Properties

Label 605.6.a.e.1.4
Level $605$
Weight $6$
Character 605.1
Self dual yes
Analytic conductor $97.032$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,6,Mod(1,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(97.0322109869\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.01414\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.01414 q^{2} -13.7145 q^{3} -22.9149 q^{4} -25.0000 q^{5} -41.3374 q^{6} +131.565 q^{7} -165.521 q^{8} -54.9135 q^{9} -75.3536 q^{10} +314.266 q^{12} -598.870 q^{13} +396.555 q^{14} +342.862 q^{15} +234.373 q^{16} +1336.53 q^{17} -165.517 q^{18} -2886.27 q^{19} +572.874 q^{20} -1804.34 q^{21} -2048.71 q^{23} +2270.04 q^{24} +625.000 q^{25} -1805.08 q^{26} +4085.72 q^{27} -3014.80 q^{28} -5800.71 q^{29} +1033.43 q^{30} -9529.52 q^{31} +6003.12 q^{32} +4028.50 q^{34} -3289.12 q^{35} +1258.34 q^{36} -8187.53 q^{37} -8699.64 q^{38} +8213.18 q^{39} +4138.04 q^{40} -13471.0 q^{41} -5438.54 q^{42} +6524.24 q^{43} +1372.84 q^{45} -6175.12 q^{46} -8172.53 q^{47} -3214.29 q^{48} +502.291 q^{49} +1883.84 q^{50} -18329.8 q^{51} +13723.1 q^{52} +33262.9 q^{53} +12315.0 q^{54} -21776.8 q^{56} +39583.7 q^{57} -17484.2 q^{58} +33630.9 q^{59} -7856.65 q^{60} -46455.0 q^{61} -28723.3 q^{62} -7224.68 q^{63} +10594.3 q^{64} +14971.7 q^{65} +1838.70 q^{67} -30626.6 q^{68} +28097.0 q^{69} -9913.88 q^{70} +37198.6 q^{71} +9089.37 q^{72} -33497.7 q^{73} -24678.4 q^{74} -8571.54 q^{75} +66138.8 q^{76} +24755.7 q^{78} -38783.5 q^{79} -5859.31 q^{80} -42689.5 q^{81} -40603.6 q^{82} -350.204 q^{83} +41346.4 q^{84} -33413.3 q^{85} +19665.0 q^{86} +79553.6 q^{87} +15929.8 q^{89} +4137.93 q^{90} -78790.2 q^{91} +46946.2 q^{92} +130692. q^{93} -24633.2 q^{94} +72156.8 q^{95} -82329.6 q^{96} +25331.2 q^{97} +1513.98 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 115 q^{4} - 150 q^{5} - 325 q^{6} + 66 q^{7} - 249 q^{8} + 832 q^{9} + 75 q^{10} + 1301 q^{12} + 972 q^{13} + 2017 q^{14} + 6675 q^{16} - 712 q^{17} - 5920 q^{18} - 610 q^{19} - 2875 q^{20}+ \cdots + 351884 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.01414 0.532830 0.266415 0.963858i \(-0.414161\pi\)
0.266415 + 0.963858i \(0.414161\pi\)
\(3\) −13.7145 −0.879783 −0.439892 0.898051i \(-0.644983\pi\)
−0.439892 + 0.898051i \(0.644983\pi\)
\(4\) −22.9149 −0.716092
\(5\) −25.0000 −0.447214
\(6\) −41.3374 −0.468775
\(7\) 131.565 1.01483 0.507416 0.861701i \(-0.330601\pi\)
0.507416 + 0.861701i \(0.330601\pi\)
\(8\) −165.521 −0.914386
\(9\) −54.9135 −0.225981
\(10\) −75.3536 −0.238289
\(11\) 0 0
\(12\) 314.266 0.630006
\(13\) −598.870 −0.982820 −0.491410 0.870928i \(-0.663518\pi\)
−0.491410 + 0.870928i \(0.663518\pi\)
\(14\) 396.555 0.540734
\(15\) 342.862 0.393451
\(16\) 234.373 0.228879
\(17\) 1336.53 1.12165 0.560825 0.827935i \(-0.310484\pi\)
0.560825 + 0.827935i \(0.310484\pi\)
\(18\) −165.517 −0.120410
\(19\) −2886.27 −1.83423 −0.917114 0.398624i \(-0.869488\pi\)
−0.917114 + 0.398624i \(0.869488\pi\)
\(20\) 572.874 0.320246
\(21\) −1804.34 −0.892833
\(22\) 0 0
\(23\) −2048.71 −0.807536 −0.403768 0.914861i \(-0.632300\pi\)
−0.403768 + 0.914861i \(0.632300\pi\)
\(24\) 2270.04 0.804461
\(25\) 625.000 0.200000
\(26\) −1805.08 −0.523676
\(27\) 4085.72 1.07860
\(28\) −3014.80 −0.726714
\(29\) −5800.71 −1.28081 −0.640407 0.768036i \(-0.721234\pi\)
−0.640407 + 0.768036i \(0.721234\pi\)
\(30\) 1033.43 0.209643
\(31\) −9529.52 −1.78101 −0.890506 0.454971i \(-0.849650\pi\)
−0.890506 + 0.454971i \(0.849650\pi\)
\(32\) 6003.12 1.03634
\(33\) 0 0
\(34\) 4028.50 0.597649
\(35\) −3289.12 −0.453847
\(36\) 1258.34 0.161824
\(37\) −8187.53 −0.983215 −0.491608 0.870817i \(-0.663591\pi\)
−0.491608 + 0.870817i \(0.663591\pi\)
\(38\) −8699.64 −0.977333
\(39\) 8213.18 0.864669
\(40\) 4138.04 0.408926
\(41\) −13471.0 −1.25153 −0.625765 0.780011i \(-0.715213\pi\)
−0.625765 + 0.780011i \(0.715213\pi\)
\(42\) −5438.54 −0.475728
\(43\) 6524.24 0.538095 0.269047 0.963127i \(-0.413291\pi\)
0.269047 + 0.963127i \(0.413291\pi\)
\(44\) 0 0
\(45\) 1372.84 0.101062
\(46\) −6175.12 −0.430280
\(47\) −8172.53 −0.539649 −0.269825 0.962909i \(-0.586966\pi\)
−0.269825 + 0.962909i \(0.586966\pi\)
\(48\) −3214.29 −0.201364
\(49\) 502.291 0.0298858
\(50\) 1883.84 0.106566
\(51\) −18329.8 −0.986808
\(52\) 13723.1 0.703790
\(53\) 33262.9 1.62656 0.813280 0.581872i \(-0.197680\pi\)
0.813280 + 0.581872i \(0.197680\pi\)
\(54\) 12315.0 0.574710
\(55\) 0 0
\(56\) −21776.8 −0.927949
\(57\) 39583.7 1.61372
\(58\) −17484.2 −0.682456
\(59\) 33630.9 1.25779 0.628895 0.777490i \(-0.283508\pi\)
0.628895 + 0.777490i \(0.283508\pi\)
\(60\) −7856.65 −0.281747
\(61\) −46455.0 −1.59848 −0.799241 0.601011i \(-0.794765\pi\)
−0.799241 + 0.601011i \(0.794765\pi\)
\(62\) −28723.3 −0.948977
\(63\) −7224.68 −0.229333
\(64\) 10594.3 0.323314
\(65\) 14971.7 0.439531
\(66\) 0 0
\(67\) 1838.70 0.0500409 0.0250204 0.999687i \(-0.492035\pi\)
0.0250204 + 0.999687i \(0.492035\pi\)
\(68\) −30626.6 −0.803204
\(69\) 28097.0 0.710457
\(70\) −9913.88 −0.241823
\(71\) 37198.6 0.875751 0.437875 0.899036i \(-0.355731\pi\)
0.437875 + 0.899036i \(0.355731\pi\)
