Properties

Label 605.2.g.m.511.1
Level $605$
Weight $2$
Character 605.511
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(81,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 511.1
Root \(-0.227943 + 0.701538i\) of defining polynomial
Character \(\chi\) \(=\) 605.511
Dual form 605.2.g.m.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.227943 - 0.701538i) q^{2} +(2.27460 + 1.65259i) q^{3} +(1.17784 - 0.855749i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.640877 - 1.97242i) q^{6} +(-0.834404 + 0.606230i) q^{7} +(-2.06235 - 1.49838i) q^{8} +(1.51569 + 4.66481i) q^{9} +0.737640 q^{10} +4.09331 q^{12} +(1.06580 + 3.28018i) q^{13} +(0.615490 + 0.447180i) q^{14} +(-2.27460 + 1.65259i) q^{15} +(0.318714 - 0.980901i) q^{16} +(0.741089 - 2.28084i) q^{17} +(2.92705 - 2.12663i) q^{18} +(6.20420 + 4.50761i) q^{19} +(0.449894 + 1.38463i) q^{20} -2.89979 q^{21} +2.45589 q^{23} +(-2.21480 - 6.81645i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(2.05823 - 1.49539i) q^{26} +(-1.65499 + 5.09355i) q^{27} +(-0.464011 + 1.42808i) q^{28} +(4.81714 - 3.49986i) q^{29} +(1.67784 + 1.21902i) q^{30} +(-1.13972 - 3.50769i) q^{31} -5.85919 q^{32} -1.76902 q^{34} +(-0.318714 - 0.980901i) q^{35} +(5.77714 + 4.19734i) q^{36} +(-4.82059 + 3.50236i) q^{37} +(1.74805 - 5.37996i) q^{38} +(-2.99655 + 9.22244i) q^{39} +(2.06235 - 1.49838i) q^{40} +(-3.18450 - 2.31367i) q^{41} +(0.660987 + 2.03431i) q^{42} -7.64941 q^{43} -4.90488 q^{45} +(-0.559803 - 1.72290i) q^{46} +(-4.72704 - 3.43439i) q^{47} +(2.34598 - 1.70445i) q^{48} +(-1.83440 + 5.64571i) q^{49} +(-0.227943 + 0.701538i) q^{50} +(5.45498 - 3.96328i) q^{51} +(4.06235 + 2.95147i) q^{52} +(-3.66124 - 11.2681i) q^{53} +3.95056 q^{54} +2.62920 q^{56} +(6.66281 + 20.5060i) q^{57} +(-3.55332 - 2.58164i) q^{58} +(-2.38361 + 1.73179i) q^{59} +(-1.26490 + 3.89297i) q^{60} +(0.766476 - 2.35897i) q^{61} +(-2.20098 + 1.59911i) q^{62} +(-4.09265 - 2.97348i) q^{63} +(0.698136 + 2.14864i) q^{64} -3.44899 q^{65} -6.14702 q^{67} +(-1.07894 - 3.32064i) q^{68} +(5.58616 + 4.05858i) q^{69} +(-0.615490 + 0.447180i) q^{70} +(0.625187 - 1.92413i) q^{71} +(3.86380 - 11.8916i) q^{72} +(0.668140 - 0.485432i) q^{73} +(3.55586 + 2.58348i) q^{74} +(-0.868820 - 2.67395i) q^{75} +11.1649 q^{76} +7.15293 q^{78} +(-3.73236 - 11.4870i) q^{79} +(0.834404 + 0.606230i) q^{80} +(-0.277637 + 0.201715i) q^{81} +(-0.897243 + 2.76143i) q^{82} +(0.497523 - 1.53122i) q^{83} +(-3.41548 + 2.48149i) q^{84} +(1.94020 + 1.40964i) q^{85} +(1.74363 + 5.36635i) q^{86} +16.7409 q^{87} +8.16116 q^{89} +(1.11803 + 3.44095i) q^{90} +(-2.87785 - 2.09088i) q^{91} +(2.89263 - 2.10162i) q^{92} +(3.20438 - 9.86208i) q^{93} +(-1.33186 + 4.09904i) q^{94} +(-6.20420 + 4.50761i) q^{95} +(-13.3273 - 9.68286i) q^{96} +(0.754861 + 2.32322i) q^{97} +4.37882 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} + 5 q^{3} + 3 q^{4} + 2 q^{5} + 8 q^{6} + 4 q^{7} - q^{8} + 5 q^{9} + 2 q^{10} + 16 q^{12} + 3 q^{13} + 14 q^{14} - 5 q^{15} - q^{16} + 12 q^{17} + 10 q^{18} + 5 q^{19} + 2 q^{20} - 20 q^{21}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.227943 0.701538i −0.161180 0.496062i 0.837554 0.546354i \(-0.183985\pi\)
−0.998735 + 0.0502922i \(0.983985\pi\)
\(3\) 2.27460 + 1.65259i 1.31324 + 0.954126i 0.999990 + 0.00445538i \(0.00141820\pi\)
0.313251 + 0.949670i \(0.398582\pi\)
\(4\) 1.17784 0.855749i 0.588919 0.427874i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0.640877 1.97242i 0.261637 0.805235i
\(7\) −0.834404 + 0.606230i −0.315375 + 0.229133i −0.734199 0.678934i \(-0.762442\pi\)
0.418824 + 0.908067i \(0.362442\pi\)
\(8\) −2.06235 1.49838i −0.729150 0.529758i
\(9\) 1.51569 + 4.66481i 0.505230 + 1.55494i
\(10\) 0.737640 0.233262
\(11\) 0 0
\(12\) 4.09331 1.18164
\(13\) 1.06580 + 3.28018i 0.295599 + 0.909759i 0.983020 + 0.183500i \(0.0587427\pi\)
−0.687421 + 0.726259i \(0.741257\pi\)
\(14\) 0.615490 + 0.447180i 0.164497 + 0.119514i
\(15\) −2.27460 + 1.65259i −0.587299 + 0.426698i
\(16\) 0.318714 0.980901i 0.0796785 0.245225i
\(17\) 0.741089 2.28084i 0.179741 0.553185i −0.820078 0.572252i \(-0.806070\pi\)
0.999818 + 0.0190677i \(0.00606982\pi\)
\(18\) 2.92705 2.12663i 0.689913 0.501251i
\(19\) 6.20420 + 4.50761i 1.42334 + 1.03412i 0.991209 + 0.132306i \(0.0422383\pi\)
0.432131 + 0.901811i \(0.357762\pi\)
\(20\) 0.449894 + 1.38463i 0.100599 + 0.309613i
\(21\) −2.89979 −0.632786
\(22\) 0 0
\(23\) 2.45589 0.512088 0.256044 0.966665i \(-0.417581\pi\)
0.256044 + 0.966665i \(0.417581\pi\)
\(24\) −2.21480 6.81645i −0.452094 1.39140i
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 2.05823 1.49539i 0.403652 0.293271i
\(27\) −1.65499 + 5.09355i −0.318504 + 0.980254i
