Properties

Label 6069.2.a.q
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,4,-2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + q^{3} + ( - \beta_{2} + \beta_1 + 1) q^{4} + (\beta_1 - 1) q^{5} + \beta_{2} q^{6} + q^{7} + (\beta_{2} - 3) q^{8} + q^{9} + \beta_1 q^{10} + ( - \beta_{2} - 2 \beta_1) q^{11}+ \cdots + ( - \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 4 q^{4} - 2 q^{5} + 3 q^{7} - 9 q^{8} + 3 q^{9} + q^{10} - 2 q^{11} + 4 q^{12} - 9 q^{13} - 2 q^{15} + 2 q^{16} - q^{19} + 5 q^{20} + 3 q^{21} - 12 q^{22} - 2 q^{23} - 9 q^{24} - 5 q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
−1.91223
2.19869
−2.49086 1.00000 4.20440 −0.286462 −2.49086 1.00000 −5.49086 1.00000 0.713538
1.2 0.656620 1.00000 −1.56885 −2.91223 0.656620 1.00000 −2.34338 1.00000 −1.91223
1.3 1.83424 1.00000 1.36445 1.19869 1.83424 1.00000 −1.16576 1.00000 2.19869
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.q yes 3
17.b even 2 1 6069.2.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.o 3 17.b even 2 1
6069.2.a.q yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{3} - 5T_{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{3} + 2T_{5}^{2} - 3T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 2T_{11}^{2} - 23T_{11} + 21 \) Copy content Toggle raw display
\( T_{23}^{3} + 2T_{23}^{2} - 3T_{23} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 5T + 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots + 21 \) Copy content Toggle raw display
$13$ \( T^{3} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + T^{2} + \cdots + 105 \) Copy content Toggle raw display
$23$ \( T^{3} + 2 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$29$ \( T^{3} - 7 T^{2} + \cdots + 183 \) Copy content Toggle raw display
$31$ \( T^{3} + T^{2} - 17T + 7 \) Copy content Toggle raw display
$37$ \( T^{3} - T^{2} + \cdots + 109 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots + 147 \) Copy content Toggle raw display
$43$ \( T^{3} + 15 T^{2} + \cdots - 171 \) Copy content Toggle raw display
$47$ \( T^{3} + 8T^{2} - T - 75 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$59$ \( T^{3} - 3 T^{2} + \cdots + 125 \) Copy content Toggle raw display
$61$ \( T^{3} - 13 T^{2} + \cdots + 441 \) Copy content Toggle raw display
$67$ \( T^{3} - 5 T^{2} + \cdots - 123 \) Copy content Toggle raw display
$71$ \( T^{3} + 13 T^{2} + \cdots - 513 \) Copy content Toggle raw display
$73$ \( T^{3} + 9 T^{2} + \cdots - 405 \) Copy content Toggle raw display
$79$ \( (T + 13)^{3} \) Copy content Toggle raw display
$83$ \( T^{3} + 26 T^{2} + \cdots + 477 \) Copy content Toggle raw display
$89$ \( T^{3} - 33 T^{2} + \cdots - 1135 \) Copy content Toggle raw display
$97$ \( T^{3} + 9 T^{2} + \cdots + 67 \) Copy content Toggle raw display
show more
show less