Properties

Label 6069.2.a.q.1.3
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,4,-2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.19869\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83424 q^{2} +1.00000 q^{3} +1.36445 q^{4} +1.19869 q^{5} +1.83424 q^{6} +1.00000 q^{7} -1.16576 q^{8} +1.00000 q^{9} +2.19869 q^{10} -6.23163 q^{11} +1.36445 q^{12} -4.83424 q^{13} +1.83424 q^{14} +1.19869 q^{15} -4.86718 q^{16} +1.83424 q^{18} +3.30404 q^{19} +1.63555 q^{20} +1.00000 q^{21} -11.4303 q^{22} +1.19869 q^{23} -1.16576 q^{24} -3.56314 q^{25} -8.86718 q^{26} +1.00000 q^{27} +1.36445 q^{28} -5.06587 q^{29} +2.19869 q^{30} +3.39738 q^{31} -6.59607 q^{32} -6.23163 q^{33} +1.19869 q^{35} +1.36445 q^{36} -10.8277 q^{37} +6.06041 q^{38} -4.83424 q^{39} -1.39738 q^{40} +2.92759 q^{41} +1.83424 q^{42} +2.43032 q^{43} -8.50273 q^{44} +1.19869 q^{45} +2.19869 q^{46} -4.46980 q^{47} -4.86718 q^{48} +1.00000 q^{49} -6.53566 q^{50} -6.59607 q^{52} -4.59607 q^{53} +1.83424 q^{54} -7.46980 q^{55} -1.16576 q^{56} +3.30404 q^{57} -9.29204 q^{58} +6.50273 q^{59} +1.63555 q^{60} +9.96052 q^{61} +6.23163 q^{62} +1.00000 q^{63} -2.36445 q^{64} -5.79476 q^{65} -11.4303 q^{66} -2.12628 q^{67} +1.19869 q^{69} +2.19869 q^{70} -4.45779 q^{71} -1.16576 q^{72} -10.3370 q^{73} -19.8606 q^{74} -3.56314 q^{75} +4.50819 q^{76} -6.23163 q^{77} -8.86718 q^{78} -13.0000 q^{79} -5.83424 q^{80} +1.00000 q^{81} +5.36991 q^{82} -14.2316 q^{83} +1.36445 q^{84} +4.45779 q^{86} -5.06587 q^{87} +7.26456 q^{88} +7.33151 q^{89} +2.19869 q^{90} -4.83424 q^{91} +1.63555 q^{92} +3.39738 q^{93} -8.19869 q^{94} +3.96052 q^{95} -6.59607 q^{96} -17.7673 q^{97} +1.83424 q^{98} -6.23163 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 4 q^{4} - 2 q^{5} + 3 q^{7} - 9 q^{8} + 3 q^{9} + q^{10} - 2 q^{11} + 4 q^{12} - 9 q^{13} - 2 q^{15} + 2 q^{16} - q^{19} + 5 q^{20} + 3 q^{21} - 12 q^{22} - 2 q^{23} - 9 q^{24} - 5 q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83424 1.29701 0.648503 0.761212i \(-0.275395\pi\)
0.648503 + 0.761212i \(0.275395\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.36445 0.682224
\(5\) 1.19869 0.536071 0.268036 0.963409i \(-0.413626\pi\)
0.268036 + 0.963409i \(0.413626\pi\)
\(6\) 1.83424 0.748827
\(7\) 1.00000 0.377964
\(8\) −1.16576 −0.412157
\(9\) 1.00000 0.333333
\(10\) 2.19869 0.695287
\(11\) −6.23163 −1.87891 −0.939453 0.342678i \(-0.888666\pi\)
−0.939453 + 0.342678i \(0.888666\pi\)
\(12\) 1.36445 0.393882
\(13\) −4.83424 −1.34078 −0.670389 0.742010i \(-0.733873\pi\)
−0.670389 + 0.742010i \(0.733873\pi\)
\(14\) 1.83424 0.490222
\(15\) 1.19869 0.309501
\(16\) −4.86718 −1.21679
\(17\) 0 0
\(18\) 1.83424 0.432335
\(19\) 3.30404 0.757998 0.378999 0.925397i \(-0.376268\pi\)
0.378999 + 0.925397i \(0.376268\pi\)
\(20\) 1.63555 0.365721
\(21\) 1.00000 0.218218
\(22\) −11.4303 −2.43695
\(23\) 1.19869 0.249944 0.124972 0.992160i \(-0.460116\pi\)
0.124972 + 0.992160i \(0.460116\pi\)
\(24\) −1.16576 −0.237959
\(25\) −3.56314 −0.712628
\(26\) −8.86718 −1.73900
\(27\) 1.00000 0.192450
\(28\) 1.36445 0.257856
\(29\) −5.06587 −0.940708 −0.470354 0.882478i \(-0.655874\pi\)
−0.470354 + 0.882478i \(0.655874\pi\)
\(30\) 2.19869 0.401424
\(31\) 3.39738 0.610188 0.305094 0.952322i \(-0.401312\pi\)
0.305094 + 0.952322i \(0.401312\pi\)
\(32\) −6.59607 −1.16603
\(33\) −6.23163 −1.08479
\(34\) 0 0
\(35\) 1.19869 0.202616
\(36\) 1.36445 0.227408
\(37\) −10.8277 −1.78006 −0.890031 0.455899i \(-0.849318\pi\)
−0.890031 + 0.455899i \(0.849318\pi\)
\(38\) 6.06041 0.983128
\(39\) −4.83424 −0.774098
\(40\) −1.39738 −0.220946
\(41\) 2.92759 0.457212 0.228606 0.973519i \(-0.426583\pi\)
0.228606 + 0.973519i \(0.426583\pi\)
\(42\) 1.83424 0.283030
\(43\) 2.43032 0.370620 0.185310 0.982680i \(-0.440671\pi\)
0.185310 + 0.982680i \(0.440671\pi\)
\(44\) −8.50273 −1.28183
\(45\) 1.19869 0.178690
\(46\) 2.19869 0.324179
\(47\) −4.46980 −0.651987 −0.325993 0.945372i \(-0.605699\pi\)
−0.325993 + 0.945372i \(0.605699\pi\)
\(48\) −4.86718 −0.702517
\(49\) 1.00000 0.142857
\(50\) −6.53566 −0.924282
\(51\) 0 0
\(52\) −6.59607 −0.914711
\(53\) −4.59607 −0.631319 −0.315660 0.948872i \(-0.602226\pi\)
−0.315660 + 0.948872i \(0.602226\pi\)
\(54\) 1.83424 0.249609
\(55\) −7.46980 −1.00723
\(56\) −1.16576 −0.155781
\(57\) 3.30404 0.437631
\(58\) −9.29204 −1.22010
\(59\) 6.50273 0.846583 0.423292 0.905993i \(-0.360875\pi\)
0.423292 + 0.905993i \(0.360875\pi\)
\(60\) 1.63555 0.211149
\(61\) 9.96052 1.27531 0.637657 0.770320i \(-0.279904\pi\)
0.637657 + 0.770320i \(0.279904\pi\)
\(62\) 6.23163 0.791417
\(63\) 1.00000 0.125988
\(64\) −2.36445 −0.295556
\(65\) −5.79476 −0.718752
\(66\) −11.4303 −1.40697
\(67\) −2.12628 −0.259766 −0.129883 0.991529i \(-0.541460\pi\)
−0.129883 + 0.991529i \(0.541460\pi\)
\(68\) 0 0
\(69\) 1.19869 0.144305
\(70\) 2.19869 0.262794
\(71\) −4.45779 −0.529043 −0.264521 0.964380i \(-0.585214\pi\)
−0.264521 + 0.964380i \(0.585214\pi\)
\(72\) −1.16576 −0.137386
