 6.42316 0.501564
\(165\) 6.30837 0.491106
\(166\) −4.21967 −0.327510
\(167\) −8.52493 −0.659679 −0.329839 0.944037i \(-0.606995\pi\)
−0.329839 + 0.944037i \(0.606995\pi\)
\(168\) −0.964391 −0.0744044
\(169\) 33.3102 2.56232
\(170\) 0 0
\(171\) −0.484930 −0.0370835
\(172\) −12.2044 −0.930575
\(173\) 21.3404 1.62248 0.811242 0.584711i \(-0.198792\pi\)
0.811242 + 0.584711i \(0.198792\pi\)
\(174\) 2.06930 0.156873
\(175\) 0.721577 0.0545461
\(176\) 11.1140 0.837748
\(177\) 8.36804 0.628980
\(178\) −3.09332 −0.231854
\(179\) 0.927253 0.0693062 0.0346531 0.999399i \(-0.488967\pi\)
0.0346531 + 0.999399i \(0.488967\pi\)
\(180\) 4.01295 0.299108
\(181\) 10.5650 0.785293 0.392647 0.919689i \(-0.371560\pi\)
0.392647 + 0.919689i \(0.371560\pi\)
\(182\) 1.66566 0.123467
\(183\) −12.4737 −0.922082
\(184\) −0.421794 −0.0310951
\(185\) 18.0821 1.32943
\(186\) 0.516605 0.0378793
\(187\) 0 0
\(188\) 21.5544 1.57202
\(189\) 1.00000 0.0727393
\(190\) 0.245509 0.0178111
\(191\) −12.9048 −0.933757 −0.466879 0.884321i \(-0.654622\pi\)
−0.466879 + 0.884321i \(0.654622\pi\)
\(192\) 6.59786 0.476159
\(193\) −23.0947 −1.66239 −0.831197 0.555977i \(-0.812344\pi\)
−0.831197 + 0.555977i \(0.812344\pi\)
\(194\) 1.13380 0.0814020
\(195\) −14.0760 −1.00801
\(196\) −1.94009 −0.138578
\(197\) 22.8435 1.62753 0.813767 0.581192i \(-0.197413\pi\)
0.813767 + 0.581192i \(0.197413\pi\)
\(198\) 0.746487 0.0530505
\(199\) −1.43344 −0.101614 −0.0508069 0.998708i \(-0.516179\pi\)
−0.0508069 + 0.998708i \(0.516179\pi\)
\(200\) 0.695882 0.0492063
\(201\) 11.2390 0.792737
\(202\) −2.52726 −0.177818
\(203\) 8.45427 0.593374
\(204\) 0 0
\(205\) 6.84807 0.478290
\(206\) −3.68313 −0.256616
\(207\) 0.437369 0.0303992
\(208\) −24.7989 −1.71950
\(209\) −1.47895 −0.102301
\(210\) −0.506278 −0.0349365
\(211\) 13.0883 0.901033 0.450516 0.892768i \(-0.351240\pi\)
0.450516 + 0.892768i \(0.351240\pi\)
\(212\) −0.112369 −0.00771751
\(213\) 2.15979 0.147986
\(214\) 3.22792 0.220656
\(215\) −13.0117 −0.887393
\(216\) 0.964391 0.0656185
\(217\) 2.11063 0.143279
\(218\) 0.257542 0.0174430
\(219\) −6.96494 −0.470647
\(220\) 12.2388 0.825141
\(221\) 0 0
\(222\) 2.13971 0.143608
\(223\) 6.38093 0.427299 0.213649 0.976910i \(-0.431465\pi\)
0.213649 + 0.976910i \(0.431465\pi\)
\(224\) −2.82073 −0.188468
\(225\) −0.721577 −0.0481051
\(226\) −3.40320 −0.226377
\(227\) 7.36433 0.488788 0.244394 0.969676i \(-0.421411\pi\)
0.244394 + 0.969676i \(0.421411\pi\)
\(228\) −0.940808 −0.0623065
\(229\) −17.7227 −1.17115 −0.585574 0.810619i \(-0.699131\pi\)
−0.585574 + 0.810619i \(0.699131\pi\)
\(230\) −0.221430 −0.0146007
\(231\) 3.04983 0.200664
\(232\) 8.15322 0.535285
\(233\) 21.5513 1.41187 0.705935 0.708277i \(-0.250527\pi\)
0.705935 + 0.708277i \(0.250527\pi\)
\(234\) −1.66566 −0.108887
\(235\) 22.9803 1.49907
\(236\) 16.2348 1.05679
\(237\) 2.30069 0.149446
\(238\) 0 0
\(239\) 3.92600 0.253952 0.126976 0.991906i \(-0.459473\pi\)
0.126976 + 0.991906i \(0.459473\pi\)
\(240\) 7.53765 0.486553
\(241\) −6.32423 −0.407379 −0.203690 0.979035i \(-0.565293\pi\)
−0.203690 + 0.979035i \(0.565293\pi\)
\(242\) −0.415743 −0.0267250
\(243\) −1.00000 −0.0641500
\(244\) −24.2001 −1.54925
\(245\) −2.06843 −0.132147
\(246\) 0.810352 0.0516661
\(247\) 3.30002 0.209975
\(248\) 2.03547 0.129252
\(249\) 17.2398 1.09253
\(250\) 2.89671 0.183204
\(251\) 1.27935 0.0807517 0.0403759 0.999185i \(-0.487144\pi\)
0.0403759 + 0.999185i \(0.487144\pi\)
\(252\) 1.94009 0.122214
\(253\) 1.33390 0.0838615
\(254\) −0.322060 −0.0202079
\(255\) 0 0
\(256\) 11.4196 0.713726
\(257\) −16.4715 −1.02747 −0.513733 0.857950i \(-0.671738\pi\)
−0.513733 + 0.857950i \(0.671738\pi\)
\(258\) −1.53972 −0.0958585
\(259\) 8.74194 0.543198
\(260\) −27.3088 −1.69362
\(261\) −8.45427 −0.523306
\(262\) 0.970875 0.0599809
\(263\) 19.5085 1.20295 0.601473 0.798893i \(-0.294581\pi\)
0.601473 + 0.798893i \(0.294581\pi\)
\(264\) 2.94123 0.181020