\(28\) −0.464011 + 1.42808i −0.0876899 + 0.269882i
\(29\) 4.81714 3.49986i 0.894521 0.649907i −0.0425320 0.999095i \(-0.513542\pi\)
0.937053 + 0.349188i \(0.113542\pi\)
\(30\) 1.67784 + 1.21902i 0.306330 + 0.222562i
\(31\) −1.13972 3.50769i −0.204699 0.629999i −0.999726 0.0234246i \(-0.992543\pi\)
0.795026 0.606575i \(-0.207457\pi\)
\(32\) −5.85919 −1.03577
\(33\) 0 0
\(34\) −1.76902 −0.303384
\(35\) −0.318714 0.980901i −0.0538725 0.165802i
\(36\) 5.77714 + 4.19734i 0.962857 + 0.699557i
\(37\) −4.82059 + 3.50236i −0.792500 + 0.575785i −0.908704 0.417440i \(-0.862927\pi\)
0.116204 + 0.993225i \(0.462927\pi\)
\(38\) 1.74805 5.37996i 0.283572 0.872744i
\(39\) −2.99655 + 9.22244i −0.479832 + 1.47677i
\(40\) 2.06235 1.49838i 0.326086 0.236915i
\(41\) −3.18450 2.31367i −0.497335 0.361335i 0.310663 0.950520i \(-0.399449\pi\)
−0.807998 + 0.589185i \(0.799449\pi\)
\(42\) 0.660987 + 2.03431i 0.101993 + 0.313901i
\(43\) −7.64941 −1.16652 −0.583262 0.812284i \(-0.698224\pi\)
−0.583262 + 0.812284i \(0.698224\pi\)
\(44\) 0 0
\(45\) −4.90488 −0.731176
\(46\) −0.559803 1.72290i −0.0825385 0.254027i
\(47\) −4.72704 3.43439i −0.689509 0.500958i 0.186989 0.982362i \(-0.440127\pi\)
−0.876499 + 0.481404i \(0.840127\pi\)
\(48\) 2.34598 1.70445i 0.338613 0.246017i
\(49\) −1.83440 + 5.64571i −0.262058 + 0.806531i
\(50\) −0.227943 + 0.701538i −0.0322361 + 0.0992124i
\(51\) 5.45498 3.96328i 0.763850 0.554970i
\(52\) 4.06235 + 2.95147i 0.563346 + 0.409295i
\(53\) −3.66124 11.2681i −0.502910 1.54780i −0.804256 0.594284i \(-0.797436\pi\)
0.301345 0.953515i \(-0.402564\pi\)
\(54\) 3.95056 0.537603
\(55\) 0 0
\(56\) 2.62920 0.351341
\(57\) 6.66281 + 20.5060i 0.882511 + 2.71609i
\(58\) −3.55332 2.58164i −0.466573 0.338985i
\(59\) −2.38361 + 1.73179i −0.310319 + 0.225460i −0.732033 0.681269i \(-0.761428\pi\)
0.421714 + 0.906729i \(0.361428\pi\)
\(60\) −1.26490 + 3.89297i −0.163298 + 0.502581i
\(61\) 0.766476 2.35897i 0.0981372 0.302035i −0.889921 0.456114i \(-0.849241\pi\)
0.988059 + 0.154079i \(0.0492409\pi\)
\(62\) −2.20098 + 1.59911i −0.279525 + 0.203087i
\(63\) −4.09265 2.97348i −0.515625 0.374624i
\(64\) 0.698136 + 2.14864i 0.0872670 + 0.268580i
\(65\) −3.44899 −0.427794
\(66\) 0 0
\(67\) −6.14702 −0.750978 −0.375489 0.926827i \(-0.622525\pi\)
−0.375489 + 0.926827i \(0.622525\pi\)
\(68\) −1.07894 3.32064i −0.130841 0.402687i
\(69\) 5.58616 + 4.05858i 0.672495 + 0.488596i
\(70\) −0.615490 + 0.447180i −0.0735651 + 0.0534482i
\(71\) 0.625187 1.92413i 0.0741960 0.228352i −0.907080 0.420958i \(-0.861694\pi\)
0.981276 + 0.192606i \(0.0616940\pi\)
\(72\) 3.86380 11.8916i 0.455353 1.40143i
\(73\) 0.668140 0.485432i 0.0781999 0.0568156i −0.547998 0.836479i \(-0.684610\pi\)
0.626198 + 0.779664i \(0.284610\pi\)
\(74\) 3.55586 + 2.58348i 0.413361 + 0.300324i
\(75\) −0.868820 2.67395i −0.100323 0.308762i
\(76\) 11.1649 1.28070
\(77\) 0 0
\(78\) 7.15293 0.809910
\(79\) −3.73236 11.4870i −0.419924 1.29239i −0.907772 0.419464i \(-0.862218\pi\)
0.487848 0.872928i \(-0.337782\pi\)
\(80\) 0.834404 + 0.606230i 0.0932892 + 0.0677786i
\(81\) −0.277637 + 0.201715i −0.0308486 + 0.0224128i
\(82\) −0.897243 + 2.76143i −0.0990840 + 0.304949i
\(83\) 0.497523 1.53122i 0.0546102 0.168073i −0.920031 0.391845i \(-0.871837\pi\)
0.974642 + 0.223772i \(0.0718370\pi\)
\(84\) −3.41548 + 2.48149i −0.372659 + 0.270753i
\(85\) 1.94020 + 1.40964i 0.210444 + 0.152896i
\(86\) 1.74363 + 5.36635i 0.188021 + 0.578669i
\(87\) 16.7409 1.79481
\(88\) 0 0
\(89\) 8.16116 0.865081 0.432541 0.901614i \(-0.357617\pi\)
0.432541 + 0.901614i \(0.357617\pi\)
\(90\) 1.11803 + 3.44095i 0.117851 + 0.362708i
\(91\) −2.87785 2.09088i −0.301681 0.219184i
\(92\) 2.89263 2.10162i 0.301578 0.219109i
\(93\) 3.20438 9.86208i 0.332279 1.02265i
\(94\) −1.33186 + 4.09904i −0.137371 + 0.422784i
\(95\) −6.20420 + 4.50761i −0.636537 + 0.462471i
\(96\) −13.3273 9.68286i −1.36021 0.988253i
\(97\) 0.754861 + 2.32322i 0.0766445 + 0.235888i 0.982037 0.188688i \(-0.0604234\pi\)
−0.905393 + 0.424575i \(0.860423\pi\)
\(98\) 4.37882 0.442328
\(99\) 0 0
\(100\) −1.45589 −0.145589
\(101\) −2.32496 7.15550i −0.231342 0.711999i −0.997586 0.0694479i \(-0.977876\pi\)
0.766243 0.642551i \(-0.222124\pi\)
\(102\) −4.02381 2.92347i −0.398417 0.289467i
\(103\) 7.67135 5.57356i 0.755881 0.549180i −0.141763 0.989901i \(-0.545277\pi\)
0.897644 + 0.440721i \(0.145277\pi\)
\(104\) 2.71693 8.36185i 0.266417 0.819947i
\(105\) 0.896084 2.75786i 0.0874488 0.269140i
\(106\) −7.07047 + 5.13700i −0.686745 + 0.498949i
\(107\) 3.75932 + 2.73131i 0.363427 + 0.264046i 0.754480 0.656323i \(-0.227889\pi\)
−0.391053 + 0.920368i \(0.627889\pi\)
\(108\) 2.40948 + 7.41563i 0.231853 + 0.713569i