\(73\) −10.3370 −1.20985 −0.604926 0.796282i \(-0.706797\pi\)
−0.604926 + 0.796282i \(0.706797\pi\)
\(74\) −19.8606 −2.30875
\(75\) −3.56314 −0.411436
\(76\) 4.50819 0.517125
\(77\) −6.23163 −0.710160
\(78\) −8.86718 −1.00401
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −5.83424 −0.652288
\(81\) 1.00000 0.111111
\(82\) 5.36991 0.593007
\(83\) −14.2316 −1.56212 −0.781062 0.624454i \(-0.785322\pi\)
−0.781062 + 0.624454i \(0.785322\pi\)
\(84\) 1.36445 0.148873
\(85\) 0 0
\(86\) 4.45779 0.480696
\(87\) −5.06587 −0.543118
\(88\) 7.26456 0.774405
\(89\) 7.33151 0.777139 0.388569 0.921419i \(-0.372969\pi\)
0.388569 + 0.921419i \(0.372969\pi\)
\(90\) 2.19869 0.231762
\(91\) −4.83424 −0.506766
\(92\) 1.63555 0.170518
\(93\) 3.39738 0.352292
\(94\) −8.19869 −0.845630
\(95\) 3.96052 0.406341
\(96\) −6.59607 −0.673209
\(97\) −17.7673 −1.80399 −0.901997 0.431741i \(-0.857899\pi\)
−0.901997 + 0.431741i \(0.857899\pi\)
\(98\) 1.83424 0.185287
\(99\) −6.23163 −0.626302
\(100\) −4.86172 −0.486172
\(101\) 12.9605 1.28962 0.644810 0.764343i \(-0.276936\pi\)
0.644810 + 0.764343i \(0.276936\pi\)
\(102\) 0 0
\(103\) 18.6015 1.83286 0.916432 0.400191i \(-0.131056\pi\)
0.916432 + 0.400191i \(0.131056\pi\)
\(104\) 5.63555 0.552611
\(105\) 1.19869 0.116980
\(106\) −8.43032 −0.818825
\(107\) 6.99346 0.676083 0.338041 0.941131i \(-0.390236\pi\)
0.338041 + 0.941131i \(0.390236\pi\)
\(108\) 1.36445 0.131294
\(109\) −14.7224 −1.41015 −0.705073 0.709135i \(-0.749086\pi\)
−0.705073 + 0.709135i \(0.749086\pi\)
\(110\) −13.7014 −1.30638
\(111\) −10.8277 −1.02772
\(112\) −4.86718 −0.459905
\(113\) 0.292035 0.0274724 0.0137362 0.999906i \(-0.495627\pi\)
0.0137362 + 0.999906i \(0.495627\pi\)
\(114\) 6.06041 0.567609
\(115\) 1.43686 0.133988
\(116\) −6.91211 −0.641774
\(117\) −4.83424 −0.446926
\(118\) 11.9276 1.09802
\(119\) 0 0
\(120\) −1.39738 −0.127563
\(121\) 27.8332 2.53029
\(122\) 18.2700 1.65409
\(123\) 2.92759 0.263972
\(124\) 4.63555 0.416285
\(125\) −10.2646 −0.918090
\(126\) 1.83424 0.163407
\(127\) 3.46980 0.307895 0.153947 0.988079i \(-0.450801\pi\)
0.153947 + 0.988079i \(0.450801\pi\)
\(128\) 8.85517 0.782694
\(129\) 2.43032 0.213977
\(130\) −10.6290 −0.932226
\(131\) −16.6356 −1.45345 −0.726727 0.686926i \(-0.758960\pi\)
−0.726727 + 0.686926i \(0.758960\pi\)
\(132\) −8.50273 −0.740068
\(133\) 3.30404 0.286496
\(134\) −3.90011 −0.336918
\(135\) 1.19869 0.103167
\(136\) 0 0
\(137\) 4.72235 0.403458 0.201729 0.979441i \(-0.435344\pi\)
0.201729 + 0.979441i \(0.435344\pi\)
\(138\) 2.19869 0.187165
\(139\) 10.6949 0.907128 0.453564 0.891224i \(-0.350152\pi\)
0.453564 + 0.891224i \(0.350152\pi\)
\(140\) 1.63555 0.138229
\(141\) −4.46980 −0.376425
\(142\) −8.17668 −0.686171
\(143\) 30.1252 2.51920
\(144\) −4.86718 −0.405598
\(145\) −6.07241 −0.504286
\(146\) −18.9605 −1.56918
\(147\) 1.00000 0.0824786
\(148\) −14.7738 −1.21440
\(149\) −13.3250 −1.09162 −0.545812 0.837908i \(-0.683779\pi\)
−0.545812 + 0.837908i \(0.683779\pi\)
\(150\) −6.53566 −0.533635
\(151\) −11.0449 −0.898824 −0.449412 0.893325i \(-0.648367\pi\)
−0.449412 + 0.893325i \(0.648367\pi\)
\(152\) −3.85171 −0.312415
\(153\) 0 0
\(154\) −11.4303 −0.921081
\(155\) 4.07241 0.327104
\(156\) −6.59607 −0.528109
\(157\) −2.92759 −0.233647 −0.116823 0.993153i \(-0.537271\pi\)
−0.116823 + 0.993153i \(0.537271\pi\)
\(158\) −23.8452 −1.89702
\(159\) −4.59607 −0.364492
\(160\) −7.90666 −0.625076
\(161\) 1.19869 0.0944701
\(162\) 1.83424 0.144112
\(163\) −21.3974 −1.67597 −0.837986 0.545691i \(-0.816267\pi\)
−0.837986 + 0.545691i \(0.816267\pi\)
\(164\) 3.99454 0.311921
\(165\) −7.46980 −0.581523
\(166\) −26.1043 −2.02608
\(167\) 11.7553 0.909651 0.454826 0.890580i \(-0.349702\pi\)
0.454826 + 0.890580i \(0.349702\pi\)
\(168\) −1.16576 −0.0899401
\(169\) 10.3699 0.797685
\(170\) 0 0
\(171\) 3.30404 0.252666
\(172\) 3.31604 0.252846
\(173\) −0.623549 −0.0474076 −0.0237038 0.999719i \(-0.507546\pi\)
−0.0237038 + 0.999719i \(0.507546\pi\)
\(174\) −9.29204 −0.704427
\(175\) −3.56314 −0.269348
\(176\) 30.3304 2.28624
\(177\) 6.50273 0.488775
\(178\) 13.4478 1.00795
\(179\) 20.5566 1.53647 0.768236 0.640167i \(-0.221135\pi\)
0.768236 + 0.640167i \(0.221135\pi\)
\(180\) 1.63555 0.121907
\(181\) −2.20524 −0.163914 −0.0819569 0.996636i \(-0.526117\pi\)
−0.0819569 + 0.996636i \(0.526117\pi\)
\(182\) −8.86718 −0.657279
\(183\) 9.96052 0.736303
\(184\) −1.39738 −0.103016
\(185\) −12.9791 −0.954240
\(186\) 6.23163 0.456925
\(187\) 0 0
\(188\) −6.09880 −0.444801
\(189\) 1.00000 0.0727393
\(190\) 7.26456 0.527027
\(191\) 1.74090 0.125967 0.0629835 0.998015i \(-0.479938\pi\)
0.0629835 + 0.998015i \(0.479938\pi\)
\(192\) −2.36445 −0.170639
\(193\) −6.24363 −0.449426 −0.224713 0.974425i \(-0.572144\pi\)
−0.224713 + 0.974425i \(0.572144\pi\)
\(194\) −32.5895 −2.33979
\(195\) −5.79476 −0.414972
\(196\) 1.36445 0.0974606
\(197\) 24.0504 1.71352 0.856760 0.515716i \(-0.172474\pi\)
0.856760 + 0.515716i \(0.172474\pi\)
