Properties

Label 605.6.a.e.1.2
Level $605$
Weight $6$
Character 605.1
Self dual yes
Analytic conductor $97.032$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,6,Mod(1,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(97.0322109869\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 149x^{4} + 297x^{3} + 4052x^{2} - 6522x - 20692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.32252\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.32252 q^{2} +28.4424 q^{3} +7.97424 q^{4} -25.0000 q^{5} -179.828 q^{6} -115.579 q^{7} +151.903 q^{8} +565.969 q^{9} +158.063 q^{10} +226.806 q^{12} -40.3015 q^{13} +730.751 q^{14} -711.060 q^{15} -1215.59 q^{16} +1793.42 q^{17} -3578.35 q^{18} +1813.85 q^{19} -199.356 q^{20} -3287.35 q^{21} +2472.87 q^{23} +4320.49 q^{24} +625.000 q^{25} +254.807 q^{26} +9186.02 q^{27} -921.656 q^{28} -2885.91 q^{29} +4495.69 q^{30} -8563.73 q^{31} +2824.67 q^{32} -11339.0 q^{34} +2889.48 q^{35} +4513.17 q^{36} -7357.47 q^{37} -11468.1 q^{38} -1146.27 q^{39} -3797.58 q^{40} +7373.27 q^{41} +20784.3 q^{42} -22795.2 q^{43} -14149.2 q^{45} -15634.8 q^{46} -1677.08 q^{47} -34574.2 q^{48} -3448.46 q^{49} -3951.57 q^{50} +51009.2 q^{51} -321.373 q^{52} +1548.56 q^{53} -58078.8 q^{54} -17556.9 q^{56} +51590.2 q^{57} +18246.2 q^{58} +44363.7 q^{59} -5670.16 q^{60} +19327.2 q^{61} +54144.4 q^{62} -65414.2 q^{63} +21039.8 q^{64} +1007.54 q^{65} +52145.9 q^{67} +14301.2 q^{68} +70334.3 q^{69} -18268.8 q^{70} +7613.84 q^{71} +85972.6 q^{72} +35728.1 q^{73} +46517.7 q^{74} +17776.5 q^{75} +14464.1 q^{76} +7247.31 q^{78} -66658.6 q^{79} +30389.7 q^{80} +123742. q^{81} -46617.6 q^{82} -8742.57 q^{83} -26214.1 q^{84} -44835.6 q^{85} +144123. q^{86} -82082.2 q^{87} -12117.7 q^{89} +89458.8 q^{90} +4658.01 q^{91} +19719.3 q^{92} -243573. q^{93} +10603.4 q^{94} -45346.2 q^{95} +80340.3 q^{96} +26058.0 q^{97} +21803.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 115 q^{4} - 150 q^{5} - 325 q^{6} + 66 q^{7} - 249 q^{8} + 832 q^{9} + 75 q^{10} + 1301 q^{12} + 972 q^{13} + 2017 q^{14} + 6675 q^{16} - 712 q^{17} - 5920 q^{18} - 610 q^{19} - 2875 q^{20}+ \cdots + 351884 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.32252 −1.11767 −0.558837 0.829278i \(-0.688752\pi\)
−0.558837 + 0.829278i \(0.688752\pi\)
\(3\) 28.4424 1.82458 0.912290 0.409545i \(-0.134313\pi\)
0.912290 + 0.409545i \(0.134313\pi\)
\(4\) 7.97424 0.249195
\(5\) −25.0000 −0.447214
\(6\) −179.828 −2.03929
\(7\) −115.579 −0.891527 −0.445763 0.895151i \(-0.647068\pi\)
−0.445763 + 0.895151i \(0.647068\pi\)
\(8\) 151.903 0.839155
\(9\) 565.969 2.32909
\(10\) 158.063 0.499839
\(11\) 0 0
\(12\) 226.806 0.454676
\(13\) −40.3015 −0.0661397 −0.0330699 0.999453i \(-0.510528\pi\)
−0.0330699 + 0.999453i \(0.510528\pi\)
\(14\) 730.751 0.996436
\(15\) −711.060 −0.815977
\(16\) −1215.59 −1.18710
\(17\) 1793.42 1.50508 0.752542 0.658545i \(-0.228828\pi\)
0.752542 + 0.658545i \(0.228828\pi\)
\(18\) −3578.35 −2.60316
\(19\) 1813.85 1.15270 0.576351 0.817202i \(-0.304476\pi\)
0.576351 + 0.817202i \(0.304476\pi\)
\(20\) −199.356 −0.111443
\(21\) −3287.35 −1.62666
\(22\) 0 0
\(23\) 2472.87 0.974724 0.487362 0.873200i \(-0.337959\pi\)
0.487362 + 0.873200i \(0.337959\pi\)
\(24\) 4320.49 1.53111
\(25\) 625.000 0.200000
\(26\) 254.807 0.0739226
\(27\) 9186.02 2.42503
\(28\) −921.656 −0.222164
\(29\) −2885.91 −0.637218 −0.318609 0.947886i \(-0.603216\pi\)
−0.318609 + 0.947886i \(0.603216\pi\)
\(30\) 4495.69 0.911996
\(31\) −8563.73 −1.60051 −0.800256 0.599659i \(-0.795303\pi\)
−0.800256 + 0.599659i \(0.795303\pi\)
\(32\) 2824.67 0.487632
\(33\) 0 0
\(34\) −11339.0 −1.68219
\(35\) 2889.48 0.398703
\(36\) 4513.17 0.580398
\(37\) −7357.47 −0.883536 −0.441768 0.897129i \(-0.645649\pi\)
−0.441768 + 0.897129i \(0.645649\pi\)
\(38\) −11468.1 −1.28835
\(39\) −1146.27 −0.120677
\(40\) −3797.58 −0.375282
\(41\) 7373.27 0.685016 0.342508 0.939515i \(-0.388724\pi\)
0.342508 + 0.939515i \(0.388724\pi\)
\(42\) 20784.3 1.81808
\(43\) −22795.2 −1.88006 −0.940032 0.341087i \(-0.889205\pi\)
−0.940032 + 0.341087i \(0.889205\pi\)
\(44\) 0 0
\(45\) −14149.2 −1.04160
\(46\) −15634.8 −1.08942
\(47\) −1677.08 −0.110741 −0.0553706 0.998466i \(-0.517634\pi\)
−0.0553706 + 0.998466i \(0.517634\pi\)
\(48\) −34574.2 −2.16595
\(49\) −3448.46 −0.205180
\(50\) −3951.57 −0.223535
\(51\) 51009.2 2.74614
\(52\) −321.373 −0.0164817
\(53\) 1548.56 0.0757248 0.0378624 0.999283i \(-0.487945\pi\)
0.0378624 + 0.999283i \(0.487945\pi\)
\(54\) −58078.8 −2.71040
\(55\) 0 0
\(56\) −17556.9 −0.748129
\(57\) 51590.2 2.10320
\(58\) 18246.2 0.712202
\(59\) 44363.7 1.65920 0.829599 0.558360i \(-0.188569\pi\)
0.829599 + 0.558360i \(0.188569\pi\)
\(60\) −5670.16 −0.203337
\(61\) 19327.2 0.665036 0.332518 0.943097i \(-0.392102\pi\)
0.332518 + 0.943097i \(0.392102\pi\)
\(62\) 54144.4 1.78885
\(63\) −65414.2 −2.07645
\(64\) 21039.8 0.642083
\(65\) 1007.54 0.0295786
\(66\) 0 0
\(67\) 52145.9 1.41917 0.709583 0.704622i \(-0.248883\pi\)
0.709583 + 0.704622i \(0.248883\pi\)
\(68\) 14301.2 0.375059
\(69\) 70334.3 1.77846
\(70\) −18268.8 −0.445620