\(265\) −0.119802 −0.00735939
\(266\) 0.118693 0.00727754
\(267\) 12.6380 0.773433
\(268\) 21.8047 1.33193
\(269\) 12.6844 0.773379 0.386690 0.922210i \(-0.373618\pi\)
0.386690 + 0.922210i \(0.373618\pi\)
\(270\) 0.506278 0.0308111
\(271\) −3.17103 −0.192626 −0.0963132 0.995351i \(-0.530705\pi\)
−0.0963132 + 0.995351i \(0.530705\pi\)
\(272\) 0 0
\(273\) −6.80516 −0.411867
\(274\) 4.69654 0.283728
\(275\) −2.20069 −0.132706
\(276\) 0.848535 0.0510758
\(277\) −4.89244 −0.293958 −0.146979 0.989140i \(-0.546955\pi\)
−0.146979 + 0.989140i \(0.546955\pi\)
\(278\) −1.85856 −0.111469
\(279\) −2.11063 −0.126360
\(280\) −1.99478 −0.119211
\(281\) 21.7835 1.29949 0.649747 0.760150i \(-0.274875\pi\)
0.649747 + 0.760150i \(0.274875\pi\)
\(282\) 2.71932 0.161933
\(283\) −2.41799 −0.143735 −0.0718673 0.997414i \(-0.522896\pi\)
−0.0718673 + 0.997414i \(0.522896\pi\)
\(284\) 4.19019 0.248642
\(285\) −1.00305 −0.0594153
\(286\) −5.07996 −0.300384
\(287\) 3.31075 0.195428
\(288\) 2.82073 0.166213
\(289\) 0 0
\(290\) 4.28021 0.251342
\(291\) −4.63222 −0.271546
\(292\) −13.5126 −0.790766
\(293\) −0.919352 −0.0537091 −0.0268546 0.999639i \(-0.508549\pi\)
−0.0268546 + 0.999639i \(0.508549\pi\)
\(294\) −0.244764 −0.0142749
\(295\) 17.3087 1.00775
\(296\) 8.43065 0.490021
\(297\) −3.04983 −0.176969
\(298\) 2.53418 0.146801
\(299\) −2.97636 −0.172128
\(300\) −1.39992 −0.0808247
\(301\) −6.29062 −0.362585
\(302\) 0.181493 0.0104438
\(303\) 10.3253 0.593175
\(304\) −1.76715 −0.101353
\(305\) −25.8010 −1.47736
\(306\) 0 0
\(307\) 21.4469 1.22404 0.612020 0.790842i \(-0.290357\pi\)
0.612020 + 0.790842i \(0.290357\pi\)
\(308\) 5.91694 0.337149
\(309\) 15.0477 0.856034
\(310\) 1.06856 0.0606903
\(311\) 11.2511 0.637993 0.318996 0.947756i \(-0.396654\pi\)
0.318996 + 0.947756i \(0.396654\pi\)
\(312\) −6.56283 −0.371547
\(313\) −16.3252 −0.922756 −0.461378 0.887204i \(-0.652645\pi\)
−0.461378 + 0.887204i \(0.652645\pi\)
\(314\) 0.0480982 0.00271434
\(315\) 2.06843 0.116543
\(316\) 4.46355 0.251094
\(317\) −8.48366 −0.476490 −0.238245 0.971205i \(-0.576572\pi\)
−0.238245 + 0.971205i \(0.576572\pi\)
\(318\) −0.0141765 −0.000794980 0
\(319\) −25.7841 −1.44363
\(320\) 13.6472 0.762904
\(321\) −13.1879 −0.736077
\(322\) −0.107052 −0.00596577
\(323\) 0 0
\(324\) −1.94009 −0.107783
\(325\) 4.91045 0.272383
\(326\) 1.28382 0.0711040
\(327\) −1.05221 −0.0581873
\(328\) 3.19286 0.176296
\(329\) 11.1100 0.612514
\(330\) 1.54406 0.0849977
\(331\) −31.2405 −1.71713 −0.858567 0.512701i \(-0.828645\pi\)
−0.858567 + 0.512701i \(0.828645\pi\)
\(332\) 33.4468 1.83563
\(333\) −8.74194 −0.479055
\(334\) −2.08659 −0.114173
\(335\) 23.2471 1.27013
\(336\) 3.64413 0.198804
\(337\) 10.3464 0.563605 0.281802 0.959472i \(-0.409068\pi\)
0.281802 + 0.959472i \(0.409068\pi\)
\(338\) 8.15312 0.443471
\(339\) 13.9040 0.755163
\(340\) 0 0
\(341\) −6.43705 −0.348586
\(342\) −0.118693 −0.00641819
\(343\) −1.00000 −0.0539949
\(344\) −6.06662 −0.327090
\(345\) 0.904669 0.0487057
\(346\) 5.22336 0.280810
\(347\) −26.2393 −1.40860 −0.704300 0.709903i \(-0.748739\pi\)
−0.704300 + 0.709903i \(0.748739\pi\)
\(348\) −16.4021 −0.879242
\(349\) 19.4377 1.04047 0.520237 0.854022i \(-0.325844\pi\)
0.520237 + 0.854022i \(0.325844\pi\)
\(350\) 0.176616 0.00944051
\(351\) 6.80516 0.363233
\(352\) 8.60275 0.458528
\(353\) 22.2508 1.18429 0.592145 0.805831i \(-0.298281\pi\)
0.592145 + 0.805831i \(0.298281\pi\)
\(354\) 2.04819 0.108860
\(355\) 4.46739 0.237104
\(356\) 24.5189 1.29950
\(357\) 0 0
\(358\) 0.226958 0.0119951
\(359\) 10.2274 0.539779 0.269889 0.962891i \(-0.413013\pi\)
0.269889 + 0.962891i \(0.413013\pi\)
\(360\) 1.99478 0.105134
\(361\) −18.7648 −0.987623
\(362\) 2.58594 0.135914
\(363\) 1.69855 0.0891507
\(364\) −13.2026 −0.692006
\(365\) −14.4065 −0.754072
\(366\) −3.05311 −0.159588
\(367\) −26.7526 −1.39647 −0.698236 0.715868i \(-0.746031\pi\)
−0.698236 + 0.715868i \(0.746031\pi\)
\(368\) 1.59383 0.0830842