\(72\) 9089.37 0.206634
\(73\) −33497.7 −0.735713 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(74\) −24678.4 −0.523887
\(75\) −8571.54 −0.175957
\(76\) 66138.8 1.31348
\(77\) 0 0
\(78\) 24755.7 0.460722
\(79\) −38783.5 −0.699165 −0.349582 0.936906i \(-0.613677\pi\)
−0.349582 + 0.936906i \(0.613677\pi\)
\(80\) −5859.31 −0.102358
\(81\) −42689.5 −0.722951
\(82\) −40603.6 −0.666853
\(83\) −350.204 −0.00557990 −0.00278995 0.999996i \(-0.500888\pi\)
−0.00278995 + 0.999996i \(0.500888\pi\)
\(84\) 41346.4 0.639350
\(85\) −33413.3 −0.501617
\(86\) 19665.0 0.286713
\(87\) 79553.6 1.12684
\(88\) 0 0
\(89\) 15929.8 0.213174 0.106587 0.994303i \(-0.466008\pi\)
0.106587 + 0.994303i \(0.466008\pi\)
\(90\) 4137.93 0.0538489
\(91\) −78790.2 −0.997399
\(92\) 46946.2 0.578270
\(93\) 130692. 1.56690
\(94\) −24633.2 −0.287541
\(95\) 72156.8 0.820292
\(96\) −82329.6 −0.911754
\(97\) 25331.2 0.273355 0.136677 0.990616i \(-0.456358\pi\)
0.136677 + 0.990616i \(0.456358\pi\)
\(98\) 1513.98 0.0159241
\(99\) 0 0
\(100\) −14321.8 −0.143218
\(101\) 22193.8 0.216485 0.108243 0.994125i \(-0.465478\pi\)
0.108243 + 0.994125i \(0.465478\pi\)
\(102\) −55248.7 −0.525801
\(103\) −125832. −1.16869 −0.584343 0.811506i \(-0.698648\pi\)
−0.584343 + 0.811506i \(0.698648\pi\)
\(104\) 99125.9 0.898677
\(105\) 45108.5 0.399287
\(106\) 100259. 0.866681
\(107\) 71187.7 0.601098 0.300549 0.953766i \(-0.402830\pi\)
0.300549 + 0.953766i \(0.402830\pi\)
\(108\) −93624.1 −0.772375
\(109\) 161346. 1.30074 0.650370 0.759617i \(-0.274614\pi\)
0.650370 + 0.759617i \(0.274614\pi\)
\(110\) 0 0
\(111\) 112288. 0.865016
\(112\) 30835.2 0.232274
\(113\) 186477. 1.37382 0.686910 0.726742i \(-0.258967\pi\)
0.686910 + 0.726742i \(0.258967\pi\)
\(114\) 119311. 0.859841
\(115\) 51217.9 0.361141
\(116\) 132923. 0.917180
\(117\) 32886.0 0.222099
\(118\) 101368. 0.670188
\(119\) 175841. 1.13829
\(120\) −56751.0 −0.359766
\(121\) 0 0
\(122\) −140022. −0.851719
\(123\) 184748. 1.10108
\(124\) 218368. 1.27537
\(125\) −15625.0 −0.0894427
\(126\) −21776.2 −0.122196
\(127\) 193515. 1.06465 0.532324 0.846541i \(-0.321319\pi\)
0.532324 + 0.846541i \(0.321319\pi\)
\(128\) −160167. −0.864068
\(129\) −89476.4 −0.473407
\(130\) 45127.0 0.234195
\(131\) −38812.1 −0.197601 −0.0988004 0.995107i \(-0.531501\pi\)
−0.0988004 + 0.995107i \(0.531501\pi\)
\(132\) 0 0
\(133\) −379732. −1.86144
\(134\) 5542.12 0.0266633
\(135\) −102143. −0.482364
\(136\) −221225. −1.02562
\(137\) 304505. 1.38610 0.693048 0.720892i \(-0.256267\pi\)
0.693048 + 0.720892i \(0.256267\pi\)
\(138\) 84688.5 0.378553
\(139\) 135420. 0.594493 0.297247 0.954801i \(-0.403932\pi\)
0.297247 + 0.954801i \(0.403932\pi\)
\(140\) 75370.0 0.324996
\(141\) 112082. 0.474774
\(142\) 112122. 0.466627
\(143\) 0 0
\(144\) −12870.2 −0.0517225
\(145\) 145018. 0.572797
\(146\) −100967. −0.392010
\(147\) −6888.65 −0.0262930
\(148\) 187617. 0.704072
\(149\) −139744. −0.515664 −0.257832 0.966190i \(-0.583008\pi\)
−0.257832 + 0.966190i \(0.583008\pi\)
\(150\) −25835.8 −0.0937550
\(151\) −360217. −1.28565 −0.642823 0.766015i \(-0.722237\pi\)
−0.642823 + 0.766015i \(0.722237\pi\)
\(152\) 477740. 1.67719
\(153\) −73393.7 −0.253472
\(154\) 0 0
\(155\) 238238. 0.796493
\(156\) −188205. −0.619182
\(157\) 458813. 1.48555 0.742773 0.669543i \(-0.233510\pi\)
0.742773 + 0.669543i \(0.233510\pi\)
\(158\) −116899. −0.372536
\(159\) −456183. −1.43102
\(160\) −150078. −0.463465
\(161\) −269539. −0.819514
\(162\) −128672. −0.385210
\(163\) 499719. 1.47318 0.736592 0.676337i \(-0.236434\pi\)
0.736592 + 0.676337i \(0.236434\pi\)
\(164\) 308688. 0.896211
\(165\) 0 0
\(166\) −1055.57 −0.00297314
\(167\) 328346. 0.911047 0.455524 0.890224i \(-0.349452\pi\)
0.455524 + 0.890224i \(0.349452\pi\)
\(168\) 298657. 0.816394
\(169\) −12647.7 −0.0340640
\(170\) −100713. −0.267277
\(171\) 158495. 0.414502
\(172\) −149503. −0.385325
\(173\) −138676. −0.352278 −0.176139 0.984365i \(-0.556361\pi\)
−0.176139 + 0.984365i \(0.556361\pi\)
\(174\) 239786. 0.600414
\(175\) 82228.0 0.202967
\(176\) 0 0
\(177\) −461229. −1.10658
\(178\) 48014.6 0.113586
\(179\) −442770. −1.03287 −0.516435 0.856326i \(-0.672741\pi\)
−0.516435 + 0.856326i \(0.672741\pi\)
\(180\) −31458.5 −0.0723697
\(181\) 348806. 0.791385 0.395692 0.918383i \(-0.370505\pi\)
0.395692 + 0.918383i \(0.370505\pi\)
\(182\) −237485. −0.531444
\(183\) 637105. 1.40632
\(184\) 339106. 0.738399
\(185\) 204688. 0.439707
\(186\) 393925. 0.834894
\(187\) 0 0
\(188\) 187273. 0.386438
\(189\) 537537. 1.09460
\(190\) 217491. 0.437076
\(191\) −231528. −0.459219 −0.229609 0.973283i \(-0.573745\pi\)
−0.229609 + 0.973283i \(0.573745\pi\)
\(192\) −145296. −0.284446
\(193\) 379671. 0.733693 0.366846 0.930282i \(-0.380437\pi\)
0.366846 + 0.930282i \(0.380437\pi\)
\(194\) 76352.0 0.145652
\(195\) −205330. −0.386692
\(196\) −11510.0 −0.0214010
\(197\) −277285. −0.509050 −0.254525 0.967066i \(-0.581919\pi\)
−0.254525 + 0.967066i \(0.581919\pi\)
\(198\) 0 0
\(199\) −757833. −1.35657 −0.678283 0.734801i \(-0.737276\pi\)
−0.678283 + 0.734801i \(0.737276\pi\)
\(200\) −103451. −0.182877