\(71\) 7613.84 0.179249 0.0896247 0.995976i \(-0.471433\pi\)
0.0896247 + 0.995976i \(0.471433\pi\)
\(72\) 85972.6 1.95447
\(73\) 35728.1 0.784699 0.392350 0.919816i \(-0.371662\pi\)
0.392350 + 0.919816i \(0.371662\pi\)
\(74\) 46517.7 0.987505
\(75\) 17776.5 0.364916
\(76\) 14464.1 0.287248
\(77\) 0 0
\(78\) 7247.31 0.134878
\(79\) −66658.6 −1.20168 −0.600839 0.799370i \(-0.705167\pi\)
−0.600839 + 0.799370i \(0.705167\pi\)
\(80\) 30389.7 0.530886
\(81\) 123742. 2.09558
\(82\) −46617.6 −0.765624
\(83\) −8742.57 −0.139298 −0.0696489 0.997572i \(-0.522188\pi\)
−0.0696489 + 0.997572i \(0.522188\pi\)
\(84\) −26214.1 −0.405356
\(85\) −44835.6 −0.673094
\(86\) 144123. 2.10130
\(87\) −82082.2 −1.16266
\(88\) 0 0
\(89\) −12117.7 −0.162160 −0.0810801 0.996708i \(-0.525837\pi\)
−0.0810801 + 0.996708i \(0.525837\pi\)
\(90\) 89458.8 1.16417
\(91\) 4658.01 0.0589653
\(92\) 19719.3 0.242896
\(93\) −243573. −2.92026
\(94\) 10603.4 0.123773
\(95\) −45346.2 −0.515504
\(96\) 80340.3 0.889724
\(97\) 26058.0 0.281197 0.140599 0.990067i \(-0.455097\pi\)
0.140599 + 0.990067i \(0.455097\pi\)
\(98\) 21803.0 0.229325
\(99\) 0 0
\(100\) 4983.90 0.0498390
\(101\) 28978.9 0.282669 0.141335 0.989962i \(-0.454861\pi\)
0.141335 + 0.989962i \(0.454861\pi\)
\(102\) −322507. −3.06929
\(103\) 153033. 1.42132 0.710659 0.703537i \(-0.248397\pi\)
0.710659 + 0.703537i \(0.248397\pi\)
\(104\) −6121.92 −0.0555015
\(105\) 82183.7 0.727465
\(106\) −9790.79 −0.0846356
\(107\) 98744.4 0.833783 0.416892 0.908956i \(-0.363119\pi\)
0.416892 + 0.908956i \(0.363119\pi\)
\(108\) 73251.5 0.604306
\(109\) 181305. 1.46165 0.730824 0.682566i \(-0.239136\pi\)
0.730824 + 0.682566i \(0.239136\pi\)
\(110\) 0 0
\(111\) −209264. −1.61208
\(112\) 140497. 1.05833
\(113\) 261899. 1.92947 0.964734 0.263228i \(-0.0847870\pi\)
0.964734 + 0.263228i \(0.0847870\pi\)
\(114\) −326180. −2.35069
\(115\) −61821.7 −0.435910
\(116\) −23013.0 −0.158792
\(117\) −22809.4 −0.154045
\(118\) −280491. −1.85444
\(119\) −207282. −1.34182
\(120\) −108012. −0.684731
\(121\) 0 0
\(122\) −122197. −0.743293
\(123\) 209713. 1.24987
\(124\) −68289.3 −0.398840
\(125\) −15625.0 −0.0894427
\(126\) 413583. 2.32079
\(127\) 176690. 0.972080 0.486040 0.873937i \(-0.338441\pi\)
0.486040 + 0.873937i \(0.338441\pi\)
\(128\) −223414. −1.20527
\(129\) −648350. −3.43033
\(130\) −6370.17 −0.0330592
\(131\) −171005. −0.870624 −0.435312 0.900280i \(-0.643362\pi\)
−0.435312 + 0.900280i \(0.643362\pi\)
\(132\) 0 0
\(133\) −209643. −1.02766
\(134\) −329694. −1.58617
\(135\) −229650. −1.08451
\(136\) 272427. 1.26300
\(137\) 339628. 1.54597 0.772987 0.634422i \(-0.218762\pi\)
0.772987 + 0.634422i \(0.218762\pi\)
\(138\) −444690. −1.98774
\(139\) −262788. −1.15364 −0.576818 0.816873i \(-0.695706\pi\)
−0.576818 + 0.816873i \(0.695706\pi\)
\(140\) 23041.4 0.0993548
\(141\) −47700.2 −0.202056
\(142\) −48138.6 −0.200342
\(143\) 0 0
\(144\) −687985. −2.76486
\(145\) 72147.8 0.284973
\(146\) −225892. −0.877038
\(147\) −98082.5 −0.374368
\(148\) −58670.2 −0.220173
\(149\) 224470. 0.828311 0.414155 0.910206i \(-0.364077\pi\)
0.414155 + 0.910206i \(0.364077\pi\)
\(150\) −112392. −0.407857
\(151\) 193407. 0.690286 0.345143 0.938550i \(-0.387830\pi\)
0.345143 + 0.938550i \(0.387830\pi\)
\(152\) 275530. 0.967296
\(153\) 1.01502e6 3.50548
\(154\) 0 0
\(155\) 214093. 0.715771
\(156\) −9140.63 −0.0300722
\(157\) −333959. −1.08129 −0.540647 0.841250i \(-0.681820\pi\)
−0.540647 + 0.841250i \(0.681820\pi\)
\(158\) 421450. 1.34309
\(159\) 44044.7 0.138166
\(160\) −70616.7 −0.218076
\(161\) −285812. −0.868992
\(162\) −782359. −2.34217
\(163\) 13290.3 0.0391802 0.0195901 0.999808i \(-0.493764\pi\)
0.0195901 + 0.999808i \(0.493764\pi\)
\(164\) 58796.2 0.170703
\(165\) 0 0
\(166\) 55275.1 0.155689
\(167\) 143469. 0.398076 0.199038 0.979992i \(-0.436218\pi\)
0.199038 + 0.979992i \(0.436218\pi\)
\(168\) −499359. −1.36502
\(169\) −369669. −0.995626
\(170\) 283474. 0.752299
\(171\) 1.02658e6 2.68475
\(172\) −181774. −0.468502
\(173\) −206434. −0.524405 −0.262203 0.965013i \(-0.584449\pi\)
−0.262203 + 0.965013i \(0.584449\pi\)
\(174\) 518966. 1.29947
\(175\) −72237.0 −0.178305
\(176\) 0 0
\(177\) 1.26181e6 3.02734
\(178\) 76614.2 0.181242
\(179\) 512076. 1.19454 0.597272 0.802039i \(-0.296251\pi\)
0.597272 + 0.802039i \(0.296251\pi\)
\(180\) −112829. −0.259562
\(181\) −579632. −1.31509 −0.657546 0.753414i \(-0.728405\pi\)
−0.657546 + 0.753414i \(0.728405\pi\)
\(182\) −29450.3 −0.0659040
\(183\) 549712. 1.21341
\(184\) 375637. 0.817945
\(185\) 183937. 0.395129
\(186\) 1.53999e6 3.26390
\(187\) 0 0
\(188\) −13373.5 −0.0275962
\(189\) −1.06171e6 −2.16198
\(190\) 286702. 0.576165
\(191\) 203162. 0.402957 0.201479 0.979493i \(-0.435425\pi\)
0.201479 + 0.979493i \(0.435425\pi\)
\(192\) 598422. 1.17153
\(193\) 404312. 0.781311 0.390655 0.920537i \(-0.372248\pi\)
0.390655 + 0.920537i \(0.372248\pi\)
\(194\) −164752. −0.314287
\(195\) 28656.7 0.0539685
\(196\) −27498.9 −0.0511299
\(197\) 293541. 0.538894 0.269447 0.963015i \(-0.413159\pi\)
0.269447 + 0.963015i \(0.413159\pi\)
\(198\) 0 0
\(199\) −546251. −0.977821 −0.488911 0.872334i \(-0.662606\pi\)