\(369\) −3.31075 −0.172351
\(370\) 4.42585 0.230089
\(371\) −0.0579193 −0.00300702
\(372\) −4.09481 −0.212306
\(373\) 3.15373 0.163294 0.0816470 0.996661i \(-0.473982\pi\)
0.0816470 + 0.996661i \(0.473982\pi\)
\(374\) 0 0
\(375\) −11.8347 −0.611142
\(376\) 10.7144 0.552552
\(377\) 57.5327 2.96308
\(378\) 0.244764 0.0125893
\(379\) 21.4269 1.10063 0.550313 0.834958i \(-0.314508\pi\)
0.550313 + 0.834958i \(0.314508\pi\)
\(380\) −1.94600 −0.0998276
\(381\) 1.31580 0.0674105
\(382\) −3.15862 −0.161609
\(383\) −38.2727 −1.95564 −0.977822 0.209440i \(-0.932836\pi\)
−0.977822 + 0.209440i \(0.932836\pi\)
\(384\) 7.25638 0.370301
\(385\) 6.30837 0.321504
\(386\) −5.65275 −0.287717
\(387\) 6.29062 0.319770
\(388\) −8.98693 −0.456242
\(389\) −12.4104 −0.629233 −0.314616 0.949219i \(-0.601876\pi\)
−0.314616 + 0.949219i \(0.601876\pi\)
\(390\) −3.44530 −0.174460
\(391\) 0 0
\(392\) −0.964391 −0.0487091
\(393\) −3.96658 −0.200088
\(394\) 5.59126 0.281684
\(395\) 4.75883 0.239443
\(396\) −5.91694 −0.297338
\(397\) −22.7184 −1.14021 −0.570103 0.821573i \(-0.693097\pi\)
−0.570103 + 0.821573i \(0.693097\pi\)
\(398\) −0.350853 −0.0175867
\(399\) −0.484930 −0.0242768
\(400\) −2.62952 −0.131476
\(401\) 35.7224 1.78389 0.891946 0.452142i \(-0.149340\pi\)
0.891946 + 0.452142i \(0.149340\pi\)
\(402\) 2.75089 0.137202
\(403\) 14.3632 0.715480
\(404\) 20.0321 0.996633
\(405\) −2.06843 −0.102781
\(406\) 2.06930 0.102698
\(407\) −26.6614 −1.32156
\(408\) 0 0
\(409\) −1.35245 −0.0668742 −0.0334371 0.999441i \(-0.510645\pi\)
−0.0334371 + 0.999441i \(0.510645\pi\)
\(410\) 1.67616 0.0827796
\(411\) −19.1881 −0.946478
\(412\) 29.1939 1.43828
\(413\) 8.36804 0.411764
\(414\) 0.107052 0.00526132
\(415\) 35.6594 1.75045
\(416\) −19.1955 −0.941139
\(417\) 7.59329 0.371845
\(418\) −0.361994 −0.0177057
\(419\) −5.72061 −0.279470 −0.139735 0.990189i \(-0.544625\pi\)
−0.139735 + 0.990189i \(0.544625\pi\)
\(420\) 4.01295 0.195812
\(421\) 30.2660 1.47508 0.737538 0.675306i \(-0.235988\pi\)
0.737538 + 0.675306i \(0.235988\pi\)
\(422\) 3.20353 0.155945
\(423\) −11.1100 −0.540186
\(424\) −0.0558568 −0.00271265
\(425\) 0 0
\(426\) 0.528638 0.0256126
\(427\) −12.4737 −0.603644
\(428\) −25.5857 −1.23673
\(429\) 20.7546 1.00204
\(430\) −3.18480 −0.153585
\(431\) 23.5045 1.13217 0.566085 0.824347i \(-0.308457\pi\)
0.566085 + 0.824347i \(0.308457\pi\)
\(432\) −3.64413 −0.175328
\(433\) −15.3332 −0.736866 −0.368433 0.929654i \(-0.620106\pi\)
−0.368433 + 0.929654i \(0.620106\pi\)
\(434\) 0.516605 0.0247978
\(435\) −17.4871 −0.838443
\(436\) −2.04138 −0.0977644
\(437\) −0.212093 −0.0101458
\(438\) −1.70476 −0.0814568
\(439\) 9.66520 0.461295 0.230648 0.973037i \(-0.425916\pi\)
0.230648 + 0.973037i \(0.425916\pi\)
\(440\) 6.08373 0.290031
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 29.9624 1.42356 0.711778 0.702404i \(-0.247890\pi\)
0.711778 + 0.702404i \(0.247890\pi\)
\(444\) −16.9602 −0.804894
\(445\) 26.1409 1.23920
\(446\) 1.56182 0.0739543
\(447\) −10.3536 −0.489708
\(448\) 6.59786 0.311719
\(449\) −30.2211 −1.42622 −0.713110 0.701052i \(-0.752714\pi\)
−0.713110 + 0.701052i \(0.752714\pi\)
\(450\) −0.176616 −0.00832575
\(451\) −10.0972 −0.475460
\(452\) 26.9751 1.26880
\(453\) −0.741505 −0.0348390
\(454\) 1.80252 0.0845964
\(455\) −14.0760 −0.659894
\(456\) −0.467662 −0.0219003
\(457\) −21.9582 −1.02716 −0.513580 0.858042i \(-0.671681\pi\)
−0.513580 + 0.858042i \(0.671681\pi\)
\(458\) −4.33787 −0.202695
\(459\) 0 0
\(460\) 1.75514 0.0818338
\(461\) 13.2021 0.614882 0.307441 0.951567i \(-0.400527\pi\)
0.307441 + 0.951567i \(0.400527\pi\)
\(462\) 0.746487 0.0347297
\(463\) 15.8832 0.738157 0.369079 0.929398i \(-0.379673\pi\)
0.369079 + 0.929398i \(0.379673\pi\)
\(464\) −30.8085 −1.43025
\(465\) −4.36570 −0.202454
\(466\) 5.27496 0.244358
\(467\) 33.5795 1.55388 0.776938 0.629578i \(-0.216772\pi\)
0.776938 + 0.629578i \(0.216772\pi\)
\(468\) 13.2026 0.610292