\(198\) −11.4303 −0.812317
\(199\) 10.5566 0.748337 0.374169 0.927361i \(-0.377928\pi\)
0.374169 + 0.927361i \(0.377928\pi\)
\(200\) 4.15375 0.293715
\(201\) −2.12628 −0.149976
\(202\) 23.7727 1.67264
\(203\) −5.06587 −0.355554
\(204\) 0 0
\(205\) 3.50927 0.245098
\(206\) 34.1197 2.37723
\(207\) 1.19869 0.0833148
\(208\) 23.5291 1.63145
\(209\) −20.5895 −1.42421
\(210\) 2.19869 0.151724
\(211\) −8.07241 −0.555728 −0.277864 0.960620i \(-0.589626\pi\)
−0.277864 + 0.960620i \(0.589626\pi\)
\(212\) −6.27110 −0.430701
\(213\) −4.45779 −0.305443
\(214\) 12.8277 0.876883
\(215\) 2.91320 0.198679
\(216\) −1.16576 −0.0793197
\(217\) 3.39738 0.230629
\(218\) −27.0044 −1.82897
\(219\) −10.3370 −0.698508
\(220\) −10.1921 −0.687154
\(221\) 0 0
\(222\) −19.8606 −1.33296
\(223\) 9.00546 0.603050 0.301525 0.953458i \(-0.402504\pi\)
0.301525 + 0.953458i \(0.402504\pi\)
\(224\) −6.59607 −0.440719
\(225\) −3.56314 −0.237543
\(226\) 0.535664 0.0356318
\(227\) 25.5016 1.69260 0.846302 0.532704i \(-0.178824\pi\)
0.846302 + 0.532704i \(0.178824\pi\)
\(228\) 4.50819 0.298562
\(229\) 3.75637 0.248228 0.124114 0.992268i \(-0.460391\pi\)
0.124114 + 0.992268i \(0.460391\pi\)
\(230\) 2.63555 0.173783
\(231\) −6.23163 −0.410011
\(232\) 5.90557 0.387720
\(233\) −29.9320 −1.96091 −0.980454 0.196748i \(-0.936962\pi\)
−0.980454 + 0.196748i \(0.936962\pi\)
\(234\) −8.86718 −0.579666
\(235\) −5.35790 −0.349511
\(236\) 8.87264 0.577559
\(237\) −13.0000 −0.844441
\(238\) 0 0
\(239\) −4.53020 −0.293035 −0.146517 0.989208i \(-0.546806\pi\)
−0.146517 + 0.989208i \(0.546806\pi\)
\(240\) −5.83424 −0.376599
\(241\) −15.0449 −0.969130 −0.484565 0.874755i \(-0.661022\pi\)
−0.484565 + 0.874755i \(0.661022\pi\)
\(242\) 51.0528 3.28180
\(243\) 1.00000 0.0641500
\(244\) 13.5906 0.870050
\(245\) 1.19869 0.0765816
\(246\) 5.36991 0.342373
\(247\) −15.9725 −1.01631
\(248\) −3.96052 −0.251493
\(249\) −14.2316 −0.901893
\(250\) −18.8277 −1.19077
\(251\) 15.2436 0.962169 0.481085 0.876674i \(-0.340243\pi\)
0.481085 + 0.876674i \(0.340243\pi\)
\(252\) 1.36445 0.0859521
\(253\) −7.46980 −0.469622
\(254\) 6.36445 0.399341
\(255\) 0 0
\(256\) 20.9714 1.31072
\(257\) −0.569683 −0.0355359 −0.0177679 0.999842i \(-0.505656\pi\)
−0.0177679 + 0.999842i \(0.505656\pi\)
\(258\) 4.45779 0.277530
\(259\) −10.8277 −0.672801
\(260\) −7.90666 −0.490350
\(261\) −5.06587 −0.313569
\(262\) −30.5136 −1.88514
\(263\) 26.4512 1.63105 0.815527 0.578719i \(-0.196447\pi\)
0.815527 + 0.578719i \(0.196447\pi\)
\(264\) 7.26456 0.447103
\(265\) −5.50927 −0.338432
\(266\) 6.06041 0.371588
\(267\) 7.33151 0.448681
\(268\) −2.90120 −0.177219
\(269\) −11.3315 −0.690895 −0.345447 0.938438i \(-0.612273\pi\)
−0.345447 + 0.938438i \(0.612273\pi\)
\(270\) 2.19869 0.133808
\(271\) −13.6290 −0.827903 −0.413952 0.910299i \(-0.635852\pi\)
−0.413952 + 0.910299i \(0.635852\pi\)
\(272\) 0 0
\(273\) −4.83424 −0.292582
\(274\) 8.66194 0.523287
\(275\) 22.2042 1.33896
\(276\) 1.63555 0.0984487
\(277\) 28.3514 1.70347 0.851734 0.523974i \(-0.175551\pi\)
0.851734 + 0.523974i \(0.175551\pi\)
\(278\) 19.6170 1.17655
\(279\) 3.39738 0.203396
\(280\) −1.39738 −0.0835096
\(281\) 0.117350 0.00700051 0.00350026 0.999994i \(-0.498886\pi\)
0.00350026 + 0.999994i \(0.498886\pi\)
\(282\) −8.19869 −0.488225
\(283\) 9.39192 0.558292 0.279146 0.960249i \(-0.409949\pi\)
0.279146 + 0.960249i \(0.409949\pi\)
\(284\) −6.08243 −0.360926
\(285\) 3.96052 0.234601
\(286\) 55.2569 3.26741
\(287\) 2.92759 0.172810
\(288\) −6.59607 −0.388677
\(289\) 0 0
\(290\) −11.1383 −0.654062
\(291\) −17.7673 −1.04154
\(292\) −14.1043 −0.825390
\(293\) 22.2700 1.30103 0.650514 0.759494i \(-0.274553\pi\)
0.650514 + 0.759494i \(0.274553\pi\)
\(294\) 1.83424 0.106975
\(295\) 7.79476 0.453829
\(296\) 12.6225 0.733666
\(297\) −6.23163 −0.361596
\(298\) −24.4412 −1.41584
\(299\) −5.79476 −0.335120
\(300\) −4.86172 −0.280691
\(301\) 2.43032 0.140081
\(302\) −20.2591 −1.16578
\(303\) 12.9605 0.744563
\(304\) −16.0813 −0.922328
\(305\) 11.9396 0.683659
\(306\) 0 0
\(307\) −1.09989 −0.0627739 −0.0313870 0.999507i \(-0.509992\pi\)
−0.0313870 + 0.999507i \(0.509992\pi\)
\(308\) −8.50273 −0.484488
\(309\) 18.6015 1.05820
\(310\) 7.46980 0.424256
\(311\) 0.509273 0.0288782 0.0144391 0.999896i \(-0.495404\pi\)
0.0144391 + 0.999896i \(0.495404\pi\)
\(312\) 5.63555 0.319050
\(313\) 12.7224 0.719110 0.359555 0.933124i \(-0.382929\pi\)
0.359555 + 0.933124i \(0.382929\pi\)
\(314\) −5.36991 −0.303041
\(315\) 1.19869 0.0675386
\(316\) −17.7378 −0.997831
\(317\) −10.7014 −0.601052 −0.300526 0.953774i \(-0.597162\pi\)
−0.300526 + 0.953774i \(0.597162\pi\)
\(318\) −8.43032 −0.472749
\(319\) 31.5686 1.76750
\(320\) −2.83424 −0.158439
\(321\) 6.99346 0.390337
\(322\) 2.19869 0.122528
\(323\) 0 0
\(324\) 1.36445 0.0758027
\(325\) 17.2251 0.955476
\(326\) −39.2480 −2.17375
\(327\) −14.7224 −0.814148
\(328\) −3.41285 −0.188443
\(329\) −4.46980 −0.246428
\(330\) −13.7014 −0.754238