−0.488911 + 0.872334i \(0.662606\pi\)
\(200\) 94939.6 0.167831
\(201\) 1.48315e6 2.58938
\(202\) −183220. −0.315932
\(203\) 333551. 0.568097
\(204\) 406760. 0.684325
\(205\) −184332. −0.306348
\(206\) −967552. −1.58857
\(207\) 1.39957e6 2.27022
\(208\) 48989.9 0.0785142
\(209\) 0 0
\(210\) −519608. −0.813069
\(211\) 872573. 1.34926 0.674630 0.738156i \(-0.264303\pi\)
0.674630 + 0.738156i \(0.264303\pi\)
\(212\) 12348.6 0.0188702
\(213\) 216556. 0.327055
\(214\) −624313. −0.931898
\(215\) 569880. 0.840790
\(216\) 1.39539e6 2.03498
\(217\) 989789. 1.42690
\(218\) −1.14630e6 −1.63365
\(219\) 1.01619e6 1.43175
\(220\) 0 0
\(221\) −72277.6 −0.0995458
\(222\) 1.32308e6 1.80178
\(223\) −541596. −0.729312 −0.364656 0.931142i \(-0.618813\pi\)
−0.364656 + 0.931142i \(0.618813\pi\)
\(224\) −326473. −0.434737
\(225\) 353731. 0.465818
\(226\) −1.65586e6 −2.15652
\(227\) 171255. 0.220586 0.110293 0.993899i \(-0.464821\pi\)
0.110293 + 0.993899i \(0.464821\pi\)
\(228\) 411393. 0.524106
\(229\) 1.39952e6 1.76356 0.881778 0.471664i \(-0.156346\pi\)
0.881778 + 0.471664i \(0.156346\pi\)
\(230\) 390869. 0.487205
\(231\) 0 0
\(232\) −438380. −0.534725
\(233\) −62933.3 −0.0759435 −0.0379717 0.999279i \(-0.512090\pi\)
−0.0379717 + 0.999279i \(0.512090\pi\)
\(234\) 144213. 0.172173
\(235\) 41927.0 0.0495250
\(236\) 353767. 0.413464
\(237\) −1.89593e6 −2.19256
\(238\) 1.31055e6 1.49972
\(239\) 1.21874e6 1.38011 0.690057 0.723755i \(-0.257585\pi\)
0.690057 + 0.723755i \(0.257585\pi\)
\(240\) 864355. 0.968644
\(241\) −366694. −0.406687 −0.203344 0.979107i \(-0.565181\pi\)
−0.203344 + 0.979107i \(0.565181\pi\)
\(242\) 0 0
\(243\) 1.28731e6 1.39851
\(244\) 154120. 0.165724
\(245\) 86211.6 0.0917594
\(246\) −1.32592e6 −1.39694
\(247\) −73100.7 −0.0762394
\(248\) −1.30086e6 −1.34308
\(249\) −248660. −0.254160
\(250\) 98789.4 0.0999678
\(251\) 555490. 0.556534 0.278267 0.960504i \(-0.410240\pi\)
0.278267 + 0.960504i \(0.410240\pi\)
\(252\) −521629. −0.517440
\(253\) 0 0
\(254\) −1.11712e6 −1.08647
\(255\) −1.27523e6 −1.22811
\(256\) 739264. 0.705018
\(257\) −917109. −0.866141 −0.433070 0.901360i \(-0.642570\pi\)
−0.433070 + 0.901360i \(0.642570\pi\)
\(258\) 4.09921e6 3.83399
\(259\) 850370. 0.787696
\(260\) 8034.34 0.00737083
\(261\) −1.63334e6 −1.48414
\(262\) 1.08118e6 0.973074
\(263\) 1.17971e6 1.05169 0.525844 0.850581i \(-0.323750\pi\)
0.525844 + 0.850581i \(0.323750\pi\)
\(264\) 0 0
\(265\) −38714.0 −0.0338652
\(266\) 1.32547e6 1.14859
\(267\) −344656. −0.295874
\(268\) 415824. 0.353649
\(269\) −1.16493e6 −0.981567 −0.490784 0.871282i \(-0.663289\pi\)
−0.490784 + 0.871282i \(0.663289\pi\)
\(270\) 1.45197e6 1.21213
\(271\) −89750.0 −0.0742354 −0.0371177 0.999311i \(-0.511818\pi\)
−0.0371177 + 0.999311i \(0.511818\pi\)
\(272\) −2.18006e6 −1.78668
\(273\) 132485. 0.107587
\(274\) −2.14730e6 −1.72789
\(275\) 0 0
\(276\) 560863. 0.443184
\(277\) 902270. 0.706541 0.353270 0.935521i \(-0.385070\pi\)
0.353270 + 0.935521i \(0.385070\pi\)
\(278\) 1.66148e6 1.28939
\(279\) −4.84681e6 −3.72774
\(280\) 438921. 0.334574
\(281\) −1.10175e6 −0.832369 −0.416185 0.909280i \(-0.636633\pi\)
−0.416185 + 0.909280i \(0.636633\pi\)
\(282\) 301585. 0.225833
\(283\) 1.44900e6 1.07548 0.537740 0.843111i \(-0.319278\pi\)
0.537740 + 0.843111i \(0.319278\pi\)
\(284\) 60714.6 0.0446681
\(285\) −1.28975e6 −0.940578
\(286\) 0 0
\(287\) −852196. −0.610710
\(288\) 1.59867e6 1.13574
\(289\) 1.79651e6 1.26528
\(290\) −456156. −0.318507
\(291\) 741151. 0.513067
\(292\) 284905. 0.195543
\(293\) −447709. −0.304668 −0.152334 0.988329i \(-0.548679\pi\)
−0.152334 + 0.988329i \(0.548679\pi\)
\(294\) 620129. 0.418421
\(295\) −1.10909e6 −0.742016
\(296\) −1.11762e6 −0.741424
\(297\) 0 0
\(298\) −1.41922e6 −0.925781
\(299\) −99660.2 −0.0644680
\(300\) 141754. 0.0909352
\(301\) 2.63465e6 1.67613
\(302\) −1.22282e6 −0.771515
\(303\) 824229. 0.515752
\(304\) −2.20489e6 −1.36837
\(305\) −483181. −0.297413
\(306\) −6.41750e6 −3.91798
\(307\) 1.24231e6 0.752290 0.376145 0.926561i \(-0.377249\pi\)
0.376145 + 0.926561i \(0.377249\pi\)
\(308\) 0 0
\(309\) 4.35262e6 2.59331
\(310\) −1.35361e6 −0.799998
\(311\) 2.44658e6 1.43436 0.717181 0.696887i \(-0.245432\pi\)
0.717181 + 0.696887i \(0.245432\pi\)
\(312\) −174122. −0.101267
\(313\) −2.28648e6 −1.31919 −0.659594 0.751622i \(-0.729272\pi\)
−0.659594 + 0.751622i \(0.729272\pi\)
\(314\) 2.11146e6 1.20853
\(315\) 1.63536e6 0.928615
\(316\) −531552. −0.299452
\(317\) −1.71237e6 −0.957083 −0.478542 0.878065i \(-0.658834\pi\)
−0.478542 + 0.878065i \(0.658834\pi\)
\(318\) −278474. −0.154424
\(319\) 0 0
\(320\) −525995. −0.287148
\(321\) 2.80853e6 1.52130
\(322\) 1.80705e6 0.971250
\(323\) 3.25300e6 1.73491
\(324\) 986746. 0.522207
\(325\) −25188.4 −0.0132279
\(326\) −84028.4 −0.0437907
\(327\) 5.15674e6 2.66689
\(328\) 1.12002e6 0.574834
\(329\) 193836. 0.0987288
\(330\) 0 0
\(331\) 3.48374e6 1.74773 0.873867 0.486166i \(-0.161605\pi\)
0.873867 + 0.486166i \(0.161605\pi\)
\(332\) −69715.4 −0.0347123
\(333\) −4.16410e6 −2.05784
\(334\) −907083. −0.444919
\(335\) −1.30365e6 −0.634671
\(336\) 3.99606e6 1.93100