\(109\) −5.32826 −0.510355 −0.255178 0.966894i \(-0.582134\pi\)
−0.255178 + 0.966894i \(0.582134\pi\)
\(110\) 0 0
\(111\) −16.7529 −1.59012
\(112\) 0.328715 + 1.01168i 0.0310607 + 0.0955949i
\(113\) −0.246670 0.179216i −0.0232047 0.0168592i 0.576122 0.817363i \(-0.304565\pi\)
−0.599327 + 0.800504i \(0.704565\pi\)
\(114\) 12.8670 9.34843i 1.20511 0.875561i
\(115\) −0.758911 + 2.33569i −0.0707688 + 0.217804i
\(116\) 2.67881 8.24453i 0.248721 0.765485i
\(117\) −13.6860 + 9.94348i −1.26527 + 0.919275i
\(118\) 1.75824 + 1.27744i 0.161859 + 0.117598i
\(119\) 0.764345 + 2.35241i 0.0700673 + 0.215645i
\(120\) 7.16724 0.654276
\(121\) 0 0
\(122\) −1.82962 −0.165646
\(123\) −3.41990 10.5254i −0.308362 0.949040i
\(124\) −4.34410 3.15617i −0.390112 0.283433i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) −1.15312 + 3.54893i −0.102728 + 0.316164i
\(127\) −3.68038 + 11.3270i −0.326581 + 1.00511i 0.644141 + 0.764907i \(0.277215\pi\)
−0.970722 + 0.240206i \(0.922785\pi\)
\(128\) −8.13215 + 5.90835i −0.718787 + 0.522230i
\(129\) −17.3994 12.6414i −1.53193 1.11301i
\(130\) 0.786174 + 2.41960i 0.0689520 + 0.212213i
\(131\) −11.1875 −0.977452 −0.488726 0.872437i \(-0.662538\pi\)
−0.488726 + 0.872437i \(0.662538\pi\)
\(132\) 0 0
\(133\) −7.90945 −0.685837
\(134\) 1.40117 + 4.31236i 0.121043 + 0.372531i
\(135\) −4.33283 3.14799i −0.372911 0.270936i
\(136\) −4.94595 + 3.59344i −0.424112 + 0.308135i
\(137\) −1.32298 + 4.07170i −0.113030 + 0.347869i −0.991531 0.129871i \(-0.958544\pi\)
0.878501 + 0.477740i \(0.158544\pi\)
\(138\) 1.57392 4.84403i 0.133981 0.412351i
\(139\) 4.81624 3.49920i 0.408508 0.296798i −0.364490 0.931207i \(-0.618757\pi\)
0.772997 + 0.634409i \(0.218757\pi\)
\(140\) −1.21480 0.882602i −0.102669 0.0745935i
\(141\) −5.07646 15.6238i −0.427515 1.31576i
\(142\) −1.49235 −0.125236
\(143\) 0 0
\(144\) 5.05879 0.421566
\(145\) 1.83998 + 5.66289i 0.152802 + 0.470277i
\(146\) −0.492847 0.358074i −0.0407883 0.0296345i
\(147\) −13.5026 + 9.81022i −1.11368 + 0.809133i
\(148\) −2.68073 + 8.25043i −0.220354 + 0.678181i
\(149\) −1.16946 + 3.59922i −0.0958057 + 0.294860i −0.987463 0.157852i \(-0.949543\pi\)
0.891657 + 0.452711i \(0.149543\pi\)
\(150\) −1.67784 + 1.21902i −0.136995 + 0.0995326i
\(151\) 19.7049 + 14.3165i 1.60356 + 1.16506i 0.880214 + 0.474576i \(0.157399\pi\)
0.723350 + 0.690481i \(0.242601\pi\)
\(152\) −6.04108 18.5925i −0.489996 1.50805i
\(153\) 11.7629 0.950978
\(154\) 0 0
\(155\) 3.68820 0.296243
\(156\) 4.36264 + 13.4268i 0.349291 + 1.07501i
\(157\) −5.85089 4.25092i −0.466952 0.339260i 0.329300 0.944225i \(-0.393187\pi\)
−0.796252 + 0.604965i \(0.793187\pi\)
\(158\) −7.20782 + 5.23679i −0.573423 + 0.416616i
\(159\) 10.2938 31.6811i 0.816352 2.51247i
\(160\) 1.81059 5.57242i 0.143140 0.440539i
\(161\) −2.04920 + 1.48883i −0.161500 + 0.117336i
\(162\) 0.204796 + 0.148793i 0.0160903 + 0.0116903i
\(163\) 5.77527 + 17.7744i 0.452354 + 1.39220i 0.874214 + 0.485541i \(0.161377\pi\)
−0.421860 + 0.906661i \(0.638623\pi\)
\(164\) −5.73074 −0.447496
\(165\) 0 0
\(166\) −1.18761 −0.0921767
\(167\) 2.42680 + 7.46891i 0.187791 + 0.577962i 0.999985 0.00542559i \(-0.00172703\pi\)
−0.812194 + 0.583387i \(0.801727\pi\)
\(168\) 5.98037 + 4.34499i 0.461395 + 0.335223i
\(169\) 0.893540 0.649194i 0.0687338 0.0499380i
\(170\) 0.546657 1.68244i 0.0419267 0.129037i
\(171\) −11.6235 + 35.7736i −0.888874 + 2.73567i
\(172\) −9.00976 + 6.54598i −0.686988 + 0.499126i
\(173\) −9.06478 6.58595i −0.689183 0.500721i 0.187209 0.982320i \(-0.440056\pi\)
−0.876391 + 0.481600i \(0.840056\pi\)
\(174\) −3.81598 11.7444i −0.289289 0.890339i
\(175\) 1.03138 0.0779650
\(176\) 0 0
\(177\) −8.28370 −0.622641
\(178\) −1.86028 5.72536i −0.139434 0.429134i
\(179\) −1.18491 0.860888i −0.0885643 0.0643458i 0.542622 0.839977i \(-0.317432\pi\)
−0.631186 + 0.775631i \(0.717432\pi\)
\(180\) −5.77714 + 4.19734i −0.430603 + 0.312851i
\(181\) 2.87046 8.83437i 0.213360 0.656653i −0.785906 0.618345i \(-0.787803\pi\)
0.999266 0.0383078i \(-0.0121967\pi\)
\(182\) −0.810844 + 2.49552i −0.0601038 + 0.184980i
\(183\) 5.64185 4.09904i 0.417057 0.303010i
\(184\) −5.06489 3.67986i −0.373389 0.271283i
\(185\) −1.84130 5.66694i −0.135375 0.416642i
\(186\) −7.64904 −0.560855
\(187\) 0 0
\(188\) −8.50666 −0.620412
\(189\) −1.70693 5.25338i −0.124161 0.382127i
\(190\) 4.57646 + 3.32500i 0.332012 + 0.241221i
\(191\) 3.61870 2.62914i 0.261840 0.190238i −0.449118 0.893473i \(-0.648262\pi\)
0.710958 + 0.703235i \(0.248262\pi\)
\(192\) −1.96285 + 6.04104i −0.141657 + 0.435974i
\(193\) −7.00418 + 21.5567i −0.504172 + 1.55168i 0.297986 + 0.954570i \(0.403685\pi\)
−0.802158 + 0.597112i \(0.796315\pi\)