\(331\) −3.99892 −0.219800 −0.109900 0.993943i \(-0.535053\pi\)
−0.109900 + 0.993943i \(0.535053\pi\)
\(332\) −19.4183 −1.06572
\(333\) −10.8277 −0.593354
\(334\) 21.5621 1.17982
\(335\) −2.54875 −0.139253
\(336\) −4.86718 −0.265526
\(337\) 22.1712 1.20774 0.603872 0.797082i \(-0.293624\pi\)
0.603872 + 0.797082i \(0.293624\pi\)
\(338\) 19.0209 1.03460
\(339\) 0.292035 0.0158612
\(340\) 0 0
\(341\) −21.1712 −1.14649
\(342\) 6.06041 0.327709
\(343\) 1.00000 0.0539949
\(344\) −2.83316 −0.152754
\(345\) 1.43686 0.0773580
\(346\) −1.14374 −0.0614879
\(347\) 3.21962 0.172838 0.0864192 0.996259i \(-0.472458\pi\)
0.0864192 + 0.996259i \(0.472458\pi\)
\(348\) −6.91211 −0.370528
\(349\) −27.8212 −1.48923 −0.744616 0.667493i \(-0.767367\pi\)
−0.744616 + 0.667493i \(0.767367\pi\)
\(350\) −6.53566 −0.349346
\(351\) −4.83424 −0.258033
\(352\) 41.1043 2.19086
\(353\) 31.1557 1.65825 0.829126 0.559061i \(-0.188838\pi\)
0.829126 + 0.559061i \(0.188838\pi\)
\(354\) 11.9276 0.633944
\(355\) −5.34352 −0.283604
\(356\) 10.0035 0.530183
\(357\) 0 0
\(358\) 37.7058 1.99281
\(359\) −25.5895 −1.35056 −0.675282 0.737560i \(-0.735978\pi\)
−0.675282 + 0.737560i \(0.735978\pi\)
\(360\) −1.39738 −0.0736485
\(361\) −8.08333 −0.425438
\(362\) −4.04494 −0.212597
\(363\) 27.8332 1.46086
\(364\) −6.59607 −0.345728
\(365\) −12.3908 −0.648566
\(366\) 18.2700 0.954989
\(367\) 2.46980 0.128922 0.0644611 0.997920i \(-0.479467\pi\)
0.0644611 + 0.997920i \(0.479467\pi\)
\(368\) −5.83424 −0.304131
\(369\) 2.92759 0.152404
\(370\) −23.8068 −1.23765
\(371\) −4.59607 −0.238616
\(372\) 4.63555 0.240342
\(373\) 12.5147 0.647988 0.323994 0.946059i \(-0.394974\pi\)
0.323994 + 0.946059i \(0.394974\pi\)
\(374\) 0 0
\(375\) −10.2646 −0.530060
\(376\) 5.21069 0.268721
\(377\) 24.4896 1.26128
\(378\) 1.83424 0.0943433
\(379\) −28.3040 −1.45388 −0.726940 0.686701i \(-0.759058\pi\)
−0.726940 + 0.686701i \(0.759058\pi\)
\(380\) 5.40393 0.277216
\(381\) 3.46980 0.177763
\(382\) 3.19323 0.163380
\(383\) 12.7278 0.650361 0.325180 0.945652i \(-0.394575\pi\)
0.325180 + 0.945652i \(0.394575\pi\)
\(384\) 8.85517 0.451889
\(385\) −7.46980 −0.380696
\(386\) −11.4523 −0.582908
\(387\) 2.43032 0.123540
\(388\) −24.2425 −1.23073
\(389\) 12.5117 0.634366 0.317183 0.948364i \(-0.397263\pi\)
0.317183 + 0.948364i \(0.397263\pi\)
\(390\) −10.6290 −0.538221
\(391\) 0 0
\(392\) −1.16576 −0.0588796
\(393\) −16.6356 −0.839153
\(394\) 44.1143 2.22245
\(395\) −15.5830 −0.784065
\(396\) −8.50273 −0.427278
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 19.3634 0.970598
\(399\) 3.30404 0.165409
\(400\) 17.3424 0.867122
\(401\) −3.83424 −0.191473 −0.0957365 0.995407i \(-0.530521\pi\)
−0.0957365 + 0.995407i \(0.530521\pi\)
\(402\) −3.90011 −0.194520
\(403\) −16.4238 −0.818126
\(404\) 17.6840 0.879810
\(405\) 1.19869 0.0595634
\(406\) −9.29204 −0.461156
\(407\) 67.4742 3.34457
\(408\) 0 0
\(409\) 5.78584 0.286091 0.143046 0.989716i \(-0.454310\pi\)
0.143046 + 0.989716i \(0.454310\pi\)
\(410\) 6.43686 0.317894
\(411\) 4.72235 0.232936
\(412\) 25.3808 1.25042
\(413\) 6.50273 0.319978
\(414\) 2.19869 0.108060
\(415\) −17.0593 −0.837409
\(416\) 31.8870 1.56339
\(417\) 10.6949 0.523730
\(418\) −37.7662 −1.84721
\(419\) −13.0449 −0.637287 −0.318643 0.947875i \(-0.603227\pi\)
−0.318643 + 0.947875i \(0.603227\pi\)
\(420\) 1.63555 0.0798068
\(421\) 26.5741 1.29514 0.647570 0.762006i \(-0.275785\pi\)
0.647570 + 0.762006i \(0.275785\pi\)
\(422\) −14.8068 −0.720782
\(423\) −4.46980 −0.217329
\(424\) 5.35790 0.260203
\(425\) 0 0
\(426\) −8.17668 −0.396161
\(427\) 9.96052 0.482023
\(428\) 9.54221 0.461240
\(429\) 30.1252 1.45446
\(430\) 5.34352 0.257687
\(431\) −5.09880 −0.245601 −0.122800 0.992431i \(-0.539187\pi\)
−0.122800 + 0.992431i \(0.539187\pi\)
\(432\) −4.86718 −0.234172
\(433\) −27.1503 −1.30476 −0.652380 0.757892i \(-0.726229\pi\)
−0.652380 + 0.757892i \(0.726229\pi\)
\(434\) 6.23163 0.299128
\(435\) −6.07241 −0.291150
\(436\) −20.0879 −0.962035
\(437\) 3.96052 0.189457
\(438\) −18.9605 −0.905969
\(439\) 27.1557 1.29607 0.648036 0.761609i \(-0.275590\pi\)
0.648036 + 0.761609i \(0.275590\pi\)
\(440\) 8.70796 0.415136
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −8.92650 −0.424111 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(444\) −14.7738 −0.701135
\(445\) 8.78822 0.416602
\(446\) 16.5182 0.782160
\(447\) −13.3250 −0.630249
\(448\) −2.36445 −0.111710
\(449\) −39.5675 −1.86731 −0.933653 0.358178i \(-0.883398\pi\)
−0.933653 + 0.358178i \(0.883398\pi\)
\(450\) −6.53566 −0.308094
\(451\) −18.2436 −0.859059
\(452\) 0.398467 0.0187423
\(453\) −11.0449 −0.518936
\(454\) 46.7762 2.19532
\(455\) −5.79476 −0.271663
\(456\) −3.85171 −0.180373
\(457\) −6.62901 −0.310092 −0.155046 0.987907i \(-0.549553\pi\)
−0.155046 + 0.987907i \(0.549553\pi\)
\(458\) 6.89010 0.321953
\(459\) 0 0
\(460\) 1.96052 0.0914098
\(461\) −19.2425 −0.896215 −0.448107 0.893980i \(-0.647902\pi\)