\(337\) −979949. −0.470034 −0.235017 0.971991i \(-0.575515\pi\)
−0.235017 + 0.971991i \(0.575515\pi\)
\(338\) 2.33724e6 1.11278
\(339\) 7.44903e6 3.52047
\(340\) −357530. −0.167732
\(341\) 0 0
\(342\) −6.49059e6 −3.00067
\(343\) 2.34111e6 1.07445
\(344\) −3.46267e6 −1.57766
\(345\) −1.75836e6 −0.795352
\(346\) 1.30519e6 0.586114
\(347\) −2.96242e6 −1.32076 −0.660378 0.750933i \(-0.729604\pi\)
−0.660378 + 0.750933i \(0.729604\pi\)
\(348\) −654544. −0.289728
\(349\) −3.50510e6 −1.54041 −0.770207 0.637794i \(-0.779847\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(350\) 456720. 0.199287
\(351\) −370210. −0.160391
\(352\) 0 0
\(353\) 1.36459e6 0.582860 0.291430 0.956592i \(-0.405869\pi\)
0.291430 + 0.956592i \(0.405869\pi\)
\(354\) −7.97782e6 −3.38358
\(355\) −190346. −0.0801628
\(356\) −96629.3 −0.0404095
\(357\) −5.89560e6 −2.44826
\(358\) −3.23761e6 −1.33511
\(359\) −264000. −0.108110 −0.0540552 0.998538i \(-0.517215\pi\)
−0.0540552 + 0.998538i \(0.517215\pi\)
\(360\) −2.14932e6 −0.874065
\(361\) 813948. 0.328722
\(362\) 3.66474e6 1.46984
\(363\) 0 0
\(364\) 37144.1 0.0146939
\(365\) −893204. −0.350928
\(366\) −3.47557e6 −1.35620
\(367\) 4.56469e6 1.76907 0.884537 0.466470i \(-0.154474\pi\)
0.884537 + 0.466470i \(0.154474\pi\)
\(368\) −3.00599e6 −1.15709
\(369\) 4.17304e6 1.59546
\(370\) −1.16294e6 −0.441626
\(371\) −178981. −0.0675107
\(372\) −1.94231e6 −0.727715
\(373\) 693510. 0.258096 0.129048 0.991638i \(-0.458808\pi\)
0.129048 + 0.991638i \(0.458808\pi\)
\(374\) 0 0
\(375\) −444412. −0.163195
\(376\) −254754. −0.0929291
\(377\) 116306. 0.0421454
\(378\) 6.71269e6 2.41639
\(379\) −10054.6 −0.00359558 −0.00179779 0.999998i \(-0.500572\pi\)
−0.00179779 + 0.999998i \(0.500572\pi\)
\(380\) −361602. −0.128461
\(381\) 5.02548e6 1.77364
\(382\) −1.28450e6 −0.450375
\(383\) −1.93772e6 −0.674986 −0.337493 0.941328i \(-0.609579\pi\)
−0.337493 + 0.941328i \(0.609579\pi\)
\(384\) −6.35442e6 −2.19911
\(385\) 0 0
\(386\) −2.55627e6 −0.873250
\(387\) −1.29014e7 −4.37884
\(388\) 207793. 0.0700730
\(389\) 2.53186e6 0.848333 0.424166 0.905584i \(-0.360567\pi\)
0.424166 + 0.905584i \(0.360567\pi\)
\(390\) −181183. −0.0603192
\(391\) 4.43490e6 1.46704
\(392\) −523833. −0.172178
\(393\) −4.86379e6 −1.58852
\(394\) −1.85592e6 −0.602307
\(395\) 1.66646e6 0.537407
\(396\) 0 0
\(397\) −652266. −0.207706 −0.103853 0.994593i \(-0.533117\pi\)
−0.103853 + 0.994593i \(0.533117\pi\)
\(398\) 3.45368e6 1.09289
\(399\) −5.96275e6 −1.87506
\(400\) −759742. −0.237419
\(401\) 1.23788e6 0.384431 0.192216 0.981353i \(-0.438433\pi\)
0.192216 + 0.981353i \(0.438433\pi\)
\(402\) −9.37727e6 −2.89409
\(403\) 345131. 0.105857
\(404\) 231085. 0.0704397
\(405\) −3.09354e6 −0.937170
\(406\) −2.10888e6 −0.634947
\(407\) 0 0
\(408\) 7.74847e6 2.30444
\(409\) 4.93612e6 1.45907 0.729537 0.683941i \(-0.239736\pi\)
0.729537 + 0.683941i \(0.239736\pi\)
\(410\) 1.16544e6 0.342398
\(411\) 9.65983e6 2.82075
\(412\) 1.22032e6 0.354185
\(413\) −5.12752e6 −1.47922
\(414\) −8.84880e6 −2.53737
\(415\) 218564. 0.0622958
\(416\) −113838. −0.0322518
\(417\) −7.47432e6 −2.10490
\(418\) 0 0
\(419\) −5.51510e6 −1.53468 −0.767341 0.641239i \(-0.778421\pi\)
−0.767341 + 0.641239i \(0.778421\pi\)
\(420\) 655352. 0.181281
\(421\) −1.51550e6 −0.416727 −0.208364 0.978051i \(-0.566814\pi\)
−0.208364 + 0.978051i \(0.566814\pi\)
\(422\) −5.51686e6 −1.50803
\(423\) −949177. −0.257927
\(424\) 235231. 0.0635449
\(425\) 1.12089e6 0.301017
\(426\) −1.36918e6 −0.365541
\(427\) −2.23382e6 −0.592897
\(428\) 787412. 0.207775
\(429\) 0 0
\(430\) −3.60308e6 −0.939729
\(431\) −5.55099e6 −1.43939 −0.719693 0.694293i \(-0.755717\pi\)
−0.719693 + 0.694293i \(0.755717\pi\)
\(432\) −1.11664e7 −2.87875
\(433\) −3.52967e6 −0.904722 −0.452361 0.891835i \(-0.649418\pi\)
−0.452361 + 0.891835i \(0.649418\pi\)
\(434\) −6.25796e6 −1.59481
\(435\) 2.05206e6 0.519955
\(436\) 1.44577e6 0.364235
\(437\) 4.48541e6 1.12357
\(438\) −6.42490e6 −1.60023
\(439\) −2.84748e6 −0.705179 −0.352589 0.935778i \(-0.614699\pi\)
−0.352589 + 0.935778i \(0.614699\pi\)
\(440\) 0 0
\(441\) −1.95172e6 −0.477884
\(442\) 456976. 0.111260
\(443\) −735978. −0.178179 −0.0890893 0.996024i \(-0.528396\pi\)
−0.0890893 + 0.996024i \(0.528396\pi\)
\(444\) −1.66872e6 −0.401723
\(445\) 302942. 0.0725202
\(446\) 3.42425e6 0.815133
\(447\) 6.38447e6 1.51132
\(448\) −2.43176e6 −0.572434
\(449\) 2.63635e6 0.617145 0.308572 0.951201i \(-0.400149\pi\)
0.308572 + 0.951201i \(0.400149\pi\)
\(450\) −2.23647e6 −0.520633
\(451\) 0 0
\(452\) 2.08844e6 0.480814
\(453\) 5.50095e6 1.25948
\(454\) −1.08276e6 −0.246543
\(455\) −116450. −0.0263701
\(456\) 7.83672e6 1.76491
\(457\) −3.52607e6 −0.789769 −0.394885 0.918731i \(-0.629215\pi\)
−0.394885 + 0.918731i \(0.629215\pi\)
\(458\) −8.84847e6 −1.97108
\(459\) 1.64744e7 3.64988
\(460\) −492981. −0.108627
\(461\) 3.10340e6 0.680120 0.340060 0.940404i \(-0.389553\pi\)
0.340060 + 0.940404i \(0.389553\pi\)
\(462\) 0 0
\(463\) 4.73279e6 1.02604 0.513021 0.858376i \(-0.328526\pi\)
0.513021 + 0.858376i \(0.328526\pi\)
\(464\) 3.50808e6 0.756440
\(465\) 6.08933e6 1.30598