\(201\) −25216.8 −0.0440251
\(202\) 66895.3 0.115350
\(203\) −763169. −1.29981
\(204\) 420027. 0.706646
\(205\) 336776. 0.559702
\(206\) −379276. −0.622712
\(207\) 112502. 0.182488
\(208\) −140359. −0.224947
\(209\) 0 0
\(210\) 135964. 0.212752
\(211\) 301095. 0.465584 0.232792 0.972527i \(-0.425214\pi\)
0.232792 + 0.972527i \(0.425214\pi\)
\(212\) −762217. −1.16477
\(213\) −510159. −0.770471
\(214\) 214570. 0.320283
\(215\) −163106. −0.240643
\(216\) −676275. −0.986255
\(217\) −1.25375e6 −1.80743
\(218\) 486319. 0.693074
\(219\) 459403. 0.647268
\(220\) 0 0
\(221\) −800409. −1.10238
\(222\) 338451. 0.460907
\(223\) 353960. 0.476642 0.238321 0.971186i \(-0.423403\pi\)
0.238321 + 0.971186i \(0.423403\pi\)
\(224\) 789799. 1.05171
\(225\) −34320.9 −0.0451963
\(226\) 562069. 0.732013
\(227\) −510395. −0.657418 −0.328709 0.944431i \(-0.606614\pi\)
−0.328709 + 0.944431i \(0.606614\pi\)
\(228\) −907058. −1.15557
\(229\) −830048. −1.04596 −0.522979 0.852345i \(-0.675179\pi\)
−0.522979 + 0.852345i \(0.675179\pi\)
\(230\) 154378. 0.192427
\(231\) 0 0
\(232\) 960142. 1.17116
\(233\) −145009. −0.174987 −0.0874937 0.996165i \(-0.527886\pi\)
−0.0874937 + 0.996165i \(0.527886\pi\)
\(234\) 99123.3 0.118341
\(235\) 204313. 0.241339
\(236\) −770649. −0.900693
\(237\) 531895. 0.615113
\(238\) 530009. 0.606514
\(239\) −1.35319e6 −1.53238 −0.766188 0.642617i \(-0.777849\pi\)
−0.766188 + 0.642617i \(0.777849\pi\)
\(240\) 80357.4 0.0900529
\(241\) 678741. 0.752768 0.376384 0.926464i \(-0.377167\pi\)
0.376384 + 0.926464i \(0.377167\pi\)
\(242\) 0 0
\(243\) −407367. −0.442558
\(244\) 1.06451e6 1.14466
\(245\) −12557.3 −0.0133653
\(246\) 556857. 0.586686
\(247\) 1.72850e6 1.80272
\(248\) 1.57734e6 1.62853
\(249\) 4802.86 0.00490910
\(250\) −47096.0 −0.0476578
\(251\) 1.10172e6 1.10380 0.551898 0.833912i \(-0.313904\pi\)
0.551898 + 0.833912i \(0.313904\pi\)
\(252\) 165553. 0.164224
\(253\) 0 0
\(254\) 583282. 0.567276
\(255\) 458246. 0.441314
\(256\) −821785. −0.783715
\(257\) 1.24112e6 1.17214 0.586071 0.810260i \(-0.300674\pi\)
0.586071 + 0.810260i \(0.300674\pi\)
\(258\) −269695. −0.252245
\(259\) −1.07719e6 −0.997799
\(260\) −343077. −0.314744
\(261\) 318537. 0.289440
\(262\) −116985. −0.105288
\(263\) 207030. 0.184562 0.0922811 0.995733i \(-0.470584\pi\)
0.0922811 + 0.995733i \(0.470584\pi\)
\(264\) 0 0
\(265\) −831572. −0.727420
\(266\) −1.14457e6 −0.991829
\(267\) −218468. −0.187547
\(268\) −42133.8 −0.0358339
\(269\) 1.36048e6 1.14633 0.573167 0.819439i \(-0.305715\pi\)
0.573167 + 0.819439i \(0.305715\pi\)
\(270\) −307874. −0.257018
\(271\) −997686. −0.825222 −0.412611 0.910907i \(-0.635383\pi\)
−0.412611 + 0.910907i \(0.635383\pi\)
\(272\) 313247. 0.256723
\(273\) 1.08057e6 0.877494
\(274\) 917822. 0.738554
\(275\) 0 0
\(276\) −643842. −0.508752
\(277\) −1.65022e6 −1.29223 −0.646117 0.763238i \(-0.723608\pi\)
−0.646117 + 0.763238i \(0.723608\pi\)
\(278\) 408176. 0.316764
\(279\) 523299. 0.402476
\(280\) 544420. 0.414991
\(281\) −1.16381e6 −0.879260 −0.439630 0.898179i \(-0.644890\pi\)
−0.439630 + 0.898179i \(0.644890\pi\)
\(282\) 337831. 0.252974
\(283\) 1.76857e6 1.31267 0.656336 0.754469i \(-0.272106\pi\)
0.656336 + 0.754469i \(0.272106\pi\)
\(284\) −852404. −0.627118
\(285\) −989592. −0.721679
\(286\) 0 0
\(287\) −1.77231e6 −1.27009
\(288\) −329652. −0.234194
\(289\) 366462. 0.258098
\(290\) 437104. 0.305204
\(291\) −347404. −0.240493
\(292\) 767598. 0.526838
\(293\) −1.81234e6 −1.23331 −0.616653 0.787235i \(-0.711512\pi\)
−0.616653 + 0.787235i \(0.711512\pi\)
\(294\) −20763.4 −0.0140097
\(295\) −840771. −0.562501
\(296\) 1.35521e6 0.899038
\(297\) 0 0
\(298\) −421208. −0.274761
\(299\) 1.22691e6 0.793663
\(300\) 196416. 0.126001
\(301\) 858360. 0.546076
\(302\) −1.08574e6 −0.685031
\(303\) −304376. −0.190460
\(304\) −676463. −0.419817
\(305\) 1.16137e6 0.714863
\(306\) −221219. −0.135058
\(307\) 174606. 0.105734 0.0528668 0.998602i \(-0.483164\pi\)
0.0528668 + 0.998602i \(0.483164\pi\)
\(308\) 0 0
\(309\) 1.72572e6 1.02819
\(310\) 718084. 0.424396
\(311\) −2.56816e6 −1.50564 −0.752821 0.658225i \(-0.771308\pi\)
−0.752821 + 0.658225i \(0.771308\pi\)
\(312\) −1.35946e6 −0.790641
\(313\) 328703. 0.189646 0.0948229 0.995494i \(-0.469772\pi\)
0.0948229 + 0.995494i \(0.469772\pi\)
\(314\) 1.38293e6 0.791544
\(315\) 180617. 0.102561
\(316\) 888722. 0.500666
\(317\) −662607. −0.370346 −0.185173 0.982706i \(-0.559285\pi\)
−0.185173 + 0.982706i \(0.559285\pi\)
\(318\) −1.37500e6 −0.762491
\(319\) 0 0
\(320\) −264859. −0.144590
\(321\) −976301. −0.528836
\(322\) −812428. −0.436662
\(323\) −3.85760e6 −2.05736
\(324\) 978228. 0.517699
\(325\) −374294. −0.196564
\(326\) 1.50623e6 0.784957
\(327\) −2.21277e6 −1.14437
\(328\) 2.22975e6 1.14438
\(329\) −1.07522e6 −0.547654
\(330\) 0 0
\(331\) 236679. 0.118738 0.0593690 0.998236i \(-0.481091\pi\)
0.0593690 + 0.998236i \(0.481091\pi\)
\(332\) 8024.91 0.00399572
\(333\) 449606. 0.222188
\(334\) 989683. 0.485434
\(335\) −45967.6 −0.0223790
\(336\) −422888. −0.204351
\(337\) 3.92672e6 1.88346 0.941728 0.336375i \(-0.109201\pi\)