−0.448107 + 0.893980i \(0.647902\pi\)
\(462\) −11.4303 −0.531786
\(463\) −39.2755 −1.82529 −0.912643 0.408757i \(-0.865962\pi\)
−0.912643 + 0.408757i \(0.865962\pi\)
\(464\) 24.6565 1.14465
\(465\) 4.07241 0.188854
\(466\) −54.9025 −2.54331
\(467\) −7.53566 −0.348709 −0.174354 0.984683i \(-0.555784\pi\)
−0.174354 + 0.984683i \(0.555784\pi\)
\(468\) −6.59607 −0.304904
\(469\) −2.12628 −0.0981824
\(470\) −9.82770 −0.453318
\(471\) −2.92759 −0.134896
\(472\) −7.58060 −0.348925
\(473\) −15.1448 −0.696360
\(474\) −23.8452 −1.09524
\(475\) −11.7727 −0.540171
\(476\) 0 0
\(477\) −4.59607 −0.210440
\(478\) −8.30950 −0.380068
\(479\) −25.5501 −1.16741 −0.583706 0.811965i \(-0.698398\pi\)
−0.583706 + 0.811965i \(0.698398\pi\)
\(480\) −7.90666 −0.360888
\(481\) 52.3437 2.38667
\(482\) −27.5961 −1.25697
\(483\) 1.19869 0.0545423
\(484\) 37.9769 1.72622
\(485\) −21.2975 −0.967069
\(486\) 1.83424 0.0832030
\(487\) −4.18669 −0.189717 −0.0948585 0.995491i \(-0.530240\pi\)
−0.0948585 + 0.995491i \(0.530240\pi\)
\(488\) −11.6115 −0.525630
\(489\) −21.3974 −0.967623
\(490\) 2.19869 0.0993267
\(491\) −10.9276 −0.493155 −0.246578 0.969123i \(-0.579306\pi\)
−0.246578 + 0.969123i \(0.579306\pi\)
\(492\) 3.99454 0.180088
\(493\) 0 0
\(494\) −29.2975 −1.31816
\(495\) −7.46980 −0.335742
\(496\) −16.5357 −0.742473
\(497\) −4.45779 −0.199959
\(498\) −26.1043 −1.16976
\(499\) 16.6609 0.745842 0.372921 0.927863i \(-0.378356\pi\)
0.372921 + 0.927863i \(0.378356\pi\)
\(500\) −14.0055 −0.626343
\(501\) 11.7553 0.525187
\(502\) 27.9605 1.24794
\(503\) −36.7793 −1.63991 −0.819954 0.572430i \(-0.806001\pi\)
−0.819954 + 0.572430i \(0.806001\pi\)
\(504\) −1.16576 −0.0519269
\(505\) 15.5357 0.691328
\(506\) −13.7014 −0.609102
\(507\) 10.3699 0.460544
\(508\) 4.73436 0.210053
\(509\) −32.0373 −1.42003 −0.710014 0.704187i \(-0.751312\pi\)
−0.710014 + 0.704187i \(0.751312\pi\)
\(510\) 0 0
\(511\) −10.3370 −0.457281
\(512\) 20.7564 0.917311
\(513\) 3.30404 0.145877
\(514\) −1.04494 −0.0460902
\(515\) 22.2975 0.982545
\(516\) 3.31604 0.145981
\(517\) 27.8541 1.22502
\(518\) −19.8606 −0.872626
\(519\) −0.623549 −0.0273708
\(520\) 6.75529 0.296239
\(521\) 27.1581 1.18982 0.594910 0.803793i \(-0.297188\pi\)
0.594910 + 0.803793i \(0.297188\pi\)
\(522\) −9.29204 −0.406701
\(523\) −29.3293 −1.28248 −0.641241 0.767339i \(-0.721580\pi\)
−0.641241 + 0.767339i \(0.721580\pi\)
\(524\) −22.6983 −0.991582
\(525\) −3.56314 −0.155508
\(526\) 48.5180 2.11549
\(527\) 0 0
\(528\) 30.3304 1.31996
\(529\) −21.5631 −0.937528
\(530\) −10.1053 −0.438948
\(531\) 6.50273 0.282194
\(532\) 4.50819 0.195455
\(533\) −14.1527 −0.613020
\(534\) 13.4478 0.581942
\(535\) 8.38299 0.362428
\(536\) 2.47872 0.107065
\(537\) 20.5566 0.887083
\(538\) −20.7848 −0.896094
\(539\) −6.23163 −0.268415
\(540\) 1.63555 0.0703829
\(541\) 13.3304 0.573120 0.286560 0.958062i \(-0.407488\pi\)
0.286560 + 0.958062i \(0.407488\pi\)
\(542\) −24.9989 −1.07380
\(543\) −2.20524 −0.0946357
\(544\) 0 0
\(545\) −17.6476 −0.755938
\(546\) −8.86718 −0.379480
\(547\) −25.5884 −1.09408 −0.547041 0.837106i \(-0.684246\pi\)
−0.547041 + 0.837106i \(0.684246\pi\)
\(548\) 6.44340 0.275249
\(549\) 9.96052 0.425105
\(550\) 40.7278 1.73664
\(551\) −16.7378 −0.713055
\(552\) −1.39738 −0.0594765
\(553\) −13.0000 −0.552816
\(554\) 52.0033 2.20941
\(555\) −12.9791 −0.550931
\(556\) 14.5926 0.618864
\(557\) 20.1143 0.852269 0.426135 0.904660i \(-0.359875\pi\)
0.426135 + 0.904660i \(0.359875\pi\)
\(558\) 6.23163 0.263806
\(559\) −11.7487 −0.496919
\(560\) −5.83424 −0.246542
\(561\) 0 0
\(562\) 0.215248 0.00907970
\(563\) −36.7093 −1.54711 −0.773556 0.633729i \(-0.781524\pi\)
−0.773556 + 0.633729i \(0.781524\pi\)
\(564\) −6.09880 −0.256806
\(565\) 0.350060 0.0147271
\(566\) 17.2271 0.724108
\(567\) 1.00000 0.0419961
\(568\) 5.19670 0.218049
\(569\) −12.8857 −0.540198 −0.270099 0.962833i \(-0.587056\pi\)
−0.270099 + 0.962833i \(0.587056\pi\)
\(570\) 7.26456 0.304279
\(571\) 27.2899 1.14205 0.571023 0.820934i \(-0.306547\pi\)
0.571023 + 0.820934i \(0.306547\pi\)
\(572\) 41.1043 1.71866
\(573\) 1.74090 0.0727271
\(574\) 5.36991 0.224136
\(575\) −4.27110 −0.178117
\(576\) −2.36445 −0.0985187
\(577\) 40.7806 1.69772 0.848859 0.528619i \(-0.177290\pi\)
0.848859 + 0.528619i \(0.177290\pi\)
\(578\) 0 0
\(579\) −6.24363 −0.259476
\(580\) −8.28549 −0.344036
\(581\) −14.2316 −0.590427
\(582\) −32.5895 −1.35088
\(583\) 28.6410 1.18619
\(584\) 12.0504 0.498649
\(585\) −5.79476 −0.239584
\(586\) 40.8486 1.68744
\(587\) −15.1801 −0.626552 −0.313276 0.949662i \(-0.601426\pi\)
−0.313276 + 0.949662i \(0.601426\pi\)
\(588\) 1.36445 0.0562689
\(589\) 11.2251 0.462521
\(590\) 14.2975 0.588619
\(591\) 24.0504 0.989301
\(592\) 52.7003 2.16597
\(593\) −26.5226 −1.08915 −0.544576 0.838712i \(-0.683309\pi\)
−0.544576 + 0.838712i \(0.683309\pi\)
\(594\) −11.4303 −0.468992
\(595\) 0 0
\(596\) −18.1812 −0.744732
\(597\) 10.5566 0.432053
\(598\) −10.6290 −0.434652