\(466\) 397897. 0.0848801
\(467\) −1.08142e6 −0.229458 −0.114729 0.993397i \(-0.536600\pi\)
−0.114729 + 0.993397i \(0.536600\pi\)
\(468\) −181888. −0.0383874
\(469\) −6.02698e6 −1.26522
\(470\) −265085. −0.0553528
\(471\) −9.49858e6 −1.97291
\(472\) 6.73900e6 1.39232
\(473\) 0 0
\(474\) 1.19870e7 2.45057
\(475\) 1.13366e6 0.230540
\(476\) −1.65292e6 −0.334375
\(477\) 876437. 0.176370
\(478\) −7.70549e6 −1.54252
\(479\) 71998.1 0.0143378 0.00716890 0.999974i \(-0.497718\pi\)
0.00716890 + 0.999974i \(0.497718\pi\)
\(480\) −2.00851e6 −0.397896
\(481\) 296517. 0.0584368
\(482\) 2.31843e6 0.454544
\(483\) −8.12918e6 −1.58555
\(484\) 0 0
\(485\) −651449. −0.125755
\(486\) −8.13902e6 −1.56308
\(487\) −2.26049e6 −0.431898 −0.215949 0.976405i \(-0.569284\pi\)
−0.215949 + 0.976405i \(0.569284\pi\)
\(488\) 2.93587e6 0.558068
\(489\) 378009. 0.0714875
\(490\) −545074. −0.102557
\(491\) −680974. −0.127476 −0.0637378 0.997967i \(-0.520302\pi\)
−0.0637378 + 0.997967i \(0.520302\pi\)
\(492\) 1.67231e6 0.311460
\(493\) −5.17566e6 −0.959066
\(494\) 462181. 0.0852108
\(495\) 0 0
\(496\) 1.04100e7 1.89996
\(497\) −880001. −0.159806
\(498\) 1.57215e6 0.284068
\(499\) −5.86965e6 −1.05526 −0.527632 0.849473i \(-0.676920\pi\)
−0.527632 + 0.849473i \(0.676920\pi\)
\(500\) −124598. −0.0222887
\(501\) 4.08059e6 0.726321
\(502\) −3.51209e6 −0.622024
\(503\) −9.74322e6 −1.71705 −0.858524 0.512773i \(-0.828618\pi\)
−0.858524 + 0.512773i \(0.828618\pi\)
\(504\) −9.93664e6 −1.74246
\(505\) −724472. −0.126413
\(506\) 0 0
\(507\) −1.05143e7 −1.81660
\(508\) 1.40897e6 0.242237
\(509\) 7.64806e6 1.30845 0.654225 0.756300i \(-0.272995\pi\)
0.654225 + 0.756300i \(0.272995\pi\)
\(510\) 8.06267e6 1.37263
\(511\) −4.12943e6 −0.699581
\(512\) 2.47523e6 0.417292
\(513\) 1.66620e7 2.79534
\(514\) 5.79844e6 0.968063
\(515\) −3.82582e6 −0.635633
\(516\) −5.17010e6 −0.854820
\(517\) 0 0
\(518\) −5.37648e6 −0.880387
\(519\) −5.87149e6 −0.956819
\(520\) 153048. 0.0248210
\(521\) −1.81174e6 −0.292416 −0.146208 0.989254i \(-0.546707\pi\)
−0.146208 + 0.989254i \(0.546707\pi\)
\(522\) 1.03268e7 1.65878
\(523\) 5.43513e6 0.868872 0.434436 0.900703i \(-0.356948\pi\)
0.434436 + 0.900703i \(0.356948\pi\)
\(524\) −1.36364e6 −0.216955
\(525\) −2.05459e6 −0.325332
\(526\) −7.45875e6 −1.17544
\(527\) −1.53584e7 −2.40890
\(528\) 0 0
\(529\) −321260. −0.0499134
\(530\) 244770. 0.0378502
\(531\) 2.51085e7 3.86442
\(532\) −1.67174e6 −0.256089
\(533\) −297154. −0.0453067
\(534\) 2.17909e6 0.330691
\(535\) −2.46861e6 −0.372879
\(536\) 7.92114e6 1.19090
\(537\) 1.45647e7 2.17954
\(538\) 7.36531e6 1.09707
\(539\) 0 0
\(540\) −1.83129e6 −0.270254
\(541\) 6.05948e6 0.890108 0.445054 0.895504i \(-0.353185\pi\)
0.445054 + 0.895504i \(0.353185\pi\)
\(542\) 567446. 0.0829710
\(543\) −1.64861e7 −2.39949
\(544\) 5.06582e6 0.733927
\(545\) −4.53262e6 −0.653669
\(546\) −837638. −0.120247
\(547\) −7.68998e6 −1.09890 −0.549449 0.835528i \(-0.685162\pi\)
−0.549449 + 0.835528i \(0.685162\pi\)
\(548\) 2.70827e6 0.385249
\(549\) 1.09386e7 1.54893
\(550\) 0 0
\(551\) −5.23461e6 −0.734523
\(552\) 1.06840e7 1.49241
\(553\) 7.70434e6 1.07133
\(554\) −5.70462e6 −0.789682
\(555\) 5.23160e6 0.720945
\(556\) −2.09554e6 −0.287480
\(557\) 5.42049e6 0.740287 0.370144 0.928975i \(-0.379308\pi\)
0.370144 + 0.928975i \(0.379308\pi\)
\(558\) 3.06440e7 4.16640
\(559\) 918680. 0.124347
\(560\) −3.51241e6 −0.473299
\(561\) 0 0
\(562\) 6.96581e6 0.930317
\(563\) −1.00596e7 −1.33755 −0.668777 0.743463i \(-0.733182\pi\)
−0.668777 + 0.743463i \(0.733182\pi\)
\(564\) −380373. −0.0503514
\(565\) −6.54747e6 −0.862884
\(566\) −9.16133e6 −1.20204
\(567\) −1.43020e7 −1.86826
\(568\) 1.15657e6 0.150418
\(569\) −8.25019e6 −1.06828 −0.534138 0.845397i \(-0.679364\pi\)
−0.534138 + 0.845397i \(0.679364\pi\)
\(570\) 8.15450e6 1.05126
\(571\) −4.66309e6 −0.598526 −0.299263 0.954171i \(-0.596741\pi\)
−0.299263 + 0.954171i \(0.596741\pi\)
\(572\) 0 0
\(573\) 5.77841e6 0.735228
\(574\) 5.38803e6 0.682574
\(575\) 1.54554e6 0.194945
\(576\) 1.19079e7 1.49547
\(577\) −2.64513e6 −0.330755 −0.165378 0.986230i \(-0.552884\pi\)
−0.165378 + 0.986230i \(0.552884\pi\)
\(578\) −1.13585e7 −1.41416
\(579\) 1.14996e7 1.42556
\(580\) 575324. 0.0710138
\(581\) 1.01046e6 0.124188
\(582\) −4.68594e6 −0.573442
\(583\) 0 0
\(584\) 5.42722e6 0.658485
\(585\) 570235. 0.0688912
\(586\) 2.83065e6 0.340519
\(587\) −9.66682e6 −1.15795 −0.578973 0.815346i \(-0.696546\pi\)
−0.578973 + 0.815346i \(0.696546\pi\)
\(588\) −782134. −0.0932906
\(589\) −1.55333e7 −1.84491
\(590\) 7.01226e6 0.829332
\(591\) 8.34900e6 0.983254
\(592\) 8.94365e6 1.04884
\(593\) −5.91513e6 −0.690760 −0.345380 0.938463i \(-0.612250\pi\)
−0.345380 + 0.938463i \(0.612250\pi\)
\(594\) 0 0
\(595\) 5.18206e6 0.600081
\(596\) 1.78998e6 0.206411
\(597\) −1.55367e7 −1.78411
\(598\) 630104. 0.0720542
\(599\) −3.97320e6 −0.452453 −0.226227 0.974075i \(-0.572639\pi\)
−0.226227 + 0.974075i \(0.572639\pi\)
\(600\) 2.70031e6 0.306221
\(601\) 9.46810e6 1.06924 0.534622 0.845091i \(-0.320454\pi\)
0.534622 + 0.845091i \(0.320454\pi\)
\(602\) −1.66576e7 −1.87336
\(603\) 2.95130e7 3.30537