0.941728 + 0.336375i \(0.109201\pi\)
\(338\) −38122.1 −0.0181503
\(339\) −2.55744e6 −1.20866
\(340\) 765664. 0.359204
\(341\) 0 0
\(342\) 477728. 0.220859
\(343\) −2.14513e6 −0.984504
\(344\) −1.07990e6 −0.492026
\(345\) −702426. −0.317726
\(346\) −417989. −0.187705
\(347\) 97486.2 0.0434630 0.0217315 0.999764i \(-0.493082\pi\)
0.0217315 + 0.999764i \(0.493082\pi\)
\(348\) −1.82297e6 −0.806920
\(349\) 937238. 0.411895 0.205947 0.978563i \(-0.433972\pi\)
0.205947 + 0.978563i \(0.433972\pi\)
\(350\) 247847. 0.108147
\(351\) −2.44682e6 −1.06007
\(352\) 0 0
\(353\) 1.16848e6 0.499095 0.249548 0.968363i \(-0.419718\pi\)
0.249548 + 0.968363i \(0.419718\pi\)
\(354\) −1.39021e6 −0.589620
\(355\) −929965. −0.391648
\(356\) −365030. −0.152652
\(357\) −2.41156e6 −1.00145
\(358\) −1.33457e6 −0.550345
\(359\) 846273. 0.346557 0.173278 0.984873i \(-0.444564\pi\)
0.173278 + 0.984873i \(0.444564\pi\)
\(360\) −227234. −0.0924096
\(361\) 5.85448e6 2.36440
\(362\) 1.05135e6 0.421674
\(363\) 0 0
\(364\) 1.80547e6 0.714229
\(365\) 837443. 0.329021
\(366\) 1.92033e6 0.749328
\(367\) −2.69738e6 −1.04539 −0.522694 0.852521i \(-0.675073\pi\)
−0.522694 + 0.852521i \(0.675073\pi\)
\(368\) −480163. −0.184828
\(369\) 739742. 0.282823
\(370\) 616960. 0.234289
\(371\) 4.37622e6 1.65069
\(372\) −2.99481e6 −1.12205
\(373\) −1.84632e6 −0.687122 −0.343561 0.939130i \(-0.611633\pi\)
−0.343561 + 0.939130i \(0.611633\pi\)
\(374\) 0 0
\(375\) 214288. 0.0786902
\(376\) 1.35273e6 0.493448
\(377\) 3.47387e6 1.25881
\(378\) 1.62021e6 0.583234
\(379\) −213160. −0.0762269 −0.0381134 0.999273i \(-0.512135\pi\)
−0.0381134 + 0.999273i \(0.512135\pi\)
\(380\) −1.65347e6 −0.587404
\(381\) −2.65396e6 −0.936659
\(382\) −697858. −0.244686
\(383\) −4.13824e6 −1.44151 −0.720757 0.693188i \(-0.756206\pi\)
−0.720757 + 0.693188i \(0.756206\pi\)
\(384\) 2.19660e6 0.760193
\(385\) 0 0
\(386\) 1.14438e6 0.390934
\(387\) −358269. −0.121599
\(388\) −580464. −0.195747
\(389\) 3.62932e6 1.21605 0.608024 0.793918i \(-0.291962\pi\)
0.608024 + 0.793918i \(0.291962\pi\)
\(390\) −618893. −0.206041
\(391\) −2.73817e6 −0.905772
\(392\) −83140.0 −0.0273272
\(393\) 532287. 0.173846
\(394\) −835776. −0.271237
\(395\) 969588. 0.312676
\(396\) 0 0
\(397\) −996930. −0.317459 −0.158730 0.987322i \(-0.550740\pi\)
−0.158730 + 0.987322i \(0.550740\pi\)
\(398\) −2.28422e6 −0.722819
\(399\) 5.20782e6 1.63766
\(400\) 146483. 0.0457759
\(401\) 2.14079e6 0.664833 0.332416 0.943133i \(-0.392136\pi\)
0.332416 + 0.943133i \(0.392136\pi\)
\(402\) −76007.2 −0.0234579
\(403\) 5.70695e6 1.75042
\(404\) −508570. −0.155023
\(405\) 1.06724e6 0.323313
\(406\) −2.30030e6 −0.692579
\(407\) 0 0
\(408\) 3.03398e6 0.902324
\(409\) 2.66050e6 0.786422 0.393211 0.919448i \(-0.371364\pi\)
0.393211 + 0.919448i \(0.371364\pi\)
\(410\) 1.01509e6 0.298226
\(411\) −4.17612e6 −1.21946
\(412\) 2.88343e6 0.836887
\(413\) 4.42464e6 1.27645
\(414\) 339097. 0.0972352
\(415\) 8755.11 0.00249541
\(416\) −3.59509e6 −1.01854
\(417\) −1.85722e6 −0.523025
\(418\) 0 0
\(419\) 6.75397e6 1.87942 0.939710 0.341973i \(-0.111095\pi\)
0.939710 + 0.341973i \(0.111095\pi\)
\(420\) −1.03366e6 −0.285926
\(421\) 2.90394e6 0.798514 0.399257 0.916839i \(-0.369268\pi\)
0.399257 + 0.916839i \(0.369268\pi\)
\(422\) 907545. 0.248077
\(423\) 448782. 0.121951
\(424\) −5.50572e6 −1.48730
\(425\) 835333. 0.224330
\(426\) −1.53769e6 −0.410530
\(427\) −6.11184e6 −1.62219
\(428\) −1.63126e6 −0.430441
\(429\) 0 0
\(430\) −491625. −0.128222
\(431\) 530831. 0.137646 0.0688230 0.997629i \(-0.478076\pi\)
0.0688230 + 0.997629i \(0.478076\pi\)
\(432\) 957582. 0.246869
\(433\) −1.41701e6 −0.363207 −0.181603 0.983372i \(-0.558129\pi\)
−0.181603 + 0.983372i \(0.558129\pi\)
\(434\) −3.77898e6 −0.963053
\(435\) −1.98884e6 −0.503937
\(436\) −3.69722e6 −0.931450
\(437\) 5.91315e6 1.48121
\(438\) 1.38471e6 0.344884
\(439\) −5.45603e6 −1.35119 −0.675593 0.737275i \(-0.736112\pi\)
−0.675593 + 0.737275i \(0.736112\pi\)
\(440\) 0 0
\(441\) −27582.6 −0.00675364
\(442\) −2.41255e6 −0.587381
\(443\) 2.51044e6 0.607772 0.303886 0.952708i \(-0.401716\pi\)
0.303886 + 0.952708i \(0.401716\pi\)
\(444\) −2.57306e6 −0.619431
\(445\) −398244. −0.0953343
\(446\) 1.06689e6 0.253969
\(447\) 1.91651e6 0.453673
\(448\) 1.39384e6 0.328109
\(449\) 81910.9 0.0191746 0.00958729 0.999954i \(-0.496948\pi\)
0.00958729 + 0.999954i \(0.496948\pi\)
\(450\) −103448. −0.0240820
\(451\) 0 0
\(452\) −4.27312e6 −0.983782
\(453\) 4.94018e6 1.13109
\(454\) −1.53840e6 −0.350292
\(455\) 1.96975e6 0.446050
\(456\) −6.55195e6 −1.47557
\(457\) −6.82583e6 −1.52885 −0.764425 0.644712i \(-0.776977\pi\)
−0.764425 + 0.644712i \(0.776977\pi\)
\(458\) −2.50188e6 −0.557318
\(459\) 5.46070e6 1.20981
\(460\) −1.17365e6 −0.258610
\(461\) −934822. −0.204869 −0.102435 0.994740i \(-0.532663\pi\)
−0.102435 + 0.994740i \(0.532663\pi\)
\(462\) 0 0
\(463\) 1.70121e6 0.368813 0.184406 0.982850i \(-0.440964\pi\)
0.184406 + 0.982850i \(0.440964\pi\)
\(464\) −1.35953e6 −0.293152
\(465\) −3.26731e6 −0.700741
\(466\) −437079. −0.0932385
\(467\) 6.66304e6 1.41378 0.706888 0.707326i \(-0.250099\pi\)