\(469\) 11.2390 0.518968
\(470\) 5.62474 0.259450
\(471\) −0.196509 −0.00905464
\(472\) 8.07006 0.371455
\(473\) 19.1853 0.882142
\(474\) 0.563125 0.0258652
\(475\) 0.349914 0.0160552
\(476\) 0 0
\(477\) 0.0579193 0.00265194
\(478\) 0.960941 0.0439524
\(479\) 30.5865 1.39753 0.698766 0.715350i \(-0.253733\pi\)
0.698766 + 0.715350i \(0.253733\pi\)
\(480\) 5.83450 0.266307
\(481\) 59.4903 2.71252
\(482\) −1.54794 −0.0705068
\(483\) 0.437369 0.0199010
\(484\) 3.29534 0.149788
\(485\) −9.58144 −0.435071
\(486\) −0.244764 −0.0111027
\(487\) −24.5531 −1.11260 −0.556302 0.830980i \(-0.687780\pi\)
−0.556302 + 0.830980i \(0.687780\pi\)
\(488\) −12.0295 −0.544550
\(489\) −5.24513 −0.237193
\(490\) −0.506278 −0.0228713
\(491\) 24.1370 1.08929 0.544645 0.838667i \(-0.316665\pi\)
0.544645 + 0.838667i \(0.316665\pi\)
\(492\) −6.42316 −0.289578
\(493\) 0 0
\(494\) 0.807726 0.0363413
\(495\) −6.30837 −0.283540
\(496\) −7.69141 −0.345355
\(497\) 2.15979 0.0968799
\(498\) 4.21967 0.189088
\(499\) 16.2537 0.727614 0.363807 0.931474i \(-0.381477\pi\)
0.363807 + 0.931474i \(0.381477\pi\)
\(500\) −22.9604 −1.02682
\(501\) 8.52493 0.380866
\(502\) 0.313138 0.0139760
\(503\) −33.6235 −1.49920 −0.749599 0.661892i \(-0.769754\pi\)
−0.749599 + 0.661892i \(0.769754\pi\)
\(504\) 0.964391 0.0429574
\(505\) 21.3573 0.950386
\(506\) 0.326490 0.0145143
\(507\) −33.3102 −1.47936
\(508\) 2.55277 0.113261
\(509\) −1.81291 −0.0803558 −0.0401779 0.999193i \(-0.512792\pi\)
−0.0401779 + 0.999193i \(0.512792\pi\)
\(510\) 0 0
\(511\) −6.96494 −0.308111
\(512\) 17.3079 0.764907
\(513\) 0.484930 0.0214102
\(514\) −4.03163 −0.177828
\(515\) 31.1252 1.37154
\(516\) 12.2044 0.537268
\(517\) −33.8836 −1.49020
\(518\) 2.13971 0.0940134
\(519\) −21.3404 −0.936741
\(520\) −13.5748 −0.595294
\(521\) −24.3784 −1.06804 −0.534019 0.845472i \(-0.679319\pi\)
−0.534019 + 0.845472i \(0.679319\pi\)
\(522\) −2.06930 −0.0905707
\(523\) −13.3601 −0.584196 −0.292098 0.956388i \(-0.594353\pi\)
−0.292098 + 0.956388i \(0.594353\pi\)
\(524\) −7.69553 −0.336181
\(525\) −0.721577 −0.0314922
\(526\) 4.77497 0.208199
\(527\) 0 0
\(528\) −11.1140 −0.483674
\(529\) −22.8087 −0.991683
\(530\) −0.0293232 −0.00127372
\(531\) −8.36804 −0.363142
\(532\) −0.940808 −0.0407892
\(533\) 22.5302 0.975891
\(534\) 3.09332 0.133861
\(535\) −27.2783 −1.17935
\(536\) 10.8388 0.468164
\(537\) −0.927253 −0.0400139
\(538\) 3.10467 0.133852
\(539\) 3.04983 0.131365
\(540\) −4.01295 −0.172690
\(541\) 22.8144 0.980868 0.490434 0.871478i \(-0.336838\pi\)
0.490434 + 0.871478i \(0.336838\pi\)
\(542\) −0.776153 −0.0333386
\(543\) −10.5650 −0.453389
\(544\) 0 0
\(545\) −2.17642 −0.0932278
\(546\) −1.66566 −0.0712835
\(547\) −11.5617 −0.494341 −0.247170 0.968972i \(-0.579501\pi\)
−0.247170 + 0.968972i \(0.579501\pi\)
\(548\) −37.2266 −1.59024
\(549\) 12.4737 0.532364
\(550\) −0.538648 −0.0229680
\(551\) 4.09973 0.174654
\(552\) 0.421794 0.0179528
\(553\) 2.30069 0.0978353
\(554\) −1.19749 −0.0508765
\(555\) −18.0821 −0.767544
\(556\) 14.7317 0.624762
\(557\) −32.6258 −1.38240 −0.691200 0.722664i \(-0.742918\pi\)
−0.691200 + 0.722664i \(0.742918\pi\)
\(558\) −0.516605 −0.0218696
\(559\) −42.8087 −1.81061
\(560\) 7.53765 0.318524
\(561\) 0 0
\(562\) 5.33181 0.224909
\(563\) 29.3944 1.23883 0.619413 0.785065i \(-0.287371\pi\)
0.619413 + 0.785065i \(0.287371\pi\)
\(564\) −21.5544 −0.907604
\(565\) 28.7596 1.20992
\(566\) −0.591836 −0.0248767
\(567\) −1.00000 −0.0419961
\(568\) 2.08288 0.0873958
\(569\) 3.20394 0.134316 0.0671581 0.997742i \(-0.478607\pi\)
0.0671581 + 0.997742i \(0.478607\pi\)
\(570\) −0.245509 −0.0102832
\(571\) 18.7057 0.782810 0.391405 0.920218i \(-0.371989\pi\)
0.391405 + 0.920218i \(0.371989\pi\)
\(572\) 40.2657 1.68360
\(573\) 12.9048 0.539105
\(574\) 0.810352 0.0338234
\(575\) −0.315595 −0.0131612
\(576\) −6.59786 −0.274911
\(577\) −37.2105 −1.54909 −0.774546 0.632517i \(-0.782022\pi\)
−0.774546 + 0.632517i \(0.782022\pi\)