\(194\) 1.45776 1.05913i 0.104661 0.0760409i
\(195\) −7.84507 5.69978i −0.561797 0.408170i
\(196\) 2.67068 + 8.21952i 0.190763 + 0.587109i
\(197\) −11.2080 −0.798535 −0.399267 0.916835i \(-0.630735\pi\)
−0.399267 + 0.916835i \(0.630735\pi\)
\(198\) 0 0
\(199\) −7.81979 −0.554330 −0.277165 0.960822i \(-0.589395\pi\)
−0.277165 + 0.960822i \(0.589395\pi\)
\(200\) 0.787747 + 2.42443i 0.0557021 + 0.171433i
\(201\) −13.9820 10.1585i −0.986215 0.716527i
\(202\) −4.48989 + 3.26210i −0.315908 + 0.229520i
\(203\) −1.89772 + 5.84059i −0.133194 + 0.409929i
\(204\) 3.03351 9.33619i 0.212388 0.653664i
\(205\) 3.18450 2.31367i 0.222415 0.161594i
\(206\) −5.65870 4.11128i −0.394260 0.286447i
\(207\) 3.72236 + 11.4563i 0.258722 + 0.796265i
\(208\) 3.55722 0.246649
\(209\) 0 0
\(210\) −2.13900 −0.147605
\(211\) −7.03539 21.6527i −0.484336 1.49063i −0.832940 0.553363i \(-0.813344\pi\)
0.348604 0.937270i \(-0.386656\pi\)
\(212\) −13.9550 10.1389i −0.958437 0.696345i
\(213\) 4.60185 3.34344i 0.315314 0.229089i
\(214\) 1.05920 3.25989i 0.0724056 0.222842i
\(215\) 2.36380 7.27502i 0.161210 0.496153i
\(216\) 11.0453 8.02485i 0.751535 0.546022i
\(217\) 3.07745 + 2.23590i 0.208911 + 0.151783i
\(218\) 1.21454 + 3.73798i 0.0822592 + 0.253168i
\(219\) 2.32197 0.156905
\(220\) 0 0
\(221\) 8.27142 0.556396
\(222\) 3.81871 + 11.7528i 0.256295 + 0.788796i
\(223\) 12.9788 + 9.42965i 0.869124 + 0.631456i 0.930352 0.366668i \(-0.119501\pi\)
−0.0612274 + 0.998124i \(0.519501\pi\)
\(224\) 4.88893 3.55202i 0.326655 0.237329i
\(225\) 1.51569 4.66481i 0.101046 0.310988i
\(226\) −0.0695001 + 0.213899i −0.00462308 + 0.0142284i
\(227\) 19.5428 14.1987i 1.29710 0.942398i 0.297177 0.954822i \(-0.403955\pi\)
0.999923 + 0.0124240i \(0.00395478\pi\)
\(228\) 25.3957 + 18.4511i 1.68187 + 1.22195i
\(229\) −4.63967 14.2794i −0.306598 0.943611i −0.979076 0.203494i \(-0.934770\pi\)
0.672478 0.740117i \(-0.265230\pi\)
\(230\) 1.81156 0.119451
\(231\) 0 0
\(232\) −15.1787 −0.996534
\(233\) 3.53081 + 10.8667i 0.231311 + 0.711902i 0.997589 + 0.0693934i \(0.0221064\pi\)
−0.766278 + 0.642509i \(0.777894\pi\)
\(234\) 10.0954 + 7.33471i 0.659955 + 0.479485i
\(235\) 4.72704 3.43439i 0.308358 0.224035i
\(236\) −1.32552 + 4.07953i −0.0862841 + 0.265555i
\(237\) 10.4938 32.2965i 0.681644 2.09788i
\(238\) 1.47608 1.07243i 0.0956799 0.0695155i
\(239\) −22.1725 16.1093i −1.43422 1.04202i −0.989211 0.146495i \(-0.953201\pi\)
−0.445008 0.895526i \(-0.646799\pi\)
\(240\) 0.896084 + 2.75786i 0.0578419 + 0.178019i
\(241\) 10.9387 0.704624 0.352312 0.935883i \(-0.385396\pi\)
0.352312 + 0.935883i \(0.385396\pi\)
\(242\) 0 0
\(243\) 15.1022 0.968804
\(244\) −1.11590 3.43439i −0.0714383 0.219865i
\(245\) −4.80253 3.48924i −0.306822 0.222920i
\(246\) −6.60440 + 4.79837i −0.421081 + 0.305933i
\(247\) −8.17339 + 25.1551i −0.520060 + 1.60058i
\(248\) −2.90537 + 8.94180i −0.184491 + 0.567805i
\(249\) 3.66215 2.66071i 0.232079 0.168615i
\(250\) −0.596764 0.433574i −0.0377426 0.0274216i
\(251\) 5.32471 + 16.3878i 0.336093 + 1.03439i 0.966181 + 0.257863i \(0.0830184\pi\)
−0.630089 + 0.776523i \(0.716982\pi\)
\(252\) −7.36503 −0.463953
\(253\) 0 0
\(254\) 8.78527 0.551237
\(255\) 2.08362 + 6.41272i 0.130481 + 0.401580i
\(256\) 9.65409 + 7.01411i 0.603381 + 0.438382i
\(257\) −14.9631 + 10.8713i −0.933373 + 0.678135i −0.946816 0.321774i \(-0.895721\pi\)
0.0134434 + 0.999910i \(0.495721\pi\)
\(258\) −4.90233 + 15.0878i −0.305206 + 0.939327i
\(259\) 1.89908 5.84477i 0.118003 0.363176i
\(260\) −4.06235 + 2.95147i −0.251936 + 0.183042i
\(261\) 23.6275 + 17.1664i 1.46250 + 1.06257i
\(262\) 2.55011 + 7.84842i 0.157546 + 0.484877i
\(263\) 3.69135 0.227618 0.113809 0.993503i \(-0.463695\pi\)
0.113809 + 0.993503i \(0.463695\pi\)
\(264\) 0 0
\(265\) 11.8480 0.727819
\(266\) 1.80291 + 5.54878i 0.110543 + 0.340217i
\(267\) 18.5634 + 13.4871i 1.13606 + 0.825396i
\(268\) −7.24018 + 5.26030i −0.442265 + 0.321324i
\(269\) −3.07320 + 9.45835i −0.187377 + 0.576686i −0.999981 0.00612956i \(-0.998049\pi\)
0.812605 + 0.582815i \(0.198049\pi\)
\(270\) −1.22079 + 3.75721i −0.0742949 + 0.228656i
\(271\) −1.01423 + 0.736878i −0.0616098 + 0.0447622i −0.618164 0.786049i \(-0.712123\pi\)
0.556554 + 0.830811i \(0.312123\pi\)
\(272\) −2.00108 1.45387i −0.121333 0.0881538i
\(273\) −3.09058 9.51183i −0.187051 0.575682i
\(274\) 3.15802 0.190783
\(275\) 0 0
\(276\) 10.0527 0.605102
\(277\) −2.50097 7.69720i −0.150269 0.462480i 0.847382 0.530984i \(-0.178177\pi\)
−0.997651 + 0.0685038i \(0.978177\pi\)
\(278\) −3.55265 2.58115i −0.213074 0.154807i
\(279\) 14.6353 10.6331i 0.876190 0.636589i
\(280\) −0.812466 + 2.50051i −0.0485541 + 0.149434i