\(599\) −26.0659 −1.06502 −0.532511 0.846423i \(-0.678752\pi\)
−0.532511 + 0.846423i \(0.678752\pi\)
\(600\) 4.15375 0.169576
\(601\) −6.58299 −0.268526 −0.134263 0.990946i \(-0.542867\pi\)
−0.134263 + 0.990946i \(0.542867\pi\)
\(602\) 4.45779 0.181686
\(603\) −2.12628 −0.0865888
\(604\) −15.0702 −0.613200
\(605\) 33.3634 1.35641
\(606\) 23.7727 0.965702
\(607\) 1.61462 0.0655354 0.0327677 0.999463i \(-0.489568\pi\)
0.0327677 + 0.999463i \(0.489568\pi\)
\(608\) −21.7937 −0.883850
\(609\) −5.06587 −0.205279
\(610\) 21.9001 0.886710
\(611\) 21.6081 0.874169
\(612\) 0 0
\(613\) −36.9804 −1.49362 −0.746812 0.665036i \(-0.768416\pi\)
−0.746812 + 0.665036i \(0.768416\pi\)
\(614\) −2.01746 −0.0814181
\(615\) 3.50927 0.141508
\(616\) 7.26456 0.292697
\(617\) −16.5621 −0.666763 −0.333382 0.942792i \(-0.608190\pi\)
−0.333382 + 0.942792i \(0.608190\pi\)
\(618\) 34.1197 1.37250
\(619\) −28.6081 −1.14986 −0.574928 0.818204i \(-0.694970\pi\)
−0.574928 + 0.818204i \(0.694970\pi\)
\(620\) 5.55660 0.223158
\(621\) 1.19869 0.0481018
\(622\) 0.934131 0.0374552
\(623\) 7.33151 0.293731
\(624\) 23.5291 0.941919
\(625\) 5.51166 0.220466
\(626\) 23.3359 0.932690
\(627\) −20.5895 −0.822267
\(628\) −3.99454 −0.159400
\(629\) 0 0
\(630\) 2.19869 0.0875980
\(631\) 18.0593 0.718930 0.359465 0.933158i \(-0.382959\pi\)
0.359465 + 0.933158i \(0.382959\pi\)
\(632\) 15.1548 0.602827
\(633\) −8.07241 −0.320850
\(634\) −19.6290 −0.779568
\(635\) 4.15921 0.165053
\(636\) −6.27110 −0.248665
\(637\) −4.83424 −0.191540
\(638\) 57.9045 2.29246
\(639\) −4.45779 −0.176348
\(640\) 10.6146 0.419580
\(641\) −10.0185 −0.395709 −0.197854 0.980231i \(-0.563397\pi\)
−0.197854 + 0.980231i \(0.563397\pi\)
\(642\) 12.8277 0.506269
\(643\) −3.86410 −0.152385 −0.0761927 0.997093i \(-0.524276\pi\)
−0.0761927 + 0.997093i \(0.524276\pi\)
\(644\) 1.63555 0.0644498
\(645\) 2.91320 0.114707
\(646\) 0 0
\(647\) 20.9660 0.824258 0.412129 0.911126i \(-0.364785\pi\)
0.412129 + 0.911126i \(0.364785\pi\)
\(648\) −1.16576 −0.0457953
\(649\) −40.5226 −1.59065
\(650\) 31.5950 1.23926
\(651\) 3.39738 0.133154
\(652\) −29.1956 −1.14339
\(653\) −8.27349 −0.323767 −0.161883 0.986810i \(-0.551757\pi\)
−0.161883 + 0.986810i \(0.551757\pi\)
\(654\) −27.0044 −1.05595
\(655\) −19.9409 −0.779155
\(656\) −14.2491 −0.556333
\(657\) −10.3370 −0.403284
\(658\) −8.19869 −0.319618
\(659\) 12.8737 0.501489 0.250744 0.968053i \(-0.419325\pi\)
0.250744 + 0.968053i \(0.419325\pi\)
\(660\) −10.1921 −0.396729
\(661\) 3.70034 0.143926 0.0719632 0.997407i \(-0.477074\pi\)
0.0719632 + 0.997407i \(0.477074\pi\)
\(662\) −7.33498 −0.285082
\(663\) 0 0
\(664\) 16.5906 0.643841
\(665\) 3.96052 0.153582
\(666\) −19.8606 −0.769584
\(667\) −6.07241 −0.235125
\(668\) 16.0395 0.620586
\(669\) 9.00546 0.348171
\(670\) −4.67503 −0.180612
\(671\) −62.0702 −2.39620
\(672\) −6.59607 −0.254449
\(673\) 50.7991 1.95816 0.979081 0.203469i \(-0.0652215\pi\)
0.979081 + 0.203469i \(0.0652215\pi\)
\(674\) 40.6674 1.56645
\(675\) −3.56314 −0.137145
\(676\) 14.1492 0.544200
\(677\) 33.4292 1.28479 0.642395 0.766374i \(-0.277941\pi\)
0.642395 + 0.766374i \(0.277941\pi\)
\(678\) 0.535664 0.0205721
\(679\) −17.7673 −0.681846
\(680\) 0 0
\(681\) 25.5016 0.977225
\(682\) −38.8332 −1.48700
\(683\) 20.2899 0.776370 0.388185 0.921581i \(-0.373102\pi\)
0.388185 + 0.921581i \(0.373102\pi\)
\(684\) 4.50819 0.172375
\(685\) 5.66064 0.216282
\(686\) 1.83424 0.0700317
\(687\) 3.75637 0.143315
\(688\) −11.8288 −0.450968
\(689\) 22.2185 0.846459
\(690\) 2.63555 0.100334
\(691\) −13.2142 −0.502690 −0.251345 0.967898i \(-0.580873\pi\)
−0.251345 + 0.967898i \(0.580873\pi\)
\(692\) −0.850800 −0.0323426
\(693\) −6.23163 −0.236720
\(694\) 5.90557 0.224172
\(695\) 12.8199 0.486285
\(696\) 5.90557 0.223850
\(697\) 0 0
\(698\) −51.0308 −1.93154
\(699\) −29.9320 −1.13213
\(700\) −4.86172 −0.183756
\(701\) 20.5961 0.777903 0.388951 0.921258i \(-0.372837\pi\)
0.388951 + 0.921258i \(0.372837\pi\)
\(702\) −8.86718 −0.334670
\(703\) −35.7751 −1.34928
\(704\) 14.7344 0.555322
\(705\) −5.35790 −0.201790
\(706\) 57.1472 2.15076
\(707\) 12.9605 0.487431
\(708\) 8.87264 0.333454
\(709\) 1.41484 0.0531356 0.0265678 0.999647i \(-0.491542\pi\)
0.0265678 + 0.999647i \(0.491542\pi\)
\(710\) −9.80131 −0.367837
\(711\) −13.0000 −0.487538
\(712\) −8.54676 −0.320303
\(713\) 4.07241 0.152513
\(714\) 0 0
\(715\) 36.1108 1.35047
\(716\) 28.0484 1.04822
\(717\) −4.53020 −0.169184
\(718\) −46.9374 −1.75169
\(719\) 3.93066 0.146589 0.0732945 0.997310i \(-0.476649\pi\)
0.0732945 + 0.997310i \(0.476649\pi\)
\(720\) −5.83424 −0.217429
\(721\) 18.6015 0.692757
\(722\) −14.8268 −0.551796
\(723\) −15.0449 −0.559527
\(724\) −3.00893 −0.111826
\(725\) 18.0504 0.670375
\(726\) 51.0528 1.89475
\(727\) 2.61462 0.0969709 0.0484855 0.998824i \(-0.484561\pi\)
0.0484855 + 0.998824i \(0.484561\pi\)
\(728\) 5.63555 0.208867
\(729\) 1.00000 0.0370370
\(730\) −22.7278 −0.841194
\(731\) 0 0
\(732\) 13.5906 0.502324