0.706888 + 0.707326i \(0.250099\pi\)
\(468\) −753582. −0.159043
\(469\) 241909. 0.0507831
\(470\) 615829. 0.128592
\(471\) −6.29237e6 −1.30696
\(472\) −5.56663e6 −1.15010
\(473\) 0 0
\(474\) 1.60321e6 0.327751
\(475\) −1.80392e6 −0.366846
\(476\) −4.02938e6 −0.815118
\(477\) −1.82658e6 −0.367573
\(478\) −4.07872e6 −0.816496
\(479\) 2.83033e6 0.563635 0.281817 0.959468i \(-0.409063\pi\)
0.281817 + 0.959468i \(0.409063\pi\)
\(480\) 2.05824e6 0.407749
\(481\) 4.90327e6 0.966324
\(482\) 2.04582e6 0.401098
\(483\) 3.69658e6 0.720995
\(484\) 0 0
\(485\) −633281. −0.122248
\(486\) −1.22786e6 −0.235808
\(487\) −1.27484e6 −0.243574 −0.121787 0.992556i \(-0.538863\pi\)
−0.121787 + 0.992556i \(0.538863\pi\)
\(488\) 7.68930e6 1.46163
\(489\) −6.85338e6 −1.29608
\(490\) −37849.4 −0.00712146
\(491\) 171346. 0.0320754 0.0160377 0.999871i \(-0.494895\pi\)
0.0160377 + 0.999871i \(0.494895\pi\)
\(492\) −4.23349e6 −0.788471
\(493\) −7.75283e6 −1.43662
\(494\) 5.20995e6 0.960542
\(495\) 0 0
\(496\) −2.23346e6 −0.407637
\(497\) 4.89402e6 0.888741
\(498\) 14476.5 0.00261572
\(499\) 4.83367e6 0.869011 0.434506 0.900669i \(-0.356923\pi\)
0.434506 + 0.900669i \(0.356923\pi\)
\(500\) 358046. 0.0640492
\(501\) −4.50309e6 −0.801524
\(502\) 3.32076e6 0.588136
\(503\) 1.06055e6 0.186901 0.0934506 0.995624i \(-0.470210\pi\)
0.0934506 + 0.995624i \(0.470210\pi\)
\(504\) 1.19584e6 0.209699
\(505\) −554845. −0.0968152
\(506\) 0 0
\(507\) 173457. 0.0299690
\(508\) −4.43439e6 −0.762385
\(509\) −4.30052e6 −0.735744 −0.367872 0.929876i \(-0.619913\pi\)
−0.367872 + 0.929876i \(0.619913\pi\)
\(510\) 1.38122e6 0.235146
\(511\) −4.40712e6 −0.746625
\(512\) 2.64837e6 0.446481
\(513\) −1.17925e7 −1.97840
\(514\) 3.74091e6 0.624552
\(515\) 3.14580e6 0.522653
\(516\) 2.05035e6 0.339003
\(517\) 0 0
\(518\) −3.24681e6 −0.531658
\(519\) 1.90187e6 0.309929
\(520\) −2.47815e6 −0.401901
\(521\) −8.98238e6 −1.44976 −0.724882 0.688873i \(-0.758106\pi\)
−0.724882 + 0.688873i \(0.758106\pi\)
\(522\) 960117. 0.154223
\(523\) 2.53721e6 0.405604 0.202802 0.979220i \(-0.434995\pi\)
0.202802 + 0.979220i \(0.434995\pi\)
\(524\) 889376. 0.141500
\(525\) −1.12771e6 −0.178567
\(526\) 624017. 0.0983404
\(527\) −1.27365e7 −1.99767
\(528\) 0 0
\(529\) −2.23911e6 −0.347886
\(530\) −2.50648e6 −0.387591
\(531\) −1.84679e6 −0.284237
\(532\) 8.70154e6 1.33296
\(533\) 8.06740e6 1.23003
\(534\) −658494. −0.0999307
\(535\) −1.77969e6 −0.268819
\(536\) −304345. −0.0457567
\(537\) 6.07236e6 0.908702
\(538\) 4.10068e6 0.610801
\(539\) 0 0
\(540\) 2.34060e6 0.345417
\(541\) −1.11058e7 −1.63139 −0.815696 0.578481i \(-0.803646\pi\)
−0.815696 + 0.578481i \(0.803646\pi\)
\(542\) −3.00717e6 −0.439703
\(543\) −4.78369e6 −0.696247
\(544\) 8.02337e6 1.16241
\(545\) −4.03364e6 −0.581709
\(546\) 3.25698e6 0.467556
\(547\) −8.21202e6 −1.17350 −0.586748 0.809769i \(-0.699592\pi\)
−0.586748 + 0.809769i \(0.699592\pi\)
\(548\) −6.97772e6 −0.992572
\(549\) 2.55101e6 0.361227
\(550\) 0 0
\(551\) 1.67424e7 2.34931
\(552\) −4.65066e6 −0.649631
\(553\) −5.10255e6 −0.709535
\(554\) −4.97399e6 −0.688542
\(555\) −2.80719e6 −0.386847
\(556\) −3.10315e6 −0.425712
\(557\) 1.80394e6 0.246368 0.123184 0.992384i \(-0.460690\pi\)
0.123184 + 0.992384i \(0.460690\pi\)
\(558\) 1.57730e6 0.214451
\(559\) −3.90717e6 −0.528850
\(560\) −770879. −0.103876
\(561\) 0 0
\(562\) −3.50790e6 −0.468496
\(563\) −7.24282e6 −0.963024 −0.481512 0.876440i \(-0.659912\pi\)
−0.481512 + 0.876440i \(0.659912\pi\)
\(564\) −2.56835e6 −0.339982
\(565\) −4.66193e6 −0.614391
\(566\) 5.33072e6 0.699431
\(567\) −5.61644e6 −0.733674
\(568\) −6.15717e6 −0.800774
\(569\) 465183. 0.0602342 0.0301171 0.999546i \(-0.490412\pi\)
0.0301171 + 0.999546i \(0.490412\pi\)
\(570\) −2.98277e6 −0.384533
\(571\) −6.14795e6 −0.789114 −0.394557 0.918871i \(-0.629102\pi\)
−0.394557 + 0.918871i \(0.629102\pi\)
\(572\) 0 0
\(573\) 3.17528e6 0.404013
\(574\) −5.34201e6 −0.676745
\(575\) −1.28045e6 −0.161507
\(576\) −581772. −0.0730629
\(577\) −1.42512e6 −0.178201 −0.0891007 0.996023i \(-0.528399\pi\)
−0.0891007 + 0.996023i \(0.528399\pi\)
\(578\) 1.10457e6 0.137522
\(579\) −5.20698e6 −0.645491
\(580\) −3.32307e6 −0.410176
\(581\) −46074.6 −0.00566266
\(582\) −1.04713e6 −0.128142
\(583\) 0 0
\(584\) 5.54459e6 0.672725
\(585\) −822151. −0.0993258
\(586\) −5.46265e6 −0.657143
\(587\) 1.18717e7 1.42206 0.711032 0.703159i \(-0.248228\pi\)
0.711032 + 0.703159i \(0.248228\pi\)
\(588\) 157853. 0.0188282
\(589\) 2.75048e7 3.26678
\(590\) −2.53421e6 −0.299717
\(591\) 3.80281e6 0.447854
\(592\) −1.91893e6 −0.225038
\(593\) −5.50367e6 −0.642710 −0.321355 0.946959i \(-0.604138\pi\)
−0.321355 + 0.946959i \(0.604138\pi\)
\(594\) 0 0
\(595\) −4.39601e6 −0.509057
\(596\) 3.20222e6 0.369263
\(597\) 1.03933e7 1.19348
\(598\) 3.69809e6 0.422888
\(599\) −1.25304e7 −1.42692 −0.713458 0.700698i \(-0.752872\pi\)
−0.713458 + 0.700698i \(0.752872\pi\)
\(600\) 1.41877e6 0.160892
\(601\) 1.13744e7 1.28452 0.642261 0.766486i \(-0.277997\pi\)
0.642261 + 0.766486i \(0.277997\pi\)
\(602\) 2.58722e6 0.290966
\(603\) −100970. −0.0113083