\(604\) 1.54227e6 0.172016
\(605\) 0 0
\(606\) −5.21120e6 −0.576443
\(607\) 1.06710e7 1.17553 0.587764 0.809033i \(-0.300008\pi\)
0.587764 + 0.809033i \(0.300008\pi\)
\(608\) 5.12352e6 0.562094
\(609\) 9.48699e6 1.03654
\(610\) 3.05492e6 0.332411
\(611\) 67588.8 0.00732440
\(612\) 8.09403e6 0.873547
\(613\) 9.84284e6 1.05796 0.528980 0.848634i \(-0.322575\pi\)
0.528980 + 0.848634i \(0.322575\pi\)
\(614\) −7.85455e6 −0.840815
\(615\) −5.24284e6 −0.558957
\(616\) 0 0
\(617\) 1.26350e7 1.33618 0.668088 0.744082i \(-0.267113\pi\)
0.668088 + 0.744082i \(0.267113\pi\)
\(618\) −2.75195e7 −2.89847
\(619\) 3.82798e6 0.401553 0.200777 0.979637i \(-0.435653\pi\)
0.200777 + 0.979637i \(0.435653\pi\)
\(620\) 1.70723e6 0.178366
\(621\) 2.27158e7 2.36374
\(622\) −1.54686e7 −1.60315
\(623\) 1.40055e6 0.144570
\(624\) 1.39339e6 0.143256
\(625\) 390625. 0.0400000
\(626\) 1.44563e7 1.47442
\(627\) 0 0
\(628\) −2.66307e6 −0.269453
\(629\) −1.31951e7 −1.32979
\(630\) −1.03396e7 −1.03789
\(631\) −7.61882e6 −0.761753 −0.380877 0.924626i \(-0.624378\pi\)
−0.380877 + 0.924626i \(0.624378\pi\)
\(632\) −1.01257e7 −1.00840
\(633\) 2.48181e7 2.46183
\(634\) 1.08265e7 1.06971
\(635\) −4.41724e6 −0.434727
\(636\) 351223. 0.0344303
\(637\) 138978. 0.0135706
\(638\) 0 0
\(639\) 4.30920e6 0.417488
\(640\) 5.58534e6 0.539014
\(641\) 9.96098e6 0.957540 0.478770 0.877940i \(-0.341083\pi\)
0.478770 + 0.877940i \(0.341083\pi\)
\(642\) −1.77570e7 −1.70032
\(643\) −3.19476e6 −0.304727 −0.152364 0.988325i \(-0.548688\pi\)
−0.152364 + 0.988325i \(0.548688\pi\)
\(644\) −2.27913e6 −0.216549
\(645\) 1.62088e7 1.53409
\(646\) −2.05671e7 −1.93907
\(647\) −6.36474e6 −0.597751 −0.298875 0.954292i \(-0.596611\pi\)
−0.298875 + 0.954292i \(0.596611\pi\)
\(648\) 1.87968e7 1.75851
\(649\) 0 0
\(650\) 159254. 0.0147845
\(651\) 2.81520e7 2.60349
\(652\) 105980. 0.00976352
\(653\) −5.79812e6 −0.532113 −0.266057 0.963957i \(-0.585721\pi\)
−0.266057 + 0.963957i \(0.585721\pi\)
\(654\) −3.26036e7 −2.98072
\(655\) 4.27513e6 0.389355
\(656\) −8.96285e6 −0.813180
\(657\) 2.02210e7 1.82764
\(658\) −1.22553e6 −0.110347
\(659\) 1.88680e7 1.69244 0.846220 0.532834i \(-0.178873\pi\)
0.846220 + 0.532834i \(0.178873\pi\)
\(660\) 0 0
\(661\) −3.12520e6 −0.278211 −0.139105 0.990278i \(-0.544423\pi\)
−0.139105 + 0.990278i \(0.544423\pi\)
\(662\) −2.20260e7 −1.95340
\(663\) −2.05575e6 −0.181629
\(664\) −1.32803e6 −0.116892
\(665\) 5.24108e6 0.459586
\(666\) 2.63276e7 2.29999
\(667\) −7.13649e6 −0.621112
\(668\) 1.14405e6 0.0991985
\(669\) −1.54043e7 −1.33069
\(670\) 8.24234e6 0.709355
\(671\) 0 0
\(672\) −9.28566e6 −0.793212
\(673\) −6.27963e6 −0.534437 −0.267218 0.963636i \(-0.586104\pi\)
−0.267218 + 0.963636i \(0.586104\pi\)
\(674\) 6.19575e6 0.525344
\(675\) 5.74126e6 0.485007
\(676\) −2.94783e6 −0.248105
\(677\) −9.20532e6 −0.771911 −0.385956 0.922517i \(-0.626128\pi\)
−0.385956 + 0.922517i \(0.626128\pi\)
\(678\) −4.70966e7 −3.93473
\(679\) −3.01176e6 −0.250695
\(680\) −6.81067e6 −0.564830
\(681\) 4.87090e6 0.402477
\(682\) 0 0
\(683\) −7.43020e6 −0.609465 −0.304732 0.952438i \(-0.598567\pi\)
−0.304732 + 0.952438i \(0.598567\pi\)
\(684\) 8.18622e6 0.669026
\(685\) −8.49070e6 −0.691380
\(686\) −1.48017e7 −1.20089
\(687\) 3.98056e7 3.21775
\(688\) 2.77096e7 2.23182
\(689\) −62409.2 −0.00500842
\(690\) 1.11172e7 0.888944
\(691\) 1.58376e7 1.26181 0.630905 0.775860i \(-0.282684\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(692\) −1.64616e6 −0.130679
\(693\) 0 0
\(694\) 1.87299e7 1.47617
\(695\) 6.56970e6 0.515922
\(696\) −1.24686e7 −0.975648
\(697\) 1.32234e7 1.03101
\(698\) 2.21611e7 1.72168
\(699\) −1.78997e6 −0.138565
\(700\) −576035. −0.0444328
\(701\) −1.88996e7 −1.45264 −0.726319 0.687358i \(-0.758770\pi\)
−0.726319 + 0.687358i \(0.758770\pi\)
\(702\) 2.34066e6 0.179265
\(703\) −1.33453e7 −1.01845
\(704\) 0 0
\(705\) 1.19251e6 0.0903623
\(706\) −8.62762e6 −0.651447
\(707\) −3.34936e6 −0.252007
\(708\) 1.00620e7 0.754398
\(709\) 1.14546e7 0.855782 0.427891 0.903830i \(-0.359257\pi\)
0.427891 + 0.903830i \(0.359257\pi\)
\(710\) 1.20347e6 0.0895958
\(711\) −3.77267e7 −2.79882
\(712\) −1.84071e6 −0.136078
\(713\) −2.11770e7 −1.56006
\(714\) 3.72751e7 2.73636
\(715\) 0 0
\(716\) 4.08342e6 0.297674
\(717\) 3.46638e7 2.51813
\(718\) 1.66915e6 0.120832
\(719\) 1.34891e7 0.973111 0.486555 0.873650i \(-0.338253\pi\)
0.486555 + 0.873650i \(0.338253\pi\)
\(720\) 1.71996e7 1.23648
\(721\) −1.76874e7 −1.26714
\(722\) −5.14620e6 −0.367404
\(723\) −1.04296e7 −0.742033
\(724\) −4.62213e6 −0.327714
\(725\) −1.80370e6 −0.127444
\(726\) 0 0
\(727\) −1.25723e6 −0.0882220 −0.0441110 0.999027i \(-0.514046\pi\)
−0.0441110 + 0.999027i \(0.514046\pi\)
\(728\) 707567. 0.0494811
\(729\) 6.54484e6 0.456121
\(730\) 5.64730e6 0.392223
\(731\) −4.08815e7 −2.82965
\(732\) 4.38354e6 0.302376
\(733\) 1.21453e7 0.834928 0.417464 0.908694i \(-0.362919\pi\)
0.417464 + 0.908694i \(0.362919\pi\)
\(734\) −2.88603e7 −1.97725
\(735\) 2.45206e6 0.167422
\(736\) 6.98503e6 0.475307
\(737\) 0 0
\(738\) −2.63842e7 −1.78321
\(739\) 9.29090e6 0.625816 0.312908 0.949783i \(-0.398697\pi\)