\(733\) −28.3843 −1.04840 −0.524199 0.851596i \(-0.675635\pi\)
−0.524199 + 0.851596i \(0.675635\pi\)
\(734\) 4.53020 0.167213
\(735\) 1.19869 0.0442144
\(736\) −7.90666 −0.291443
\(737\) 13.2502 0.488076
\(738\) 5.36991 0.197669
\(739\) 5.13521 0.188902 0.0944508 0.995530i \(-0.469890\pi\)
0.0944508 + 0.995530i \(0.469890\pi\)
\(740\) −17.7093 −0.651006
\(741\) −15.9725 −0.586765
\(742\) −8.43032 −0.309487
\(743\) 40.4028 1.48224 0.741118 0.671375i \(-0.234296\pi\)
0.741118 + 0.671375i \(0.234296\pi\)
\(744\) −3.96052 −0.145200
\(745\) −15.9725 −0.585188
\(746\) 22.9551 0.840445
\(747\) −14.2316 −0.520708
\(748\) 0 0
\(749\) 6.99346 0.255535
\(750\) −18.8277 −0.687490
\(751\) −29.7278 −1.08478 −0.542392 0.840126i \(-0.682481\pi\)
−0.542392 + 0.840126i \(0.682481\pi\)
\(752\) 21.7553 0.793334
\(753\) 15.2436 0.555509
\(754\) 44.9200 1.63589
\(755\) −13.2395 −0.481834
\(756\) 1.36445 0.0496245
\(757\) 30.0748 1.09309 0.546544 0.837431i \(-0.315943\pi\)
0.546544 + 0.837431i \(0.315943\pi\)
\(758\) −51.9165 −1.88569
\(759\) −7.46980 −0.271136
\(760\) −4.61701 −0.167476
\(761\) 53.6993 1.94660 0.973298 0.229544i \(-0.0737236\pi\)
0.973298 + 0.229544i \(0.0737236\pi\)
\(762\) 6.36445 0.230560
\(763\) −14.7224 −0.532985
\(764\) 2.37537 0.0859377
\(765\) 0 0
\(766\) 23.3459 0.843522
\(767\) −31.4358 −1.13508
\(768\) 20.9714 0.756742
\(769\) 16.8212 0.606586 0.303293 0.952897i \(-0.401914\pi\)
0.303293 + 0.952897i \(0.401914\pi\)
\(770\) −13.7014 −0.493765
\(771\) −0.569683 −0.0205166
\(772\) −8.51911 −0.306609
\(773\) −45.0397 −1.61997 −0.809983 0.586454i \(-0.800524\pi\)
−0.809983 + 0.586454i \(0.800524\pi\)
\(774\) 4.45779 0.160232
\(775\) −12.1053 −0.434837
\(776\) 20.7123 0.743530
\(777\) −10.8277 −0.388442
\(778\) 22.9494 0.822777
\(779\) 9.67286 0.346566
\(780\) −7.90666 −0.283104
\(781\) 27.7793 0.994021
\(782\) 0 0
\(783\) −5.06587 −0.181039
\(784\) −4.86718 −0.173828
\(785\) −3.50927 −0.125251
\(786\) −30.5136 −1.08839
\(787\) −21.6674 −0.772359 −0.386180 0.922424i \(-0.626206\pi\)
−0.386180 + 0.922424i \(0.626206\pi\)
\(788\) 32.8155 1.16900
\(789\) 26.4512 0.941689
\(790\) −28.5830 −1.01694
\(791\) 0.292035 0.0103836
\(792\) 7.26456 0.258135
\(793\) −48.1516 −1.70991
\(794\) −33.0164 −1.17171
\(795\) −5.50927 −0.195394
\(796\) 14.4039 0.510534
\(797\) 20.4543 0.724529 0.362265 0.932075i \(-0.382004\pi\)
0.362265 + 0.932075i \(0.382004\pi\)
\(798\) 6.06041 0.214536
\(799\) 0 0
\(800\) 23.5027 0.830947
\(801\) 7.33151 0.259046
\(802\) −7.03293 −0.248342
\(803\) 64.4161 2.27320
\(804\) −2.90120 −0.102317
\(805\) 1.43686 0.0506427
\(806\) −30.1252 −1.06111
\(807\) −11.3315 −0.398888
\(808\) −15.1088 −0.531526
\(809\) 14.2327 0.500395 0.250198 0.968195i \(-0.419504\pi\)
0.250198 + 0.968195i \(0.419504\pi\)
\(810\) 2.19869 0.0772541
\(811\) 1.55222 0.0545059 0.0272529 0.999629i \(-0.491324\pi\)
0.0272529 + 0.999629i \(0.491324\pi\)
\(812\) −6.91211 −0.242568
\(813\) −13.6290 −0.477990
\(814\) 123.764 4.33793
\(815\) −25.6489 −0.898440
\(816\) 0 0
\(817\) 8.02986 0.280929
\(818\) 10.6126 0.371062
\(819\) −4.83424 −0.168922
\(820\) 4.78822 0.167212
\(821\) 30.1647 1.05275 0.526377 0.850251i \(-0.323550\pi\)
0.526377 + 0.850251i \(0.323550\pi\)
\(822\) 8.66194 0.302120
\(823\) 35.0253 1.22091 0.610453 0.792053i \(-0.290988\pi\)
0.610453 + 0.792053i \(0.290988\pi\)
\(824\) −21.6849 −0.755428
\(825\) 22.2042 0.773049
\(826\) 11.9276 0.415014
\(827\) −7.01439 −0.243914 −0.121957 0.992535i \(-0.538917\pi\)
−0.121957 + 0.992535i \(0.538917\pi\)
\(828\) 1.63555 0.0568394
\(829\) −17.2776 −0.600078 −0.300039 0.953927i \(-0.597000\pi\)
−0.300039 + 0.953927i \(0.597000\pi\)
\(830\) −31.2910 −1.08612
\(831\) 28.3514 0.983498
\(832\) 11.4303 0.396275
\(833\) 0 0
\(834\) 19.6170 0.679281
\(835\) 14.0910 0.487638
\(836\) −28.0933 −0.971629
\(837\) 3.39738 0.117431
\(838\) −23.9276 −0.826565
\(839\) −22.2052 −0.766610 −0.383305 0.923622i \(-0.625214\pi\)
−0.383305 + 0.923622i \(0.625214\pi\)
\(840\) −1.39738 −0.0482143
\(841\) −3.33697 −0.115068
\(842\) 48.7433 1.67980
\(843\) 0.117350 0.00404175
\(844\) −11.0144 −0.379131
\(845\) 12.4303 0.427616
\(846\) −8.19869 −0.281877
\(847\) 27.8332 0.956359
\(848\) 22.3699 0.768186
\(849\) 9.39192 0.322330
\(850\) 0 0
\(851\) −12.9791 −0.444917
\(852\) −6.08243 −0.208380
\(853\) −36.7302 −1.25762 −0.628809 0.777560i \(-0.716457\pi\)
−0.628809 + 0.777560i \(0.716457\pi\)
\(854\) 18.2700 0.625187
\(855\) 3.96052 0.135447
\(856\) −8.15267 −0.278652
\(857\) 44.6015 1.52356 0.761780 0.647836i \(-0.224326\pi\)
0.761780 + 0.647836i \(0.224326\pi\)
\(858\) 55.2569 1.88644
\(859\) −15.3830 −0.524861 −0.262431 0.964951i \(-0.584524\pi\)
−0.262431 + 0.964951i \(0.584524\pi\)
\(860\) 3.97491 0.135543
\(861\) 2.92759 0.0997719
\(862\) −9.35245 −0.318546
\(863\) 37.7828 1.28614 0.643070 0.765807i \(-0.277660\pi\)
0.643070 + 0.765807i \(0.277660\pi\)
\(864\) −6.59607 −0.224403
\(865\) −0.747443 −0.0254138