\(578\) 0 0
\(579\) 23.0947 0.959784
\(580\) −33.9266 −1.40872
\(581\) 17.2398 0.715227
\(582\) −1.13380 −0.0469975
\(583\) 0.176644 0.00731584
\(584\) −6.71692 −0.277948
\(585\) 14.0760 0.581972
\(586\) −0.225024 −0.00929565
\(587\) 0.898553 0.0370872 0.0185436 0.999828i \(-0.494097\pi\)
0.0185436 + 0.999828i \(0.494097\pi\)
\(588\) 1.94009 0.0800080
\(589\) 1.02351 0.0421728
\(590\) 4.23655 0.174416
\(591\) −22.8435 −0.939657
\(592\) −31.8568 −1.30931
\(593\) 36.3966 1.49463 0.747314 0.664471i \(-0.231343\pi\)
0.747314 + 0.664471i \(0.231343\pi\)
\(594\) −0.746487 −0.0306287
\(595\) 0 0
\(596\) −20.0869 −0.822791
\(597\) 1.43344 0.0586667
\(598\) −0.728506 −0.0297908
\(599\) −31.9088 −1.30376 −0.651878 0.758324i \(-0.726019\pi\)
−0.651878 + 0.758324i \(0.726019\pi\)
\(600\) −0.695882 −0.0284093
\(601\) 22.4172 0.914415 0.457208 0.889360i \(-0.348850\pi\)
0.457208 + 0.889360i \(0.348850\pi\)
\(602\) −1.53972 −0.0627541
\(603\) −11.2390 −0.457687
\(604\) −1.43859 −0.0585353
\(605\) 3.51334 0.142838
\(606\) 2.52726 0.102663
\(607\) −18.7457 −0.760865 −0.380433 0.924809i \(-0.624225\pi\)
−0.380433 + 0.924809i \(0.624225\pi\)
\(608\) −1.36786 −0.0554739
\(609\) −8.45427 −0.342584
\(610\) −6.31515 −0.255693
\(611\) 75.6053 3.05866
\(612\) 0 0
\(613\) −47.4839 −1.91786 −0.958928 0.283649i \(-0.908455\pi\)
−0.958928 + 0.283649i \(0.908455\pi\)
\(614\) 5.24943 0.211850
\(615\) −6.84807 −0.276141
\(616\) 2.94123 0.118505
\(617\) −35.0887 −1.41262 −0.706309 0.707904i \(-0.749641\pi\)
−0.706309 + 0.707904i \(0.749641\pi\)
\(618\) 3.68313 0.148157
\(619\) −42.0340 −1.68949 −0.844745 0.535170i \(-0.820248\pi\)
−0.844745 + 0.535170i \(0.820248\pi\)
\(620\) −8.46985 −0.340157
\(621\) −0.437369 −0.0175510
\(622\) 2.75387 0.110420
\(623\) 12.6380 0.506331
\(624\) 24.7989 0.992751
\(625\) −20.8714 −0.834858
\(626\) −3.99582 −0.159705
\(627\) 1.47895 0.0590637
\(628\) −0.381245 −0.0152133
\(629\) 0 0
\(630\) 0.506278 0.0201706
\(631\) 2.46401 0.0980907 0.0490453 0.998797i \(-0.484382\pi\)
0.0490453 + 0.998797i \(0.484382\pi\)
\(632\) 2.21876 0.0882577
\(633\) −13.0883 −0.520211
\(634\) −2.07649 −0.0824680
\(635\) 2.72165 0.108005
\(636\) 0.112369 0.00445571
\(637\) −6.80516 −0.269630
\(638\) −6.31100 −0.249855
\(639\) −2.15979 −0.0854400
\(640\) 15.0093 0.593297
\(641\) −40.9372 −1.61692 −0.808461 0.588550i \(-0.799699\pi\)
−0.808461 + 0.588550i \(0.799699\pi\)
\(642\) −3.22792 −0.127396
\(643\) 15.1296 0.596652 0.298326 0.954464i \(-0.403572\pi\)
0.298326 + 0.954464i \(0.403572\pi\)
\(644\) 0.848535 0.0334370
\(645\) 13.0117 0.512337
\(646\) 0 0
\(647\) −32.4261 −1.27480 −0.637401 0.770532i \(-0.719990\pi\)
−0.637401 + 0.770532i \(0.719990\pi\)
\(648\) −0.964391 −0.0378848
\(649\) −25.5211 −1.00179
\(650\) 1.20190 0.0471423
\(651\) −2.11063 −0.0827220
\(652\) −10.1760 −0.398524
\(653\) −7.14395 −0.279564 −0.139782 0.990182i \(-0.544640\pi\)
−0.139782 + 0.990182i \(0.544640\pi\)
\(654\) −0.257542 −0.0100707
\(655\) −8.20462 −0.320581
\(656\) −12.0648 −0.471052
\(657\) 6.96494 0.271728
\(658\) 2.71932 0.106010
\(659\) 27.0371 1.05321 0.526607 0.850109i \(-0.323464\pi\)
0.526607 + 0.850109i \(0.323464\pi\)
\(660\) −12.2388 −0.476395
\(661\) 36.7309 1.42867 0.714333 0.699806i \(-0.246730\pi\)
0.714333 + 0.699806i \(0.246730\pi\)
\(662\) −7.64654 −0.297191
\(663\) 0 0
\(664\) 16.6259 0.645210
\(665\) −1.00305 −0.0388964
\(666\) −2.13971 −0.0829120
\(667\) −3.69763 −0.143173
\(668\) 16.5391 0.639918
\(669\) −6.38093 −0.246701
\(670\) 5.69005 0.219826
\(671\) 38.0426 1.46862
\(672\) 2.82073 0.108812
\(673\) −15.9029 −0.613013 −0.306507 0.951869i \(-0.599160\pi\)
−0.306507 + 0.951869i \(0.599160\pi\)
\(674\) 2.53242 0.0975453
\(675\) 0.721577 0.0277735
\(676\) −64.6248 −2.48557
\(677\) −25.7282 −0.988815 −0.494407 0.869230i \(-0.664615\pi\)
−0.494407 + 0.869230i \(0.664615\pi\)
\(678\) 3.40320 0.130699
\(679\) −4.63222 −0.177768