\(281\) 7.83984 24.1285i 0.467686 1.43939i −0.387888 0.921707i \(-0.626795\pi\)
0.855573 0.517681i \(-0.173205\pi\)
\(282\) −9.80350 + 7.12266i −0.583790 + 0.424148i
\(283\) 16.5383 + 12.0157i 0.983097 + 0.714262i 0.958399 0.285433i \(-0.0921374\pi\)
0.0246985 + 0.999695i \(0.492137\pi\)
\(284\) −0.910201 2.80131i −0.0540105 0.166227i
\(285\) −21.5613 −1.27718
\(286\) 0 0
\(287\) 4.05977 0.239641
\(288\) −8.88072 27.3320i −0.523301 1.61056i
\(289\) 9.10028 + 6.61174i 0.535311 + 0.388926i
\(290\) 3.55332 2.58164i 0.208658 0.151599i
\(291\) −2.12234 + 6.53189i −0.124414 + 0.382906i
\(292\) 0.371552 1.14352i 0.0217435 0.0669195i
\(293\) −2.06224 + 1.49830i −0.120477 + 0.0875319i −0.646392 0.763005i \(-0.723723\pi\)
0.525915 + 0.850537i \(0.323723\pi\)
\(294\) 9.96007 + 7.23641i 0.580883 + 0.422036i
\(295\) −0.910456 2.80210i −0.0530088 0.163144i
\(296\) 15.1896 0.882878
\(297\) 0 0
\(298\) 2.79156 0.161711
\(299\) 2.61747 + 8.05576i 0.151372 + 0.465877i
\(300\) −3.31156 2.40599i −0.191193 0.138910i
\(301\) 6.38270 4.63730i 0.367893 0.267290i
\(302\) 5.55193 17.0871i 0.319478 0.983252i
\(303\) 6.53677 20.1181i 0.375528 1.15576i
\(304\) 6.39888 4.64906i 0.367001 0.266642i
\(305\) 2.00666 + 1.45792i 0.114901 + 0.0834805i
\(306\) −2.68129 8.25215i −0.153279 0.471744i
\(307\) 8.99273 0.513242 0.256621 0.966512i \(-0.417391\pi\)
0.256621 + 0.966512i \(0.417391\pi\)
\(308\) 0 0
\(309\) 26.6601 1.51664
\(310\) −0.840701 2.58741i −0.0477486 0.146955i
\(311\) 16.2800 + 11.8281i 0.923154 + 0.670710i 0.944307 0.329066i \(-0.106734\pi\)
−0.0211533 + 0.999776i \(0.506734\pi\)
\(312\) 19.9987 14.5299i 1.13220 0.822593i
\(313\) 2.19551 6.75709i 0.124098 0.381933i −0.869638 0.493690i \(-0.835648\pi\)
0.993736 + 0.111757i \(0.0356477\pi\)
\(314\) −1.64851 + 5.07359i −0.0930307 + 0.286319i
\(315\) 4.09265 2.97348i 0.230595 0.167537i
\(316\) −14.2261 10.3359i −0.800283 0.581439i
\(317\) 0.708647 + 2.18099i 0.0398016 + 0.122497i 0.968983 0.247127i \(-0.0794865\pi\)
−0.929181 + 0.369624i \(0.879487\pi\)
\(318\) −24.5719 −1.37792
\(319\) 0 0
\(320\) −2.25922 −0.126294
\(321\) 4.03722 + 12.4253i 0.225335 + 0.693511i
\(322\) 1.51157 + 1.09822i 0.0842367 + 0.0612015i
\(323\) 14.8790 10.8102i 0.827890 0.601497i
\(324\) −0.154394 + 0.475175i −0.00857743 + 0.0263986i
\(325\) 1.06580 3.28018i 0.0591197 0.181952i
\(326\) 11.1530 8.10314i 0.617708 0.448791i
\(327\) −12.1197 8.80546i −0.670219 0.486943i
\(328\) 3.10077 + 9.54319i 0.171211 + 0.526935i
\(329\) 6.02629 0.332240
\(330\) 0 0
\(331\) 15.3951 0.846192 0.423096 0.906085i \(-0.360943\pi\)
0.423096 + 0.906085i \(0.360943\pi\)
\(332\) −0.724337 2.22928i −0.0397532 0.122348i
\(333\) −23.6444 17.1787i −1.29570 0.941385i
\(334\) 4.68655 3.40498i 0.256437 0.186312i
\(335\) 1.89953 5.84616i 0.103783 0.319410i
\(336\) −0.924203 + 2.84440i −0.0504194 + 0.155175i
\(337\) 15.7733 11.4600i 0.859225 0.624263i −0.0684492 0.997655i \(-0.521805\pi\)
0.927674 + 0.373391i \(0.121805\pi\)
\(338\) −0.659111 0.478872i −0.0358509 0.0260472i
\(339\) −0.264904 0.815290i −0.0143876 0.0442805i
\(340\) 3.49153 0.189355
\(341\) 0 0
\(342\) 27.7460 1.50033
\(343\) −4.12296 12.6892i −0.222619 0.685151i
\(344\) 15.7757 + 11.4618i 0.850571 + 0.617976i
\(345\) −5.58616 + 4.05858i −0.300749 + 0.218507i
\(346\) −2.55403 + 7.86051i −0.137306 + 0.422584i
\(347\) −0.670272 + 2.06288i −0.0359821 + 0.110741i −0.967434 0.253122i \(-0.918543\pi\)
0.931452 + 0.363864i \(0.118543\pi\)
\(348\) 19.7181 14.3260i 1.05700 0.767955i
\(349\) 20.2675 + 14.7252i 1.08490 + 0.788222i 0.978530 0.206105i \(-0.0660787\pi\)
0.106365 + 0.994327i \(0.466079\pi\)
\(350\) −0.235096 0.723552i −0.0125664 0.0386755i
\(351\) −18.4717 −0.985944
\(352\) 0 0
\(353\) −23.2532 −1.23764 −0.618821 0.785532i \(-0.712389\pi\)
−0.618821 + 0.785532i \(0.712389\pi\)
\(354\) 1.88821 + 5.81133i 0.100357 + 0.308868i
\(355\) 1.63676 + 1.18918i 0.0868702 + 0.0631149i
\(356\) 9.61252 6.98390i 0.509463 0.370146i
\(357\) −2.14900 + 6.61395i −0.113737 + 0.350047i
\(358\) −0.333853 + 1.02749i −0.0176447 + 0.0543047i
\(359\) −8.18917 + 5.94978i −0.432208 + 0.314018i −0.782531 0.622611i \(-0.786072\pi\)
0.350323 + 0.936629i \(0.386072\pi\)
\(360\) 10.1156 + 7.34938i 0.533137 + 0.387346i
\(361\) 12.3022 + 37.8621i 0.647482 + 1.99274i
\(362\) −6.85194 −0.360130
\(363\) 0 0
\(364\) −5.17891 −0.271448
\(365\) 0.255207 + 0.785446i 0.0133581 + 0.0411121i
\(366\) −4.16165 3.02362i −0.217533 0.158047i
\(367\) −3.00084 + 2.18024i −0.156643 + 0.113808i −0.663346 0.748313i \(-0.730864\pi\)
0.506703 + 0.862121i \(0.330864\pi\)
\(368\) 0.782725 2.40898i 0.0408024 0.125577i
\(369\) 5.96614 18.3619i 0.310585 0.955882i
\(370\) −3.55586 + 2.58348i −0.184860 + 0.134309i