0.312908 + 0.949783i \(0.398697\pi\)
\(740\) 1.46676e6 0.0984642
\(741\) −2.07916e6 −0.139105
\(742\) 1.13161e6 0.0754549
\(743\) −9.94361e6 −0.660803 −0.330402 0.943840i \(-0.607184\pi\)
−0.330402 + 0.943840i \(0.607184\pi\)
\(744\) −3.69995e7 −2.45055
\(745\) −5.61176e6 −0.370432
\(746\) −4.38473e6 −0.288467
\(747\) −4.94803e6 −0.324437
\(748\) 0 0
\(749\) −1.14128e7 −0.743340
\(750\) 2.80980e6 0.182399
\(751\) −778264. −0.0503532 −0.0251766 0.999683i \(-0.508015\pi\)
−0.0251766 + 0.999683i \(0.508015\pi\)
\(752\) 2.03864e6 0.131461
\(753\) 1.57995e7 1.01544
\(754\) −735350. −0.0471049
\(755\) −4.83517e6 −0.308705
\(756\) −8.46634e6 −0.538755
\(757\) 9.35901e6 0.593595 0.296798 0.954940i \(-0.404081\pi\)
0.296798 + 0.954940i \(0.404081\pi\)
\(758\) 63570.7 0.00401869
\(759\) 0 0
\(760\) −6.88824e6 −0.432588
\(761\) −3.06947e6 −0.192133 −0.0960665 0.995375i \(-0.530626\pi\)
−0.0960665 + 0.995375i \(0.530626\pi\)
\(762\) −3.17737e7 −1.98235
\(763\) −2.09550e7 −1.30310
\(764\) 1.62006e6 0.100415
\(765\) −2.53756e7 −1.56770
\(766\) 1.22513e7 0.754414
\(767\) −1.78792e6 −0.109739
\(768\) 2.10264e7 1.28636
\(769\) 8.33061e6 0.507997 0.253998 0.967205i \(-0.418254\pi\)
0.253998 + 0.967205i \(0.418254\pi\)
\(770\) 0 0
\(771\) −2.60848e7 −1.58034
\(772\) 3.22408e6 0.194699
\(773\) −5.21228e6 −0.313746 −0.156873 0.987619i \(-0.550141\pi\)
−0.156873 + 0.987619i \(0.550141\pi\)
\(774\) 8.15693e7 4.89412
\(775\) −5.35233e6 −0.320102
\(776\) 3.95829e6 0.235968
\(777\) 2.41865e7 1.43721
\(778\) −1.60078e7 −0.948160
\(779\) 1.33740e7 0.789619
\(780\) 228516. 0.0134487
\(781\) 0 0
\(782\) −2.80397e7 −1.63967
\(783\) −2.65100e7 −1.54528
\(784\) 4.19191e6 0.243569
\(785\) 8.34897e6 0.483569
\(786\) 3.07514e7 1.77545
\(787\) 1.22408e7 0.704489 0.352245 0.935908i \(-0.385418\pi\)
0.352245 + 0.935908i \(0.385418\pi\)
\(788\) 2.34077e6 0.134290
\(789\) 3.35538e7 1.91889
\(790\) −1.05363e7 −0.600646
\(791\) −3.02700e7 −1.72017
\(792\) 0 0
\(793\) −778915. −0.0439853
\(794\) 4.12396e6 0.232147
\(795\) −1.10112e6 −0.0617897
\(796\) −4.35594e6 −0.243668
\(797\) −1.91244e7 −1.06646 −0.533228 0.845972i \(-0.679021\pi\)
−0.533228 + 0.845972i \(0.679021\pi\)
\(798\) 3.76996e7 2.09570
\(799\) −3.00772e6 −0.166675
\(800\) 1.76542e6 0.0975264
\(801\) −6.85823e6 −0.377686
\(802\) −7.82654e6 −0.429669
\(803\) 0 0
\(804\) 1.18270e7 0.645261
\(805\) 7.14530e6 0.388625
\(806\) −2.18210e6 −0.118314
\(807\) −3.31335e7 −1.79095
\(808\) 4.40199e6 0.237203
\(809\) 1.96698e6 0.105664 0.0528321 0.998603i \(-0.483175\pi\)
0.0528321 + 0.998603i \(0.483175\pi\)
\(810\) 1.95590e7 1.04745
\(811\) −1.53296e7 −0.818425 −0.409212 0.912439i \(-0.634197\pi\)
−0.409212 + 0.912439i \(0.634197\pi\)
\(812\) 2.65982e6 0.141567
\(813\) −2.55270e6 −0.135448
\(814\) 0 0
\(815\) −332259. −0.0175219
\(816\) −6.20062e7 −3.25994
\(817\) −4.13471e7 −2.16715
\(818\) −3.12087e7 −1.63077
\(819\) 2.63629e6 0.137336
\(820\) −1.46991e6 −0.0763405
\(821\) 6.69458e6 0.346629 0.173315 0.984867i \(-0.444552\pi\)
0.173315 + 0.984867i \(0.444552\pi\)
\(822\) −6.10744e7 −3.15268
\(823\) −2.15046e7 −1.10671 −0.553353 0.832947i \(-0.686652\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(824\) 2.32462e7 1.19271
\(825\) 0 0
\(826\) 3.24189e7 1.65328
\(827\) 9.77934e6 0.497217 0.248608 0.968604i \(-0.420027\pi\)
0.248608 + 0.968604i \(0.420027\pi\)
\(828\) 1.11605e7 0.565728
\(829\) 2.35297e7 1.18913 0.594566 0.804047i \(-0.297324\pi\)
0.594566 + 0.804047i \(0.297324\pi\)
\(830\) −1.38188e6 −0.0696264
\(831\) 2.56627e7 1.28914
\(832\) −847934. −0.0424672
\(833\) −6.18456e6 −0.308813
\(834\) 4.72565e7 2.35259
\(835\) −3.58672e6 −0.178025
\(836\) 0 0
\(837\) −7.86666e7 −3.88130
\(838\) 3.48693e7 1.71527
\(839\) 2.93448e7 1.43921 0.719607 0.694381i \(-0.244322\pi\)
0.719607 + 0.694381i \(0.244322\pi\)
\(840\) 1.24840e7 0.610456
\(841\) −1.21827e7 −0.593953
\(842\) 9.58180e6 0.465765
\(843\) −3.13363e7 −1.51872
\(844\) 6.95811e6 0.336229
\(845\) 9.24172e6 0.445257
\(846\) 6.00119e6 0.288278
\(847\) 0 0
\(848\) −1.88241e6 −0.0898927
\(849\) 4.12130e7 1.96230
\(850\) −7.08684e6 −0.336438
\(851\) −1.81941e7 −0.861203
\(852\) 1.72687e6 0.0815004
\(853\) −1.18462e7 −0.557451 −0.278725 0.960371i \(-0.589912\pi\)
−0.278725 + 0.960371i \(0.589912\pi\)
\(854\) 1.41234e7 0.662665
\(855\) −2.56646e7 −1.20066
\(856\) 1.49996e7 0.699673
\(857\) 2.32639e7 1.08201 0.541004 0.841020i \(-0.318044\pi\)
0.541004 + 0.841020i \(0.318044\pi\)
\(858\) 0 0
\(859\) 2.67804e7 1.23832 0.619161 0.785264i \(-0.287473\pi\)
0.619161 + 0.785264i \(0.287473\pi\)
\(860\) 4.54436e6 0.209521
\(861\) −2.42385e7 −1.11429
\(862\) 3.50962e7 1.60876
\(863\) −3.35578e7 −1.53379 −0.766895 0.641772i \(-0.778199\pi\)
−0.766895 + 0.641772i \(0.778199\pi\)
\(864\) 2.59474e7 1.18252
\(865\) 5.16086e6 0.234521
\(866\) 2.23164e7 1.01118
\(867\) 5.10970e7 2.30860
\(868\) 7.89281e6 0.355576
\(869\) 0 0
\(870\) −1.29742e7 −0.581141
\(871\) −2.10156e6 −0.0938633
\(872\) 2.75408e7 1.22655
\(873\) 1.47480e7 0.654934
\(874\) −2.83591e7 −1.25578
\(875\) 1.80592e6 0.0797406
\(876\) 8.10337e6 0.356784