\(866\) −49.8002 −1.69228
\(867\) 0 0
\(868\) 4.63555 0.157341
\(869\) 81.0111 2.74811
\(870\) −11.1383 −0.377623
\(871\) 10.2789 0.348289
\(872\) 17.1627 0.581202
\(873\) −17.7673 −0.601332
\(874\) 7.26456 0.245727
\(875\) −10.2646 −0.347005
\(876\) −14.1043 −0.476539
\(877\) −52.6783 −1.77882 −0.889410 0.457110i \(-0.848885\pi\)
−0.889410 + 0.457110i \(0.848885\pi\)
\(878\) 49.8102 1.68101
\(879\) 22.2700 0.751149
\(880\) 36.3568 1.22559
\(881\) −35.1723 −1.18498 −0.592492 0.805576i \(-0.701856\pi\)
−0.592492 + 0.805576i \(0.701856\pi\)
\(882\) 1.83424 0.0617622
\(883\) 30.1677 1.01523 0.507613 0.861585i \(-0.330528\pi\)
0.507613 + 0.861585i \(0.330528\pi\)
\(884\) 0 0
\(885\) 7.79476 0.262018
\(886\) −16.3734 −0.550074
\(887\) 42.5710 1.42939 0.714697 0.699434i \(-0.246565\pi\)
0.714697 + 0.699434i \(0.246565\pi\)
\(888\) 12.6225 0.423582
\(889\) 3.46980 0.116373
\(890\) 16.1197 0.540335
\(891\) −6.23163 −0.208767
\(892\) 12.2875 0.411415
\(893\) −14.7684 −0.494205
\(894\) −24.4412 −0.817437
\(895\) 24.6410 0.823658
\(896\) 8.85517 0.295831
\(897\) −5.79476 −0.193482
\(898\) −72.5764 −2.42191
\(899\) −17.2107 −0.574009
\(900\) −4.86172 −0.162057
\(901\) 0 0
\(902\) −33.4633 −1.11420
\(903\) 2.43032 0.0808759
\(904\) −0.340442 −0.0113229
\(905\) −2.64340 −0.0878695
\(906\) −20.2591 −0.673064
\(907\) −34.0953 −1.13212 −0.566058 0.824365i \(-0.691532\pi\)
−0.566058 + 0.824365i \(0.691532\pi\)
\(908\) 34.7957 1.15473
\(909\) 12.9605 0.429873
\(910\) −10.6290 −0.352348
\(911\) −1.07480 −0.0356096 −0.0178048 0.999841i \(-0.505668\pi\)
−0.0178048 + 0.999841i \(0.505668\pi\)
\(912\) −16.0813 −0.532506
\(913\) 88.6862 2.93508
\(914\) −12.1592 −0.402191
\(915\) 11.9396 0.394711
\(916\) 5.12537 0.169347
\(917\) −16.6356 −0.549354
\(918\) 0 0
\(919\) −18.0923 −0.596809 −0.298404 0.954440i \(-0.596454\pi\)
−0.298404 + 0.954440i \(0.596454\pi\)
\(920\) −1.67503 −0.0552241
\(921\) −1.09989 −0.0362425
\(922\) −35.2955 −1.16240
\(923\) 21.5501 0.709329
\(924\) −8.50273 −0.279719
\(925\) 38.5806 1.26852
\(926\) −72.0408 −2.36741
\(927\) 18.6015 0.610954
\(928\) 33.4148 1.09690
\(929\) −1.66541 −0.0546404 −0.0273202 0.999627i \(-0.508697\pi\)
−0.0273202 + 0.999627i \(0.508697\pi\)
\(930\) 7.46980 0.244944
\(931\) 3.30404 0.108285
\(932\) −40.8406 −1.33778
\(933\) 0.509273 0.0166729
\(934\) −13.8222 −0.452278
\(935\) 0 0
\(936\) 5.63555 0.184204
\(937\) 28.0846 0.917485 0.458742 0.888569i \(-0.348300\pi\)
0.458742 + 0.888569i \(0.348300\pi\)
\(938\) −3.90011 −0.127343
\(939\) 12.7224 0.415178
\(940\) −7.31058 −0.238445
\(941\) −7.50381 −0.244617 −0.122309 0.992492i \(-0.539030\pi\)
−0.122309 + 0.992492i \(0.539030\pi\)
\(942\) −5.36991 −0.174961
\(943\) 3.50927 0.114278
\(944\) −31.6499 −1.03012
\(945\) 1.19869 0.0389934
\(946\) −27.7793 −0.903183
\(947\) 5.45125 0.177142 0.0885709 0.996070i \(-0.471770\pi\)
0.0885709 + 0.996070i \(0.471770\pi\)
\(948\) −17.7378 −0.576098
\(949\) 49.9714 1.62214
\(950\) −21.5941 −0.700605
\(951\) −10.7014 −0.347017
\(952\) 0 0
\(953\) 20.4831 0.663513 0.331756 0.943365i \(-0.392359\pi\)
0.331756 + 0.943365i \(0.392359\pi\)
\(954\) −8.43032 −0.272942
\(955\) 2.08680 0.0675273
\(956\) −6.18123 −0.199915
\(957\) 31.5686 1.02047
\(958\) −46.8650 −1.51414
\(959\) 4.72235 0.152493
\(960\) −2.83424 −0.0914748
\(961\) −19.4578 −0.627671
\(962\) 96.0111 3.09552
\(963\) 6.99346 0.225361
\(964\) −20.5280 −0.661164
\(965\) −7.48418 −0.240924
\(966\) 2.19869 0.0707417
\(967\) −53.2284 −1.71171 −0.855855 0.517217i \(-0.826968\pi\)
−0.855855 + 0.517217i \(0.826968\pi\)
\(968\) −32.4467 −1.04288
\(969\) 0 0
\(970\) −39.0648 −1.25429
\(971\) −13.2042 −0.423741 −0.211871 0.977298i \(-0.567956\pi\)
−0.211871 + 0.977298i \(0.567956\pi\)
\(972\) 1.36445 0.0437647
\(973\) 10.6949 0.342862
\(974\) −7.67940 −0.246064
\(975\) 17.2251 0.551644
\(976\) −48.4796 −1.55180
\(977\) 49.0593 1.56955 0.784773 0.619783i \(-0.212779\pi\)
0.784773 + 0.619783i \(0.212779\pi\)
\(978\) −39.2480 −1.25501
\(979\) −45.6872 −1.46017
\(980\) 1.63555 0.0522458
\(981\) −14.7224 −0.470049
\(982\) −20.0439 −0.639625
\(983\) −56.8595 −1.81354 −0.906769 0.421628i \(-0.861459\pi\)
−0.906769 + 0.421628i \(0.861459\pi\)
\(984\) −3.41285 −0.108798
\(985\) 28.8290 0.918568
\(986\) 0 0
\(987\) −4.46980 −0.142275
\(988\) −21.7937 −0.693349
\(989\) 2.91320 0.0926344
\(990\) −13.7014 −0.435460
\(991\) −51.2755 −1.62882 −0.814410 0.580290i \(-0.802939\pi\)
−0.814410 + 0.580290i \(0.802939\pi\)
\(992\) −22.4094 −0.711499
\(993\) −3.99892 −0.126902
\(994\) −8.17668 −0.259348
\(995\) 12.6541 0.401162
\(996\) −19.4183 −0.615293
\(997\) 43.2085 1.36843 0.684214 0.729281i \(-0.260145\pi\)
0.684214 + 0.729281i \(0.260145\pi\)
\(998\) 30.5601 0.967362
\(999\) −10.8277 −0.342573
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.q.1.3 yes 3
17.16 even 2 6069.2.a.o.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.o.1.3 3 17.16 even 2
6069.2.a.q.1.3 yes 3 1.1 even 1 trivial