\(680\) 0 0
\(681\) −7.36433 −0.282202
\(682\) −1.57556 −0.0603312
\(683\) −42.8235 −1.63860 −0.819298 0.573368i \(-0.805637\pi\)
−0.819298 + 0.573368i \(0.805637\pi\)
\(684\) 0.940808 0.0359727
\(685\) −39.6893 −1.51645
\(686\) −0.244764 −0.00934512
\(687\) 17.7227 0.676163
\(688\) 22.9239 0.873964
\(689\) −0.394150 −0.0150159
\(690\) 0.221430 0.00842970
\(691\) 30.4402 1.15800 0.579000 0.815327i \(-0.303443\pi\)
0.579000 + 0.815327i \(0.303443\pi\)
\(692\) −41.4024 −1.57388
\(693\) −3.04983 −0.115853
\(694\) −6.42243 −0.243792
\(695\) 15.7062 0.595771
\(696\) −8.15322 −0.309047
\(697\) 0 0
\(698\) 4.75763 0.180079
\(699\) −21.5513 −0.815143
\(700\) −1.39992 −0.0529122
\(701\) 14.5317 0.548853 0.274427 0.961608i \(-0.411512\pi\)
0.274427 + 0.961608i \(0.411512\pi\)
\(702\) 1.66566 0.0628661
\(703\) 4.23923 0.159885
\(704\) −20.1223 −0.758389
\(705\) −22.9803 −0.865488
\(706\) 5.44618 0.204970
\(707\) 10.3253 0.388324
\(708\) −16.2348 −0.610140
\(709\) −26.8134 −1.00700 −0.503499 0.863996i \(-0.667954\pi\)
−0.503499 + 0.863996i \(0.667954\pi\)
\(710\) 1.09345 0.0410366
\(711\) −2.30069 −0.0862826
\(712\) 12.1880 0.456763
\(713\) −0.923123 −0.0345712
\(714\) 0 0
\(715\) 42.9295 1.60547
\(716\) −1.79896 −0.0672301
\(717\) −3.92600 −0.146619
\(718\) 2.50328 0.0934217
\(719\) −2.03789 −0.0760005 −0.0380003 0.999278i \(-0.512099\pi\)
−0.0380003 + 0.999278i \(0.512099\pi\)
\(720\) −7.53765 −0.280912
\(721\) 15.0477 0.560406
\(722\) −4.59295 −0.170932
\(723\) 6.32423 0.235201
\(724\) −20.4971 −0.761770
\(725\) 6.10041 0.226563
\(726\) 0.415743 0.0154297
\(727\) 47.5511 1.76357 0.881787 0.471648i \(-0.156341\pi\)
0.881787 + 0.471648i \(0.156341\pi\)
\(728\) −6.56283 −0.243235
\(729\) 1.00000 0.0370370
\(730\) −3.52619 −0.130510
\(731\) 0 0
\(732\) 24.2001 0.894461
\(733\) 0.552854 0.0204201 0.0102101 0.999948i \(-0.496750\pi\)
0.0102101 + 0.999948i \(0.496750\pi\)
\(734\) −6.54805 −0.241693
\(735\) 2.06843 0.0762954
\(736\) 1.23370 0.0454748
\(737\) −34.2770 −1.26261
\(738\) −0.810352 −0.0298295
\(739\) 22.3783 0.823199 0.411600 0.911365i \(-0.364970\pi\)
0.411600 + 0.911365i \(0.364970\pi\)
\(740\) −35.0810 −1.28960
\(741\) −3.30002 −0.121229
\(742\) −0.0141765 −0.000520437 0
\(743\) −20.8678 −0.765564 −0.382782 0.923839i \(-0.625034\pi\)
−0.382782 + 0.923839i \(0.625034\pi\)
\(744\) −2.03547 −0.0746240
\(745\) −21.4157 −0.784611
\(746\) 0.771919 0.0282620
\(747\) −17.2398 −0.630771
\(748\) 0 0
\(749\) −13.1879 −0.481876
\(750\) −2.89671 −0.105773
\(751\) 5.44466 0.198678 0.0993392 0.995054i \(-0.468327\pi\)
0.0993392 + 0.995054i \(0.468327\pi\)
\(752\) −40.4863 −1.47638
\(753\) −1.27935 −0.0466220
\(754\) 14.0819 0.512833
\(755\) −1.53376 −0.0558191
\(756\) −1.94009 −0.0705604
\(757\) −9.01630 −0.327703 −0.163851 0.986485i \(-0.552392\pi\)
−0.163851 + 0.986485i \(0.552392\pi\)
\(758\) 5.24453 0.190490
\(759\) −1.33390 −0.0484175
\(760\) −0.967328 −0.0350887
\(761\) −19.5596 −0.709035 −0.354518 0.935049i \(-0.615355\pi\)
−0.354518 + 0.935049i \(0.615355\pi\)
\(762\) 0.322060 0.0116670
\(763\) −1.05221 −0.0380925
\(764\) 25.0364 0.905787
\(765\) 0 0
\(766\) −9.36776 −0.338471
\(767\) 56.9458 2.05620
\(768\) −11.4196 −0.412070
\(769\) 29.9914 1.08152 0.540758 0.841178i \(-0.318137\pi\)
0.540758 + 0.841178i \(0.318137\pi\)
\(770\) 1.54406 0.0556440
\(771\) 16.4715 0.593208
\(772\) 44.8059 1.61260
\(773\) 3.07006 0.110422 0.0552111 0.998475i \(-0.482417\pi\)
0.0552111 + 0.998475i \(0.482417\pi\)
\(774\) 1.53972 0.0553439
\(775\) 1.52298 0.0547071
\(776\) −4.46727 −0.160366
\(777\) −8.74194 −0.313615
\(778\) −3.03762 −0.108904
\(779\) 1.60548 0.0575224
\(780\) 27.3088 0.977811
\(781\) −6.58699 −0.235701
\(782\) 0 0
\(783\) 8.45427 0.302131
\(784\) 3.64413 0.130148
\(785\) −0.406465 −0.0145074
\(786\) −0.970875 −0.0346300
\(787\) 37.3431 1.33114 0.665569 0.746336i \(-0.268189\pi\)
0.665569 + 0.746336i \(0.268189\pi\)
\(788\) −44.3185 −1.57878