\(877\) 5.75227e6 0.252546 0.126273 0.991996i \(-0.459698\pi\)
0.126273 + 0.991996i \(0.459698\pi\)
\(878\) 1.80032e7 0.788160
\(879\) −1.27339e7 −0.555891
\(880\) 0 0
\(881\) −1.27804e7 −0.554758 −0.277379 0.960761i \(-0.589466\pi\)
−0.277379 + 0.960761i \(0.589466\pi\)
\(882\) 1.23398e7 0.534118
\(883\) −3.73344e7 −1.61142 −0.805708 0.592313i \(-0.798215\pi\)
−0.805708 + 0.592313i \(0.798215\pi\)
\(884\) −576359. −0.0248063
\(885\) −3.15453e7 −1.35387
\(886\) 4.65324e6 0.199146
\(887\) 2.00040e7 0.853703 0.426852 0.904322i \(-0.359623\pi\)
0.426852 + 0.904322i \(0.359623\pi\)
\(888\) −3.17879e7 −1.35279
\(889\) −2.04216e7 −0.866635
\(890\) −1.91536e6 −0.0810540
\(891\) 0 0
\(892\) −4.31882e6 −0.181741
\(893\) −3.04197e6 −0.127652
\(894\) −4.03659e7 −1.68916
\(895\) −1.28019e7 −0.534216
\(896\) 2.58220e7 1.07453
\(897\) −2.83457e6 −0.117627
\(898\) −1.66684e7 −0.689767
\(899\) 2.47142e7 1.01988
\(900\) 2.82073e6 0.116080
\(901\) 2.77722e6 0.113972
\(902\) 0 0
\(903\) 7.49358e7 3.05823
\(904\) 3.97833e7 1.61912
\(905\) 1.44908e7 0.588127
\(906\) −3.47798e7 −1.40769
\(907\) 2.63834e7 1.06491 0.532455 0.846459i \(-0.321270\pi\)
0.532455 + 0.846459i \(0.321270\pi\)
\(908\) 1.36563e6 0.0549690
\(909\) 1.64012e7 0.658362
\(910\) 736258. 0.0294732
\(911\) 2.04638e7 0.816939 0.408470 0.912772i \(-0.366063\pi\)
0.408470 + 0.912772i \(0.366063\pi\)
\(912\) −6.27124e7 −2.49670
\(913\) 0 0
\(914\) 2.22936e7 0.882704
\(915\) −1.37428e7 −0.542654
\(916\) 1.11601e7 0.439470
\(917\) 1.97646e7 0.776185
\(918\) −1.04160e8 −4.07937
\(919\) 3.88171e6 0.151612 0.0758060 0.997123i \(-0.475847\pi\)
0.0758060 + 0.997123i \(0.475847\pi\)
\(920\) −9.39093e6 −0.365796
\(921\) 3.53344e7 1.37261
\(922\) −1.96213e7 −0.760152
\(923\) −306849. −0.0118555
\(924\) 0 0
\(925\) −4.59842e6 −0.176707
\(926\) −2.99232e7 −1.14678
\(927\) 8.66118e7 3.31038
\(928\) −8.15174e6 −0.310728
\(929\) 1.01671e7 0.386506 0.193253 0.981149i \(-0.438096\pi\)
0.193253 + 0.981149i \(0.438096\pi\)
\(930\) −3.84999e7 −1.45966
\(931\) −6.25499e6 −0.236512
\(932\) −501845. −0.0189247
\(933\) 6.95866e7 2.61711
\(934\) 6.83732e6 0.256460
\(935\) 0 0
\(936\) −3.46482e6 −0.129268
\(937\) −4.60409e7 −1.71315 −0.856574 0.516024i \(-0.827412\pi\)
−0.856574 + 0.516024i \(0.827412\pi\)
\(938\) 3.81057e7 1.41411
\(939\) −6.50330e7 −2.40697
\(940\) 334336. 0.0123414
\(941\) 9.00399e6 0.331483 0.165741 0.986169i \(-0.446998\pi\)
0.165741 + 0.986169i \(0.446998\pi\)
\(942\) 6.00550e7 2.20507
\(943\) 1.82331e7 0.667701
\(944\) −5.39280e7 −1.96963
\(945\) 2.65428e7 0.966868
\(946\) 0 0
\(947\) −4.22133e7 −1.52959 −0.764793 0.644276i \(-0.777159\pi\)
−0.764793 + 0.644276i \(0.777159\pi\)
\(948\) −1.51186e7 −0.546375
\(949\) −1.43990e6 −0.0518998
\(950\) −7.16756e6 −0.257669
\(951\) −4.87039e7 −1.74628
\(952\) −3.14869e7 −1.12600
\(953\) −4.70636e7 −1.67862 −0.839312 0.543651i \(-0.817042\pi\)
−0.839312 + 0.543651i \(0.817042\pi\)
\(954\) −5.54129e6 −0.197124
\(955\) −5.07905e6 −0.180208
\(956\) 9.71850e6 0.343918
\(957\) 0 0
\(958\) −455210. −0.0160250
\(959\) −3.92539e7 −1.37828
\(960\) −1.49605e7 −0.523925
\(961\) 4.47084e7 1.56164
\(962\) −1.87473e6 −0.0653133
\(963\) 5.58863e7 1.94196
\(964\) −2.92410e6 −0.101344
\(965\) −1.01078e7 −0.349413
\(966\) 5.13969e7 1.77212
\(967\) −1.72935e7 −0.594727 −0.297364 0.954764i \(-0.596107\pi\)
−0.297364 + 0.954764i \(0.596107\pi\)
\(968\) 0 0
\(969\) 9.25230e7 3.16549
\(970\) 4.11880e6 0.140553
\(971\) 3.36009e7 1.14367 0.571837 0.820367i \(-0.306231\pi\)
0.571837 + 0.820367i \(0.306231\pi\)
\(972\) 1.02653e7 0.348502
\(973\) 3.03728e7 1.02850
\(974\) 1.42920e7 0.482721
\(975\) −716418. −0.0241354
\(976\) −2.34939e7 −0.789462
\(977\) −1.61553e7 −0.541475 −0.270738 0.962653i \(-0.587268\pi\)
−0.270738 + 0.962653i \(0.587268\pi\)
\(978\) −2.38997e6 −0.0798997
\(979\) 0 0
\(980\) 687472. 0.0228660
\(981\) 1.02613e8 3.40431
\(982\) 4.30547e6 0.142476
\(983\) −3.19593e7 −1.05490 −0.527452 0.849585i \(-0.676853\pi\)
−0.527452 + 0.849585i \(0.676853\pi\)
\(984\) 3.18562e7 1.04883
\(985\) −7.33852e6 −0.241001
\(986\) 3.27232e7 1.07192
\(987\) 5.51315e6 0.180139
\(988\) −582923. −0.0189985
\(989\) −5.63696e7 −1.83254
\(990\) 0 0
\(991\) 9.01234e6 0.291510 0.145755 0.989321i \(-0.453439\pi\)
0.145755 + 0.989321i \(0.453439\pi\)
\(992\) −2.41897e7 −0.780461
\(993\) 9.90857e7 3.18888
\(994\) 5.56382e6 0.178611
\(995\) 1.36563e7 0.437295
\(996\) −1.98287e6 −0.0633354
\(997\) 1.41378e7 0.450447 0.225224 0.974307i \(-0.427689\pi\)
0.225224 + 0.974307i \(0.427689\pi\)
\(998\) 3.71110e7 1.17944
\(999\) −6.75858e7 −2.14260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.6.a.e.1.2 6
11.10 odd 2 55.6.a.d.1.5 6
33.32 even 2 495.6.a.l.1.2 6
44.43 even 2 880.6.a.u.1.1 6
55.32 even 4 275.6.b.f.199.10 12
55.43 even 4 275.6.b.f.199.3 12
55.54 odd 2 275.6.a.f.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.6.a.d.1.5 6 11.10 odd 2
275.6.a.f.1.2 6 55.54 odd 2
275.6.b.f.199.3 12 55.43 even 4
275.6.b.f.199.10 12 55.32 even 4
495.6.a.l.1.2 6 33.32 even 2
605.6.a.e.1.2 6 1.1 even 1 trivial
880.6.a.u.1.1 6 44.43 even 2