\(371\) 9.88604 + 7.18263i 0.513258 + 0.372904i
\(372\) −4.66522 14.3581i −0.241880 0.744431i
\(373\) −9.34017 −0.483616 −0.241808 0.970324i \(-0.577740\pi\)
−0.241808 + 0.970324i \(0.577740\pi\)
\(374\) 0 0
\(375\) 2.81156 0.145188
\(376\) 4.60276 + 14.1658i 0.237369 + 0.730547i
\(377\) 16.6143 + 12.0710i 0.855678 + 0.621687i
\(378\) −3.29636 + 2.39495i −0.169547 + 0.123183i
\(379\) −3.03198 + 9.33148i −0.155742 + 0.479326i −0.998235 0.0593816i \(-0.981087\pi\)
0.842493 + 0.538707i \(0.181087\pi\)
\(380\) −3.45015 + 10.6185i −0.176989 + 0.544716i
\(381\) −27.0904 + 19.6823i −1.38788 + 1.00836i
\(382\) −2.66930 1.93936i −0.136573 0.0992263i
\(383\) −5.57677 17.1635i −0.284960 0.877015i −0.986411 0.164298i \(-0.947464\pi\)
0.701451 0.712718i \(-0.252536\pi\)
\(384\) −28.2615 −1.44221
\(385\) 0 0
\(386\) 16.7194 0.850993
\(387\) −11.5941 35.6831i −0.589363 1.81387i
\(388\) 2.87720 + 2.09041i 0.146068 + 0.106124i
\(389\) −25.2345 + 18.3339i −1.27944 + 0.929567i −0.999536 0.0304614i \(-0.990302\pi\)
−0.279903 + 0.960028i \(0.590302\pi\)
\(390\) −2.21038 + 6.80284i −0.111927 + 0.344475i
\(391\) 1.82003 5.60148i 0.0920429 0.283279i
\(392\) 12.2426 8.89478i 0.618346 0.449254i
\(393\) −25.4470 18.4883i −1.28363 0.932612i
\(394\) 2.55478 + 7.86281i 0.128708 + 0.396123i
\(395\) 12.0782 0.607719
\(396\) 0 0
\(397\) −10.6212 −0.533062 −0.266531 0.963826i \(-0.585877\pi\)
−0.266531 + 0.963826i \(0.585877\pi\)
\(398\) 1.78247 + 5.48588i 0.0893472 + 0.274982i
\(399\) −17.9908 13.0711i −0.900669 0.654374i
\(400\) −0.834404 + 0.606230i −0.0417202 + 0.0303115i
\(401\) −8.51895 + 26.2186i −0.425416 + 1.30930i 0.477179 + 0.878806i \(0.341659\pi\)
−0.902595 + 0.430490i \(0.858341\pi\)
\(402\) −3.93948 + 12.1245i −0.196483 + 0.604714i
\(403\) 10.2912 7.47696i 0.512639 0.372454i
\(404\) −8.86173 6.43843i −0.440888 0.320324i
\(405\) −0.106048 0.326382i −0.00526956 0.0162181i
\(406\) 4.52997 0.224818
\(407\) 0 0
\(408\) −17.1886 −0.850961
\(409\) 4.44001 + 13.6649i 0.219544 + 0.675688i 0.998800 + 0.0489814i \(0.0155975\pi\)
−0.779255 + 0.626707i \(0.784402\pi\)
\(410\) −2.34901 1.70666i −0.116010 0.0842859i
\(411\) −9.73812 + 7.07516i −0.480346 + 0.348992i
\(412\) 4.26603 13.1295i 0.210172 0.646844i
\(413\) 0.939026 2.89003i 0.0462065 0.142209i
\(414\) 7.18851 5.22276i 0.353296 0.256684i
\(415\) 1.30253 + 0.946345i 0.0639388 + 0.0464542i
\(416\) −6.24470 19.2192i −0.306172 0.942300i
\(417\) 16.7378 0.819652
\(418\) 0 0
\(419\) −31.4707 −1.53744 −0.768722 0.639584i \(-0.779107\pi\)
−0.768722 + 0.639584i \(0.779107\pi\)
\(420\) −1.30460 4.01513i −0.0636578 0.195919i
\(421\) −21.4965 15.6181i −1.04768 0.761182i −0.0759078 0.997115i \(-0.524185\pi\)
−0.971769 + 0.235933i \(0.924185\pi\)
\(422\) −13.5865 + 9.87118i −0.661381 + 0.480521i
\(423\) 8.85609 27.2562i 0.430598 1.32524i
\(424\) −9.33324 + 28.7248i −0.453262 + 1.39500i
\(425\) −1.94020 + 1.40964i −0.0941134 + 0.0683774i
\(426\) −3.39451 2.46626i −0.164465 0.119491i
\(427\) 0.790528 + 2.43300i 0.0382563 + 0.117741i
\(428\) 6.76518 0.327008
\(429\) 0 0
\(430\) −5.64252 −0.272106
\(431\) −1.19549 3.67935i −0.0575849 0.177228i 0.918127 0.396287i \(-0.129701\pi\)
−0.975712 + 0.219059i \(0.929701\pi\)
\(432\) 4.46880 + 3.24677i 0.215005 + 0.156210i
\(433\) −32.4730 + 23.5930i −1.56055 + 1.13381i −0.624995 + 0.780629i \(0.714899\pi\)
−0.935556 + 0.353178i \(0.885101\pi\)
\(434\) 0.867082 2.66860i 0.0416213 0.128097i
\(435\) −5.17323 + 15.9216i −0.248037 + 0.763380i
\(436\) −6.27583 + 4.55966i −0.300558 + 0.218368i
\(437\) 15.2368 + 11.0702i 0.728875 + 0.529559i
\(438\) −0.529279 1.62895i −0.0252899 0.0778344i
\(439\) 1.02336 0.0488425 0.0244212 0.999702i \(-0.492226\pi\)
0.0244212 + 0.999702i \(0.492226\pi\)
\(440\) 0 0
\(441\) −29.1166 −1.38650
\(442\) −1.88541 5.80271i −0.0896800 0.276007i
\(443\) 13.0032 + 9.44738i 0.617801 + 0.448858i 0.852153 0.523293i \(-0.175297\pi\)
−0.234352 + 0.972152i \(0.575297\pi\)
\(444\) −19.7322 + 14.3363i −0.936448 + 0.680370i
\(445\) −2.52194 + 7.76173i −0.119551 + 0.367941i
\(446\) 3.65682 11.2545i 0.173156 0.532918i
\(447\) −8.60810 + 6.25415i −0.407149 + 0.295811i
\(448\) −1.88510 1.36960i −0.0890625 0.0647077i
\(449\) 11.0758 + 34.0879i 0.522700 + 1.60871i 0.768820 + 0.639466i \(0.220844\pi\)
−0.246120 + 0.969239i \(0.579156\pi\)
\(450\) −3.61803 −0.170556
\(451\) 0 0
\(452\) −0.443901 −0.0208793
\(453\) 21.1615 + 65.1285i 0.994256 + 3.06000i
\(454\) −14.4155 10.4735i −0.676555 0.491546i
\(455\) 2.87785 2.09088i 0.134916 0.0980220i
\(456\) 16.9849 52.2740i 0.795389 2.44795i
\(457\) −7.77254 + 23.9214i −0.363584 + 1.11900i 0.587279 + 0.809384i \(0.300199\pi\)
−0.950863 + 0.309612i \(0.899801\pi\)