\(789\) −19.5085 −0.694522
\(790\) 1.16479 0.0414413
\(791\) 13.9040 0.494370
\(792\) −2.94123 −0.104512
\(793\) −84.8855 −3.01437
\(794\) −5.56065 −0.197340
\(795\) 0.119802 0.00424895
\(796\) 2.78100 0.0985699
\(797\) −21.7299 −0.769713 −0.384856 0.922977i \(-0.625749\pi\)
−0.384856 + 0.922977i \(0.625749\pi\)
\(798\) −0.118693 −0.00420169
\(799\) 0 0
\(800\) −2.03538 −0.0719614
\(801\) −12.6380 −0.446542
\(802\) 8.74354 0.308745
\(803\) 21.2419 0.749609
\(804\) −21.8047 −0.768991
\(805\) 0.904669 0.0318854
\(806\) 3.51558 0.123831
\(807\) −12.6844 −0.446511
\(808\) 9.95765 0.350309
\(809\) −8.70389 −0.306012 −0.153006 0.988225i \(-0.548895\pi\)
−0.153006 + 0.988225i \(0.548895\pi\)
\(810\) −0.506278 −0.0177888
\(811\) 22.5668 0.792427 0.396214 0.918158i \(-0.370324\pi\)
0.396214 + 0.918158i \(0.370324\pi\)
\(812\) −16.4021 −0.575599
\(813\) 3.17103 0.111213
\(814\) −6.52574 −0.228727
\(815\) −10.8492 −0.380031
\(816\) 0 0
\(817\) −3.05051 −0.106724
\(818\) −0.331030 −0.0115742
\(819\) 6.80516 0.237792
\(820\) −13.2859 −0.463963
\(821\) −15.0708 −0.525975 −0.262987 0.964799i \(-0.584708\pi\)
−0.262987 + 0.964799i \(0.584708\pi\)
\(822\) −4.69654 −0.163811
\(823\) 33.1355 1.15503 0.577515 0.816380i \(-0.304022\pi\)
0.577515 + 0.816380i \(0.304022\pi\)
\(824\) 14.5119 0.505545
\(825\) 2.20069 0.0766180
\(826\) 2.04819 0.0712657
\(827\) 25.7615 0.895814 0.447907 0.894080i \(-0.352170\pi\)
0.447907 + 0.894080i \(0.352170\pi\)
\(828\) −0.848535 −0.0294886
\(829\) −24.4892 −0.850546 −0.425273 0.905065i \(-0.639822\pi\)
−0.425273 + 0.905065i \(0.639822\pi\)
\(830\) 8.72812 0.302957
\(831\) 4.89244 0.169717
\(832\) 44.8995 1.55661
\(833\) 0 0
\(834\) 1.85856 0.0643567
\(835\) 17.6333 0.610224
\(836\) 2.86930 0.0992369
\(837\) 2.11063 0.0729540
\(838\) −1.40020 −0.0483690
\(839\) −10.1531 −0.350523 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(840\) 1.99478 0.0688264
\(841\) 42.4747 1.46464
\(842\) 7.40802 0.255297
\(843\) −21.7835 −0.750263
\(844\) −25.3924 −0.874043
\(845\) −68.9000 −2.37023
\(846\) −2.71932 −0.0934922
\(847\) 1.69855 0.0583628
\(848\) 0.211066 0.00724802
\(849\) 2.41799 0.0829852
\(850\) 0 0
\(851\) −3.82345 −0.131066
\(852\) −4.19019 −0.143554
\(853\) −30.6769 −1.05036 −0.525179 0.850992i \(-0.676002\pi\)
−0.525179 + 0.850992i \(0.676002\pi\)
\(854\) −3.05311 −0.104475
\(855\) 1.00305 0.0343034
\(856\) −12.7183 −0.434702
\(857\) −4.88180 −0.166759 −0.0833795 0.996518i \(-0.526571\pi\)
−0.0833795 + 0.996518i \(0.526571\pi\)
\(858\) 5.07996 0.173427
\(859\) 12.8261 0.437621 0.218810 0.975767i \(-0.429782\pi\)
0.218810 + 0.975767i \(0.429782\pi\)
\(860\) 25.2440 0.860812
\(861\) −3.31075 −0.112830
\(862\) 5.75304 0.195949
\(863\) 38.0099 1.29387 0.646936 0.762544i \(-0.276050\pi\)
0.646936 + 0.762544i \(0.276050\pi\)
\(864\) −2.82073 −0.0959633
\(865\) −44.1413 −1.50085
\(866\) −3.75300 −0.127532
\(867\) 0 0
\(868\) −4.09481 −0.138987
\(869\) −7.01671 −0.238026
\(870\) −4.28021 −0.145113
\(871\) 76.4831 2.59153
\(872\) −1.01474 −0.0343634
\(873\) 4.63222 0.156777
\(874\) −0.0519127 −0.00175597
\(875\) −11.8347 −0.400086
\(876\) 13.5126 0.456549
\(877\) 37.5705 1.26867 0.634333 0.773060i \(-0.281275\pi\)
0.634333 + 0.773060i \(0.281275\pi\)
\(878\) 2.36569 0.0798382
\(879\) 0.919352 0.0310090
\(880\) −22.9885 −0.774944
\(881\) 36.6424 1.23451 0.617256 0.786762i \(-0.288244\pi\)
0.617256 + 0.786762i \(0.288244\pi\)
\(882\) 0.244764 0.00824162
\(883\) −39.2293 −1.32017 −0.660086 0.751190i \(-0.729480\pi\)
−0.660086 + 0.751190i \(0.729480\pi\)
\(884\) 0 0
\(885\) −17.3087 −0.581827
\(886\) 7.33371 0.246381
\(887\) −11.0075 −0.369596 −0.184798 0.982777i \(-0.559163\pi\)
−0.184798 + 0.982777i \(0.559163\pi\)
\(888\) −8.43065 −0.282914
\(889\) 1.31580 0.0441306
\(890\) 6.39833 0.214473
\(891\) 3.04983 0.102173
\(892\) −12.3796 −0.414499
\(893\) 5.38757 0.180288
\(894\) −2.53418 −0.0847557
\(895\) −1.91796 −0.0641104