\(604\) 8.25434e6 0.920641
\(605\) 0 0
\(606\) −917433. −0.101483
\(607\) 4.72621e6 0.520645 0.260323 0.965522i \(-0.416171\pi\)
0.260323 + 0.965522i \(0.416171\pi\)
\(608\) −1.73266e7 −1.90088
\(609\) 1.04665e7 1.14355
\(610\) 3.50055e6 0.380901
\(611\) 4.89428e6 0.530378
\(612\) 1.68181e6 0.181509
\(613\) 652666. 0.0701519 0.0350760 0.999385i \(-0.488833\pi\)
0.0350760 + 0.999385i \(0.488833\pi\)
\(614\) 526287. 0.0563380
\(615\) −4.61870e6 −0.492416
\(616\) 0 0
\(617\) −1.41008e7 −1.49118 −0.745592 0.666403i \(-0.767833\pi\)
−0.745592 + 0.666403i \(0.767833\pi\)
\(618\) 5.20156e6 0.547851
\(619\) 1.77166e7 1.85847 0.929233 0.369493i \(-0.120469\pi\)
0.929233 + 0.369493i \(0.120469\pi\)
\(620\) −5.45921e6 −0.570362
\(621\) −8.37048e6 −0.871007
\(622\) −7.74082e6 −0.802252
\(623\) 2.09580e6 0.216336
\(624\) 1.92494e6 0.197905
\(625\) 390625. 0.0400000
\(626\) 990759. 0.101049
\(627\) 0 0
\(628\) −1.05137e7 −1.06379
\(629\) −1.09429e7 −1.10282
\(630\) 544406. 0.0546476
\(631\) 1.82506e7 1.82475 0.912374 0.409358i \(-0.134247\pi\)
0.912374 + 0.409358i \(0.134247\pi\)
\(632\) 6.41951e6 0.639306
\(633\) −4.12936e6 −0.409613
\(634\) −1.99719e6 −0.197332
\(635\) −4.83788e6 −0.476125
\(636\) 1.04534e7 1.02474
\(637\) −300807. −0.0293724
\(638\) 0 0
\(639\) −2.04270e6 −0.197904
\(640\) 4.00417e6 0.386423
\(641\) 7.36294e6 0.707793 0.353896 0.935285i \(-0.384857\pi\)
0.353896 + 0.935285i \(0.384857\pi\)
\(642\) −2.94271e6 −0.281780
\(643\) −1.47916e7 −1.41087 −0.705436 0.708774i \(-0.749249\pi\)
−0.705436 + 0.708774i \(0.749249\pi\)
\(644\) 6.17646e6 0.586847
\(645\) 2.23691e6 0.211714
\(646\) −1.16274e7 −1.09622
\(647\) 3.78301e6 0.355285 0.177643 0.984095i \(-0.443153\pi\)
0.177643 + 0.984095i \(0.443153\pi\)
\(648\) 7.06603e6 0.661056
\(649\) 0 0
\(650\) −1.12817e6 −0.104735
\(651\) 1.71945e7 1.59015
\(652\) −1.14510e7 −1.05494
\(653\) 1.31122e6 0.120335 0.0601677 0.998188i \(-0.480836\pi\)
0.0601677 + 0.998188i \(0.480836\pi\)
\(654\) −6.66960e6 −0.609755
\(655\) 970302. 0.0883697
\(656\) −3.15724e6 −0.286450
\(657\) 1.83948e6 0.166257
\(658\) −3.24086e6 −0.291807
\(659\) −4.43005e6 −0.397370 −0.198685 0.980063i \(-0.563667\pi\)
−0.198685 + 0.980063i \(0.563667\pi\)
\(660\) 0 0
\(661\) −1.01783e7 −0.906093 −0.453046 0.891487i \(-0.649663\pi\)
−0.453046 + 0.891487i \(0.649663\pi\)
\(662\) 713384. 0.0632672
\(663\) 1.09772e7 0.969856
\(664\) 57966.3 0.00510218
\(665\) 9.49330e6 0.832459
\(666\) 1.35518e6 0.118389
\(667\) 1.18840e7 1.03430
\(668\) −7.52404e6 −0.652394
\(669\) −4.85438e6 −0.419342
\(670\) −138553. −0.0119242
\(671\) 0 0
\(672\) −1.08317e7 −0.925278
\(673\) 9.77223e6 0.831680 0.415840 0.909438i \(-0.363488\pi\)
0.415840 + 0.909438i \(0.363488\pi\)
\(674\) 1.18357e7 1.00356
\(675\) 2.55358e6 0.215720
\(676\) 289822. 0.0243930
\(677\) 9.08811e6 0.762082 0.381041 0.924558i \(-0.375566\pi\)
0.381041 + 0.924558i \(0.375566\pi\)
\(678\) −7.70848e6 −0.644013
\(679\) 3.33270e6 0.277410
\(680\) 5.53062e6 0.458671
\(681\) 6.99979e6 0.578385
\(682\) 0 0
\(683\) 1.80408e7 1.47980 0.739900 0.672717i \(-0.234873\pi\)
0.739900 + 0.672717i \(0.234873\pi\)
\(684\) −3.63191e6 −0.296821
\(685\) −7.61263e6 −0.619881
\(686\) −6.46572e6 −0.524573
\(687\) 1.13837e7 0.920217
\(688\) 1.52910e6 0.123159
\(689\) −1.99201e7 −1.59862
\(690\) −2.11721e6 −0.169294
\(691\) 1.44102e7 1.14808 0.574042 0.818826i \(-0.305375\pi\)
0.574042 + 0.818826i \(0.305375\pi\)
\(692\) 3.17775e6 0.252264
\(693\) 0 0
\(694\) 293837. 0.0231584
\(695\) −3.38551e6 −0.265865
\(696\) −1.31678e7 −1.03036
\(697\) −1.80045e7 −1.40378
\(698\) 2.82497e6 0.219470
\(699\) 1.98873e6 0.153951
\(700\) −1.88425e6 −0.145343
\(701\) 6.70799e6 0.515582 0.257791 0.966201i \(-0.417005\pi\)
0.257791 + 0.966201i \(0.417005\pi\)
\(702\) −7.37506e6 −0.564836
\(703\) 2.36315e7 1.80344
\(704\) 0 0
\(705\) −2.80204e6 −0.212326
\(706\) 3.52196e6 0.265933
\(707\) 2.91992e6 0.219696
\(708\) 1.05690e7 0.792414
\(709\) 844897. 0.0631231 0.0315616 0.999502i \(-0.489952\pi\)
0.0315616 + 0.999502i \(0.489952\pi\)
\(710\) −2.80305e6 −0.208682
\(711\) 2.12974e6 0.157998
\(712\) −2.63672e6 −0.194923
\(713\) 1.95233e7 1.43823
\(714\) −7.26879e6 −0.533601
\(715\) 0 0
\(716\) 1.01461e7 0.739630
\(717\) 1.85583e7 1.34816
\(718\) 2.55079e6 0.184656
\(719\) −2.61886e7 −1.88925 −0.944627 0.328147i \(-0.893576\pi\)
−0.944627 + 0.328147i \(0.893576\pi\)
\(720\) 321756. 0.0231310
\(721\) −1.65551e7 −1.18602
\(722\) 1.76462e7 1.25982
\(723\) −9.30856e6 −0.662273
\(724\) −7.99287e6 −0.566704
\(725\) −3.62544e6 −0.256163
\(726\) 0 0
\(727\) −33141.0 −0.00232557 −0.00116278 0.999999i \(-0.500370\pi\)
−0.00116278 + 0.999999i \(0.500370\pi\)
\(728\) 1.30415e7 0.912007
\(729\) 1.59604e7 1.11231
\(730\) 2.52417e6 0.175312
\(731\) 8.71985e6 0.603554
\(732\) −1.45992e7 −1.00705
\(733\) 1.72231e7 1.18400 0.591998 0.805939i \(-0.298339\pi\)
0.591998 + 0.805939i \(0.298339\pi\)
\(734\) −8.13029e6 −0.557014
\(735\) 172216. 0.0117586
\(736\) −1.22987e7 −0.836882
\(737\) 0 0
\(738\) 2.22969e6 0.150697
\(739\) 1.91027e7 1.28672 0.643360 0.765563i \(-0.277540\pi\)
