Properties

Label 2-6069-1.1-c1-0-3
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.244·2-s − 3-s − 1.94·4-s − 2.06·5-s − 0.244·6-s − 7-s − 0.964·8-s + 9-s − 0.506·10-s + 3.04·11-s + 1.94·12-s − 6.80·13-s − 0.244·14-s + 2.06·15-s + 3.64·16-s + 0.244·18-s − 0.484·19-s + 4.01·20-s + 21-s + 0.746·22-s + 0.437·23-s + 0.964·24-s − 0.721·25-s − 1.66·26-s − 27-s + 1.94·28-s − 8.45·29-s + ⋯
L(s)  = 1  + 0.173·2-s − 0.577·3-s − 0.970·4-s − 0.925·5-s − 0.0999·6-s − 0.377·7-s − 0.340·8-s + 0.333·9-s − 0.160·10-s + 0.919·11-s + 0.560·12-s − 1.88·13-s − 0.0654·14-s + 0.534·15-s + 0.911·16-s + 0.0576·18-s − 0.111·19-s + 0.897·20-s + 0.218·21-s + 0.159·22-s + 0.0911·23-s + 0.196·24-s − 0.144·25-s − 0.326·26-s − 0.192·27-s + 0.366·28-s − 1.56·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1977175457\)
\(L(\frac12)\) \(\approx\) \(0.1977175457\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - 0.244T + 2T^{2} \)
5 \( 1 + 2.06T + 5T^{2} \)
11 \( 1 - 3.04T + 11T^{2} \)
13 \( 1 + 6.80T + 13T^{2} \)
19 \( 1 + 0.484T + 19T^{2} \)
23 \( 1 - 0.437T + 23T^{2} \)
29 \( 1 + 8.45T + 29T^{2} \)
31 \( 1 + 2.11T + 31T^{2} \)
37 \( 1 + 8.74T + 37T^{2} \)
41 \( 1 + 3.31T + 41T^{2} \)
43 \( 1 - 6.29T + 43T^{2} \)
47 \( 1 + 11.1T + 47T^{2} \)
53 \( 1 - 0.0579T + 53T^{2} \)
59 \( 1 + 8.36T + 59T^{2} \)
61 \( 1 - 12.4T + 61T^{2} \)
67 \( 1 + 11.2T + 67T^{2} \)
71 \( 1 + 2.15T + 71T^{2} \)
73 \( 1 - 6.96T + 73T^{2} \)
79 \( 1 + 2.30T + 79T^{2} \)
83 \( 1 + 17.2T + 83T^{2} \)
89 \( 1 + 12.6T + 89T^{2} \)
97 \( 1 - 4.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.991286817691019810321301195083, −7.29464973868351159722768967525, −6.79465251010246307578785738398, −5.72534500642276836320731805270, −5.16209532792952177782470437689, −4.37645616591491727199564991845, −3.87480179642909555680201877750, −3.06466824844604654341513648178, −1.69048166989844545536599263738, −0.23256967817525608074498281194, 0.23256967817525608074498281194, 1.69048166989844545536599263738, 3.06466824844604654341513648178, 3.87480179642909555680201877750, 4.37645616591491727199564991845, 5.16209532792952177782470437689, 5.72534500642276836320731805270, 6.79465251010246307578785738398, 7.29464973868351159722768967525, 7.991286817691019810321301195083

Graph of the $Z$-function along the critical line