\(896\) 7.25638 0.242419
\(897\) 2.97636 0.0993779
\(898\) −7.39701 −0.246842
\(899\) 17.8438 0.595125
\(900\) 1.39992 0.0466642
\(901\) 0 0
\(902\) −2.47143 −0.0822897
\(903\) 6.29062 0.209339
\(904\) 13.4089 0.445974
\(905\) −21.8531 −0.726421
\(906\) −0.181493 −0.00602972
\(907\) 32.6185 1.08308 0.541540 0.840675i \(-0.317841\pi\)
0.541540 + 0.840675i \(0.317841\pi\)
\(908\) −14.2875 −0.474146
\(909\) −10.3253 −0.342470
\(910\) −3.44530 −0.114211
\(911\) 35.7285 1.18374 0.591869 0.806034i \(-0.298390\pi\)
0.591869 + 0.806034i \(0.298390\pi\)
\(912\) 1.76715 0.0585161
\(913\) −52.5784 −1.74009
\(914\) −5.37456 −0.177775
\(915\) 25.8010 0.852955
\(916\) 34.3836 1.13607
\(917\) −3.96658 −0.130988
\(918\) 0 0
\(919\) −17.0877 −0.563672 −0.281836 0.959463i \(-0.590943\pi\)
−0.281836 + 0.959463i \(0.590943\pi\)
\(920\) 0.872454 0.0287640
\(921\) −21.4469 −0.706700
\(922\) 3.23138 0.106420
\(923\) 14.6977 0.483781
\(924\) −5.91694 −0.194653
\(925\) 6.30798 0.207405
\(926\) 3.88764 0.127756
\(927\) −15.0477 −0.494232
\(928\) −23.8472 −0.782824
\(929\) 18.2862 0.599950 0.299975 0.953947i \(-0.403022\pi\)
0.299975 + 0.953947i \(0.403022\pi\)
\(930\) −1.06856 −0.0350396
\(931\) −0.484930 −0.0158929
\(932\) −41.8114 −1.36958
\(933\) −11.2511 −0.368345
\(934\) 8.21905 0.268935
\(935\) 0 0
\(936\) 6.56283 0.214513
\(937\) 43.6001 1.42435 0.712177 0.702000i \(-0.247710\pi\)
0.712177 + 0.702000i \(0.247710\pi\)
\(938\) 2.75089 0.0898199
\(939\) 16.3252 0.532753
\(940\) −44.5839 −1.45417
\(941\) −12.4575 −0.406102 −0.203051 0.979168i \(-0.565086\pi\)
−0.203051 + 0.979168i \(0.565086\pi\)
\(942\) −0.0480982 −0.00156712
\(943\) −1.44802 −0.0471540
\(944\) −30.4943 −0.992504
\(945\) −2.06843 −0.0672862
\(946\) 4.69587 0.152676
\(947\) 19.6352 0.638057 0.319028 0.947745i \(-0.396643\pi\)
0.319028 + 0.947745i \(0.396643\pi\)
\(948\) −4.46355 −0.144969
\(949\) −47.3975 −1.53859
\(950\) 0.0856462 0.00277873
\(951\) 8.48366 0.275102
\(952\) 0 0
\(953\) 5.04661 0.163476 0.0817379 0.996654i \(-0.473953\pi\)
0.0817379 + 0.996654i \(0.473953\pi\)
\(954\) 0.0141765 0.000458982 0
\(955\) 26.6927 0.863756
\(956\) −7.61679 −0.246345
\(957\) 25.7841 0.833481
\(958\) 7.48646 0.241876
\(959\) −19.1881 −0.619615
\(960\) −13.6472 −0.440463
\(961\) −26.5452 −0.856298
\(962\) 14.5611 0.469467
\(963\) 13.1879 0.424974
\(964\) 12.2696 0.395177
\(965\) 47.7699 1.53777
\(966\) 0.107052 0.00344434
\(967\) −52.9923 −1.70412 −0.852058 0.523447i \(-0.824646\pi\)
−0.852058 + 0.523447i \(0.824646\pi\)
\(968\) 1.63806 0.0526494
\(969\) 0 0
\(970\) −2.34519 −0.0752995
\(971\) 38.0711 1.22176 0.610880 0.791723i \(-0.290816\pi\)
0.610880 + 0.791723i \(0.290816\pi\)
\(972\) 1.94009 0.0622284
\(973\) 7.59329 0.243430
\(974\) −6.00969 −0.192563
\(975\) −4.91045 −0.157260
\(976\) 45.4558 1.45500
\(977\) 33.9575 1.08640 0.543199 0.839604i \(-0.317213\pi\)
0.543199 + 0.839604i \(0.317213\pi\)
\(978\) −1.28382 −0.0410519
\(979\) −38.5437 −1.23186
\(980\) 4.01295 0.128189
\(981\) 1.05221 0.0335944
\(982\) 5.90787 0.188528
\(983\) −2.08074 −0.0663653 −0.0331826 0.999449i \(-0.510564\pi\)
−0.0331826 + 0.999449i \(0.510564\pi\)
\(984\) −3.19286 −0.101785
\(985\) −47.2503 −1.50552
\(986\) 0 0
\(987\) −11.1100 −0.353635
\(988\) −6.40234 −0.203686
\(989\) 2.75132 0.0874869
\(990\) −1.54406 −0.0490734
\(991\) −18.0029 −0.571881 −0.285941 0.958247i \(-0.592306\pi\)
−0.285941 + 0.958247i \(0.592306\pi\)
\(992\) −5.95352 −0.189024
\(993\) 31.2405 0.991388
\(994\) 0.528638 0.0167674
\(995\) 2.96497 0.0939960
\(996\) −33.4468 −1.05980
\(997\) 17.8497 0.565304 0.282652 0.959222i \(-0.408786\pi\)
0.282652 + 0.959222i \(0.408786\pi\)
\(998\) 3.97831 0.125931
\(999\) 8.74194 0.276583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.z.1.6 9
17.16 even 2 6069.2.a.bc.1.6 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.z.1.6 9 1.1 even 1 trivial
6069.2.a.bc.1.6 yes 9 17.16 even 2