0.643360 + 0.765563i \(0.277540\pi\)
\(740\) −4.69042e6 −0.314871
\(741\) −2.37055e7 −1.58600
\(742\) 1.31906e7 0.879536
\(743\) −8.56931e6 −0.569474 −0.284737 0.958606i \(-0.591906\pi\)
−0.284737 + 0.958606i \(0.591906\pi\)
\(744\) −2.16324e7 −1.43276
\(745\) 3.49359e6 0.230612
\(746\) −5.56506e6 −0.366119
\(747\) 19230.9 0.00126095
\(748\) 0 0
\(749\) 9.36579e6 0.610014
\(750\) 645896. 0.0419285
\(751\) 4.61377e6 0.298508 0.149254 0.988799i \(-0.452313\pi\)
0.149254 + 0.988799i \(0.452313\pi\)
\(752\) −1.91542e6 −0.123515
\(753\) −1.51096e7 −0.971101
\(754\) 1.04707e7 0.670732
\(755\) 9.00541e6 0.574958
\(756\) −1.23176e7 −0.783832
\(757\) 1.39463e7 0.884544 0.442272 0.896881i \(-0.354173\pi\)
0.442272 + 0.896881i \(0.354173\pi\)
\(758\) −642496. −0.0406160
\(759\) 0 0
\(760\) −1.19435e7 −0.750063
\(761\) 3.14364e6 0.196776 0.0983878 0.995148i \(-0.468631\pi\)
0.0983878 + 0.995148i \(0.468631\pi\)
\(762\) −7.99941e6 −0.499080
\(763\) 2.12274e7 1.32003
\(764\) 5.30545e6 0.328843
\(765\) 1.83484e6 0.113356
\(766\) −1.24733e7 −0.768082
\(767\) −2.01405e7 −1.23618
\(768\) 1.12703e7 0.689500
\(769\) −845337. −0.0515482 −0.0257741 0.999668i \(-0.508205\pi\)
−0.0257741 + 0.999668i \(0.508205\pi\)
\(770\) 0 0
\(771\) −1.70213e7 −1.03123
\(772\) −8.70014e6 −0.525391
\(773\) 3.14976e7 1.89596 0.947978 0.318336i \(-0.103124\pi\)
0.947978 + 0.318336i \(0.103124\pi\)
\(774\) −1.07987e6 −0.0647918
\(775\) −5.95595e6 −0.356202
\(776\) −4.19286e6 −0.249952
\(777\) 1.47731e7 0.877847
\(778\) 1.09393e7 0.647948
\(779\) 3.88811e7 2.29559
\(780\) 4.70511e6 0.276907
\(781\) 0 0
\(782\) −8.25325e6 −0.482623
\(783\) −2.37001e7 −1.38148
\(784\) 117723. 0.00684025
\(785\) −1.14703e7 −0.664356
\(786\) 1.60439e6 0.0926303
\(787\) −1.52029e7 −0.874963 −0.437481 0.899227i \(-0.644129\pi\)
−0.437481 + 0.899227i \(0.644129\pi\)
\(788\) 6.35396e6 0.364527
\(789\) −2.83930e6 −0.162375
\(790\) 2.92248e6 0.166603
\(791\) 2.45339e7 1.39420
\(792\) 0 0
\(793\) 2.78205e7 1.57102
\(794\) −3.00489e6 −0.169152
\(795\) 1.14046e7 0.639972
\(796\) 1.73657e7 0.971426
\(797\) −1.07063e7 −0.597028 −0.298514 0.954405i \(-0.596491\pi\)
−0.298514 + 0.954405i \(0.596491\pi\)
\(798\) 1.56971e7 0.872595
\(799\) −1.09228e7 −0.605297
\(800\) 3.75195e6 0.207268
\(801\) −874759. −0.0481734
\(802\) 6.45264e6 0.354243
\(803\) 0 0
\(804\) 577842. 0.0315260
\(805\) 6.73847e6 0.366498
\(806\) 1.72016e7 0.932674
\(807\) −1.86582e7 −1.00852
\(808\) −3.67355e6 −0.197951
\(809\) 1.40395e7 0.754187 0.377093 0.926175i \(-0.376924\pi\)
0.377093 + 0.926175i \(0.376924\pi\)
\(810\) 3.21681e6 0.172271
\(811\) 2.41715e7 1.29048 0.645241 0.763979i \(-0.276757\pi\)
0.645241 + 0.763979i \(0.276757\pi\)
\(812\) 1.74880e7 0.930785
\(813\) 1.36827e7 0.726017
\(814\) 0 0
\(815\) −1.24930e7 −0.658828
\(816\) −4.29601e6 −0.225860
\(817\) −1.88307e7 −0.986988
\(818\) 8.01914e6 0.419029
\(819\) 4.32665e6 0.225394
\(820\) −7.71720e6 −0.400798
\(821\) 7.98241e6 0.413310 0.206655 0.978414i \(-0.433742\pi\)
0.206655 + 0.978414i \(0.433742\pi\)
\(822\) −1.25874e7 −0.649767
\(823\) −9.23481e6 −0.475257 −0.237628 0.971356i \(-0.576370\pi\)
−0.237628 + 0.971356i \(0.576370\pi\)
\(824\) 2.08279e7 1.06863
\(825\) 0 0
\(826\) 1.33365e7 0.680129
\(827\) 2.39844e7 1.21945 0.609727 0.792611i \(-0.291279\pi\)
0.609727 + 0.792611i \(0.291279\pi\)
\(828\) −2.57798e6 −0.130678
\(829\) −3.50444e7 −1.77105 −0.885527 0.464588i \(-0.846202\pi\)
−0.885527 + 0.464588i \(0.846202\pi\)
\(830\) 26389.2 0.00132963
\(831\) 2.26318e7 1.13689
\(832\) −6.34463e6 −0.317759
\(833\) 671328. 0.0335214
\(834\) −5.59792e6 −0.278684
\(835\) −8.20866e6 −0.407433
\(836\) 0 0
\(837\) −3.89350e7 −1.92100
\(838\) 2.03574e7 1.00141
\(839\) −2.28211e7 −1.11926 −0.559631 0.828742i \(-0.689057\pi\)
−0.559631 + 0.828742i \(0.689057\pi\)
\(840\) −7.46643e6 −0.365102
\(841\) 1.31371e7 0.640484
\(842\) 8.75289e6 0.425472
\(843\) 1.59611e7 0.773558
\(844\) −6.89958e6 −0.333401
\(845\) 316193. 0.0152339
\(846\) 1.35269e6 0.0649791
\(847\) 0 0
\(848\) 7.79591e6 0.372286
\(849\) −2.42550e7 −1.15487
\(850\) 2.51781e6 0.119530
\(851\) 1.67739e7 0.793982
\(852\) 1.16903e7 0.551728
\(853\) 5.73956e6 0.270088 0.135044 0.990840i \(-0.456882\pi\)
0.135044 + 0.990840i \(0.456882\pi\)
\(854\) −1.84220e7 −0.864353
\(855\) −3.96238e6 −0.185371
\(856\) −1.17831e7 −0.549635
\(857\) −3.73797e7 −1.73854 −0.869268 0.494340i \(-0.835410\pi\)
−0.869268 + 0.494340i \(0.835410\pi\)
\(858\) 0 0
\(859\) 3.64400e7 1.68498 0.842491 0.538710i \(-0.181088\pi\)
0.842491 + 0.538710i \(0.181088\pi\)
\(860\) 3.73756e6 0.172323
\(861\) 2.43063e7 1.11741
\(862\) 1.60000e6 0.0733419
\(863\) 2.78829e7 1.27442 0.637208 0.770692i \(-0.280089\pi\)
0.637208 + 0.770692i \(0.280089\pi\)
\(864\) 2.45271e7 1.11779
\(865\) 3.46690e6 0.157544
\(866\) −4.27108e6 −0.193527
\(867\) −5.02583e6 −0.227070
\(868\) 2.87296e7 1.29429
\(869\) 0 0
\(870\) −5.99465e6 −0.268513
\(871\) −1.10114e6 −0.0491812
\(872\) −2.67062e7 −1.18938
\(873\) −1.39103e6 −0.0617732
\(874\) 1.78231e7 0.789231
\(875\) −2.05570e6 −0.0907694
\(876\) −1.05272e7 −0.463503