\(458\) −8.95997 + 6.50980i −0.418672 + 0.304183i
\(459\) 10.3911 + 7.54955i 0.485013 + 0.352383i
\(460\) 1.10489 + 3.40050i 0.0515157 + 0.158549i
\(461\) 6.65631 0.310015 0.155008 0.987913i \(-0.450460\pi\)
0.155008 + 0.987913i \(0.450460\pi\)
\(462\) 0 0
\(463\) 38.7730 1.80194 0.900968 0.433886i \(-0.142858\pi\)
0.900968 + 0.433886i \(0.142858\pi\)
\(464\) −1.89772 5.84059i −0.0880996 0.271143i
\(465\) 8.38919 + 6.09510i 0.389039 + 0.282654i
\(466\) 6.81858 4.95399i 0.315865 0.229489i
\(467\) 6.96815 21.4458i 0.322448 0.992392i −0.650132 0.759821i \(-0.725286\pi\)
0.972580 0.232571i \(-0.0747136\pi\)
\(468\) −7.61079 + 23.4236i −0.351809 + 1.08276i
\(469\) 5.12909 3.72651i 0.236840 0.172074i
\(470\) −3.48685 2.53335i −0.160837 0.116855i
\(471\) −6.28339 19.3383i −0.289523 0.891062i
\(472\) 7.51071 0.345708
\(473\) 0 0
\(474\) −25.0492 −1.15055
\(475\) −2.36979 7.29347i −0.108734 0.334647i
\(476\) 2.91335 + 2.11667i 0.133533 + 0.0970174i
\(477\) 47.0145 34.1580i 2.15265 1.56399i
\(478\) −6.24718 + 19.2268i −0.285739 + 0.879415i
\(479\) −0.504274 + 1.55200i −0.0230409 + 0.0709125i −0.961916 0.273346i \(-0.911870\pi\)
0.938875 + 0.344258i \(0.111870\pi\)
\(480\) 13.3273 9.68286i 0.608306 0.441960i
\(481\) −16.6262 12.0796i −0.758088 0.550783i
\(482\) −2.49341 7.67392i −0.113572 0.349537i
\(483\) −7.12155 −0.324042
\(484\) 0 0
\(485\) −2.44278 −0.110921
\(486\) −3.44244 10.5947i −0.156152 0.480587i
\(487\) −0.849710 0.617350i −0.0385040 0.0279748i 0.568367 0.822775i \(-0.307575\pi\)
−0.606871 + 0.794800i \(0.707575\pi\)
\(488\) −5.11538 + 3.71654i −0.231562 + 0.168240i
\(489\) −16.2375 + 49.9739i −0.734286 + 2.25990i
\(490\) −1.35313 + 4.16451i −0.0611282 + 0.188133i
\(491\) 11.2567 8.17850i 0.508009 0.369090i −0.304058 0.952653i \(-0.598342\pi\)
0.812068 + 0.583563i \(0.198342\pi\)
\(492\) −13.0352 9.47059i −0.587670 0.426967i
\(493\) −4.41268 13.5808i −0.198737 0.611650i
\(494\) 19.5103 0.877811
\(495\) 0 0
\(496\) −3.80394 −0.170802
\(497\) 0.644805 + 1.98451i 0.0289235 + 0.0890173i
\(498\) −2.70135 1.96264i −0.121050 0.0879482i
\(499\) −14.0504 + 10.2082i −0.628984 + 0.456983i −0.856048 0.516896i \(-0.827087\pi\)
0.227064 + 0.973880i \(0.427087\pi\)
\(500\) 0.449894 1.38463i 0.0201199 0.0619226i
\(501\) −6.82309 + 20.9993i −0.304833 + 0.938179i
\(502\) 10.2829 7.47096i 0.458948 0.333445i
\(503\) −29.0062 21.0742i −1.29332 0.939653i −0.293454 0.955973i \(-0.594805\pi\)
−0.999867 + 0.0163204i \(0.994805\pi\)
\(504\) 3.98504 + 12.2647i 0.177508 + 0.546313i
\(505\) 7.52373 0.334802
\(506\) 0 0
\(507\) 3.10530 0.137911
\(508\) 5.35822 + 16.4909i 0.237732 + 0.731665i
\(509\) −1.73031 1.25715i −0.0766947 0.0557220i 0.548777 0.835969i \(-0.315094\pi\)
−0.625472 + 0.780247i \(0.715094\pi\)
\(510\) 4.02381 2.92347i 0.178178 0.129454i
\(511\) −0.263215 + 0.810093i −0.0116440 + 0.0358364i
\(512\) −3.49234 + 10.7483i −0.154341 + 0.475013i
\(513\) −33.2277 + 24.1413i −1.46704 + 1.06586i
\(514\) 11.0374 + 8.01913i 0.486838 + 0.353709i
\(515\) 2.93020 + 9.01821i 0.129120 + 0.397390i
\(516\) −31.3115 −1.37841
\(517\) 0 0
\(518\) −4.53321 −0.199178
\(519\) −9.73486 29.9608i −0.427313 1.31513i
\(520\) 7.11301 + 5.16791i 0.311926 + 0.226628i
\(521\) 10.3030 7.48558i 0.451383 0.327949i −0.338758 0.940873i \(-0.610007\pi\)
0.790142 + 0.612924i \(0.210007\pi\)
\(522\) 6.65713 20.4885i 0.291374 0.896758i
\(523\) 7.38821 22.7386i 0.323064 0.994289i −0.649243 0.760581i \(-0.724914\pi\)
0.972307 0.233708i \(-0.0750859\pi\)
\(524\) −13.1770 + 9.57365i −0.575640 + 0.418227i
\(525\) 2.34598 + 1.70445i 0.102387 + 0.0743884i
\(526\) −0.841418 2.58962i −0.0366876 0.112913i
\(527\) −8.84510 −0.385299
\(528\) 0 0
\(529\) −16.9686 −0.737766
\(530\) −2.70068 8.31184i −0.117310 0.361043i
\(531\) −11.6913 8.49422i −0.507359 0.368618i
\(532\) −9.31605 + 6.76851i −0.403902 + 0.293452i
\(533\) 4.19525 12.9116i 0.181716 0.559265i
\(534\) 5.23030 16.0972i 0.226337 0.696594i
\(535\) −3.75932 + 2.73131i −0.162530 + 0.118085i
\(536\) 12.6773 + 9.21058i 0.547575 + 0.397837i
\(537\) −1.27250 3.91635i −0.0549124 0.169003i
\(538\) 7.33590 0.316273
\(539\) 0 0
\(540\) −7.79726 −0.335540
\(541\) 0.407657 + 1.25464i 0.0175265 + 0.0539412i 0.959437 0.281922i \(-0.0909720\pi\)
−0.941911 + 0.335863i \(0.890972\pi\)
\(542\) 0.748134 + 0.543551i 0.0321351 + 0.0233475i
\(543\) 21.1288 15.3509i 0.906722 0.658772i
\(544\) −4.34218 + 13.3639i −0.186170 + 0.572971i
\(545\) 1.64652 5.06748i 0.0705293 0.217067i
\(546\) −5.96843 + 4.33632i −0.255425 + 0.185577i
\(547\) −7.54108 5.47891i −0.322433 0.234261i 0.414780 0.909922i \(-0.363859\pi\)
−0.737213 + 0.675660i \(0.763859\pi\)