\(877\) −4.44232e7 −1.95034 −0.975172 0.221450i \(-0.928921\pi\)
−0.975172 + 0.221450i \(0.928921\pi\)
\(878\) −1.64452e7 −0.719953
\(879\) 2.48553e7 1.08504
\(880\) 0 0
\(881\) −2.91300e7 −1.26445 −0.632223 0.774786i \(-0.717858\pi\)
−0.632223 + 0.774786i \(0.717858\pi\)
\(882\) −83137.8 −0.00359855
\(883\) −7.25628e6 −0.313193 −0.156597 0.987663i \(-0.550052\pi\)
−0.156597 + 0.987663i \(0.550052\pi\)
\(884\) 1.83413e7 0.789405
\(885\) 1.15307e7 0.494879
\(886\) 7.56683e6 0.323839
\(887\) 4.35823e7 1.85995 0.929974 0.367625i \(-0.119829\pi\)
0.929974 + 0.367625i \(0.119829\pi\)
\(888\) −1.85860e7 −0.790959
\(889\) 2.54598e7 1.08044
\(890\) −1.20036e6 −0.0507970
\(891\) 0 0
\(892\) −8.11098e6 −0.341320
\(893\) 2.35881e7 0.989840
\(894\) 5.77664e6 0.241730
\(895\) 1.10693e7 0.461914
\(896\) −2.10723e7 −0.876885
\(897\) −1.68265e7 −0.698251
\(898\) 246891. 0.0102168
\(899\) 5.52780e7 2.28115
\(900\) 786462. 0.0323647
\(901\) 4.44569e7 1.82443
\(902\) 0 0
\(903\) −1.17719e7 −0.480429
\(904\) −3.08660e7 −1.25620
\(905\) −8.72015e6 −0.353918
\(906\) 1.48904e7 0.602679
\(907\) 3.30488e7 1.33394 0.666972 0.745083i \(-0.267590\pi\)
0.666972 + 0.745083i \(0.267590\pi\)
\(908\) 1.16957e7 0.470772
\(909\) −1.21874e6 −0.0489217
\(910\) 5.93712e6 0.237669
\(911\) 1.86352e7 0.743939 0.371969 0.928245i \(-0.378683\pi\)
0.371969 + 0.928245i \(0.378683\pi\)
\(912\) 9.27733e6 0.369348
\(913\) 0 0
\(914\) −2.05740e7 −0.814618
\(915\) −1.59276e7 −0.628924
\(916\) 1.90205e7 0.749002
\(917\) −5.10630e6 −0.200532
\(918\) 1.64593e7 0.644623
\(919\) 1.31035e7 0.511800 0.255900 0.966703i \(-0.417628\pi\)
0.255900 + 0.966703i \(0.417628\pi\)
\(920\) −8.47766e6 −0.330222
\(921\) −2.39462e6 −0.0930226
\(922\) −2.81769e6 −0.109160
\(923\) −2.22771e7 −0.860706
\(924\) 0 0
\(925\) −5.11721e6 −0.196643
\(926\) 5.12769e6 0.196514
\(927\) 6.90988e6 0.264102
\(928\) −3.48223e7 −1.32736
\(929\) −3.29446e7 −1.25241 −0.626203 0.779660i \(-0.715392\pi\)
−0.626203 + 0.779660i \(0.715392\pi\)
\(930\) −9.84813e6 −0.373376
\(931\) −1.44975e6 −0.0548174
\(932\) 3.32288e6 0.125307
\(933\) 3.52210e7 1.32464
\(934\) 2.00834e7 0.753302
\(935\) 0 0
\(936\) −5.44335e6 −0.203084
\(937\) −2.74601e7 −1.02177 −0.510885 0.859649i \(-0.670682\pi\)
−0.510885 + 0.859649i \(0.670682\pi\)
\(938\) 729147. 0.0270588
\(939\) −4.50799e6 −0.166847
\(940\) −4.68182e6 −0.172821
\(941\) 2.95875e7 1.08927 0.544633 0.838674i \(-0.316669\pi\)
0.544633 + 0.838674i \(0.316669\pi\)
\(942\) −1.89661e7 −0.696387
\(943\) 2.75983e7 1.01066
\(944\) 7.88215e6 0.287882
\(945\) −1.34384e7 −0.489519
\(946\) 0 0
\(947\) −1.22561e7 −0.444097 −0.222048 0.975036i \(-0.571274\pi\)
−0.222048 + 0.975036i \(0.571274\pi\)
\(948\) −1.21883e7 −0.440478
\(949\) 2.00608e7 0.723073
\(950\) −5.43728e6 −0.195467
\(951\) 9.08729e6 0.325824
\(952\) −2.91054e7 −1.04083
\(953\) −3.84538e7 −1.37154 −0.685768 0.727820i \(-0.740534\pi\)
−0.685768 + 0.727820i \(0.740534\pi\)
\(954\) −5.50558e6 −0.195854
\(955\) 5.78819e6 0.205369
\(956\) 3.10083e7 1.09732
\(957\) 0 0
\(958\) 8.53101e6 0.300322
\(959\) 4.00621e7 1.40666
\(960\) 3.63239e6 0.127208
\(961\) 6.21827e7 2.17200
\(962\) 1.47791e7 0.514887
\(963\) −3.90916e6 −0.135837
\(964\) −1.55533e7 −0.539051
\(965\) −9.49178e6 −0.328117
\(966\) 1.11420e7 0.384168
\(967\) 1.37466e7 0.472747 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(968\) 0 0
\(969\) 5.29049e7 1.81003
\(970\) −1.90880e6 −0.0651375
\(971\) −4.57484e7 −1.55714 −0.778571 0.627557i \(-0.784055\pi\)
−0.778571 + 0.627557i \(0.784055\pi\)
\(972\) 9.33479e6 0.316912
\(973\) 1.78165e7 0.603311
\(974\) −3.84254e6 −0.129784
\(975\) 5.13324e6 0.172934
\(976\) −1.08878e7 −0.365860
\(977\) −4.27421e6 −0.143258 −0.0716291 0.997431i \(-0.522820\pi\)
−0.0716291 + 0.997431i \(0.522820\pi\)
\(978\) −2.06571e7 −0.690592
\(979\) 0 0
\(980\) 287749. 0.00957082
\(981\) −8.86005e6 −0.293943
\(982\) 516463. 0.0170907
\(983\) −1.33055e7 −0.439186 −0.219593 0.975592i \(-0.570473\pi\)
−0.219593 + 0.975592i \(0.570473\pi\)
\(984\) −3.05798e7 −1.00681
\(985\) 6.93212e6 0.227654
\(986\) −2.33682e7 −0.765477
\(987\) 1.47460e7 0.481817
\(988\) −3.96085e7 −1.29091
\(989\) −1.33663e7 −0.434531
\(990\) 0 0
\(991\) 3.66440e7 1.18527 0.592637 0.805470i \(-0.298087\pi\)
0.592637 + 0.805470i \(0.298087\pi\)
\(992\) −5.72069e7 −1.84573
\(993\) −3.24593e6 −0.104464
\(994\) 1.47513e7 0.473548
\(995\) 1.89458e7 0.606675
\(996\) −110057. −0.00351537
\(997\) 5.33614e7 1.70016 0.850079 0.526655i \(-0.176554\pi\)
0.850079 + 0.526655i \(0.176554\pi\)
\(998\) 1.45694e7 0.463036
\(999\) −3.34520e7 −1.06049
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.6.a.e.1.4 6
11.10 odd 2 55.6.a.d.1.3 6
33.32 even 2 495.6.a.l.1.4 6
44.43 even 2 880.6.a.u.1.5 6
55.32 even 4 275.6.b.f.199.5 12
55.43 even 4 275.6.b.f.199.8 12
55.54 odd 2 275.6.a.f.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.6.a.d.1.3 6 11.10 odd 2
275.6.a.f.1.4 6 55.54 odd 2
275.6.b.f.199.5 12 55.32 even 4
275.6.b.f.199.8 12 55.43 even 4
495.6.a.l.1.4 6 33.32 even 2
605.6.a.e.1.4 6 1.1 even 1 trivial
880.6.a.u.1.5 6 44.43 even 2