\(548\) 1.92610 + 5.92794i 0.0822791 + 0.253229i
\(549\) 12.1659 0.519228
\(550\) 0 0
\(551\) 45.6625 1.94529
\(552\) −5.43929 16.7404i −0.231512 0.712520i
\(553\) 10.0781 + 7.32216i 0.428564 + 0.311370i
\(554\) −4.82980 + 3.50905i −0.205198 + 0.149085i
\(555\) 5.17693 15.9330i 0.219749 0.676316i
\(556\) 2.67831 8.24298i 0.113585 0.349580i
\(557\) −31.8083 + 23.1101i −1.34776 + 0.979205i −0.348640 + 0.937257i \(0.613356\pi\)
−0.999120 + 0.0419481i \(0.986644\pi\)
\(558\) −10.7956 7.84343i −0.457012 0.332039i
\(559\) −8.15272 25.0915i −0.344823 1.06126i
\(560\) −1.06374 −0.0449514
\(561\) 0 0
\(562\) −18.7141 −0.789407
\(563\) 6.17446 + 19.0030i 0.260222 + 0.800882i 0.992756 + 0.120151i \(0.0383378\pi\)
−0.732533 + 0.680731i \(0.761662\pi\)
\(564\) −19.3493 14.0581i −0.814751 0.591951i
\(565\) 0.246670 0.179216i 0.0103775 0.00753968i
\(566\) 4.65971 14.3411i 0.195862 0.602802i
\(567\) 0.109376 0.336624i 0.00459335 0.0141369i
\(568\) −4.17243 + 3.03145i −0.175071 + 0.127197i
\(569\) 27.9635 + 20.3166i 1.17229 + 0.851718i 0.991281 0.131764i \(-0.0420640\pi\)
0.181008 + 0.983482i \(0.442064\pi\)
\(570\) 4.91476 + 15.1261i 0.205857 + 0.633562i
\(571\) 3.15090 0.131861 0.0659306 0.997824i \(-0.478998\pi\)
0.0659306 + 0.997824i \(0.478998\pi\)
\(572\) 0 0
\(573\) 12.5760 0.525370
\(574\) −0.925399 2.84808i −0.0386254 0.118877i
\(575\) −1.98685 1.44353i −0.0828575 0.0601995i
\(576\) −8.96485 + 6.51335i −0.373536 + 0.271389i
\(577\) 8.44314 25.9853i 0.351493 1.08178i −0.606523 0.795066i \(-0.707436\pi\)
0.958015 0.286717i \(-0.0925639\pi\)
\(578\) 2.56404 7.89129i 0.106650 0.328234i
\(579\) −51.5561 + 37.4577i −2.14260 + 1.55669i
\(580\) 7.01321 + 5.09540i 0.291208 + 0.211575i
\(581\) 0.513135 + 1.57927i 0.0212884 + 0.0655190i
\(582\) 5.06614 0.209998
\(583\) 0 0
\(584\) −2.10530 −0.0871180
\(585\) −5.22760 16.0889i −0.216135 0.665194i
\(586\) 1.52119 + 1.10521i 0.0628398 + 0.0456558i
\(587\) 37.3506 27.1368i 1.54162 1.12005i 0.592316 0.805706i \(-0.298214\pi\)
0.949307 0.314349i \(-0.101786\pi\)
\(588\) −7.50879 + 23.1097i −0.309657 + 0.953027i
\(589\) 8.74027 26.8998i 0.360137 1.10839i
\(590\) −1.75824 + 1.27744i −0.0723857 + 0.0525913i
\(591\) −25.4936 18.5222i −1.04867 0.761902i
\(592\) 1.89908 + 5.84477i 0.0780518 + 0.240219i
\(593\) 39.4265 1.61905 0.809525 0.587085i \(-0.199725\pi\)
0.809525 + 0.587085i \(0.199725\pi\)
\(594\) 0 0
\(595\) −2.47347 −0.101402
\(596\) 1.70260 + 5.24006i 0.0697411 + 0.214641i
\(597\) −17.7869 12.9229i −0.727970 0.528901i
\(598\) 5.05478 3.67251i 0.206705 0.150180i
\(599\) 0.324081 0.997418i 0.0132416 0.0407534i −0.944217 0.329323i \(-0.893180\pi\)
0.957459 + 0.288569i \(0.0931796\pi\)
\(600\) −2.21480 + 6.81645i −0.0904187 + 0.278280i
\(601\) −22.0455 + 16.0170i −0.899256 + 0.653348i −0.938275 0.345891i \(-0.887577\pi\)
0.0390187 + 0.999238i \(0.487577\pi\)
\(602\) −4.70814 3.42066i −0.191889 0.139416i
\(603\) −9.31697 28.6747i −0.379416 1.16772i
\(604\) 35.4605 1.44287
\(605\) 0 0
\(606\) −15.6036 −0.633854
\(607\) 6.77418 + 20.8488i 0.274955 + 0.846225i 0.989231 + 0.146361i \(0.0467562\pi\)
−0.714276 + 0.699864i \(0.753244\pi\)
\(608\) −36.3516 26.4110i −1.47425 1.07111i
\(609\) −13.9687 + 10.1488i −0.566040 + 0.411252i
\(610\) 0.565384 1.74007i 0.0228917 0.0704535i
\(611\) 6.22738 19.1659i 0.251933 0.775370i
\(612\) 13.8548 10.0661i 0.560049 0.406899i
\(613\) −8.56915 6.22586i −0.346105 0.251460i 0.401128 0.916022i \(-0.368618\pi\)
−0.747233 + 0.664562i \(0.768618\pi\)
\(614\) −2.04983 6.30874i −0.0827245 0.254600i
\(615\) 11.0670 0.446265
\(616\) 0 0
\(617\) 4.60402 0.185351 0.0926755 0.995696i \(-0.470458\pi\)
0.0926755 + 0.995696i \(0.470458\pi\)
\(618\) −6.07699 18.7031i −0.244453 0.752348i
\(619\) −29.9366 21.7502i −1.20326 0.874216i −0.208654 0.977989i \(-0.566908\pi\)
−0.994601 + 0.103773i \(0.966908\pi\)
\(620\) 4.34410 3.15617i 0.174463 0.126755i
\(621\) −4.06448 + 12.5092i −0.163102 + 0.501976i
\(622\) 4.58695 14.1172i 0.183920 0.566047i
\(623\) −6.80971 + 4.94754i −0.272825 + 0.198219i
\(624\) 8.09125 + 5.87864i 0.323909 + 0.235334i
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −5.24081 −0.209465
\(627\) 0 0
\(628\) −10.5291 −0.420157
\(629\) 4.41584 + 13.5906i 0.176071 + 0.541891i
\(630\) −3.01890 2.19336i −0.120276 0.0873856i
\(631\) 20.0965 14.6009i 0.800028 0.581254i −0.110895 0.993832i \(-0.535372\pi\)
0.910922 + 0.412578i \(0.135372\pi\)
\(632\) −9.51455 + 29.2828i −0.378468 + 1.16481i
\(633\) 19.7804 60.8779i 0.786201 2.41968i
\(634\) 1.36852 0.994285i 0.0543507 0.0394881i
\(635\) −9.63536 7.00050i −0.382368 0.277806i
\(636\) −14.9866 46.1241i −0.594258 1.82894i
\(637\) −20.4741 −0.811213
\(638\) 0 0
\(639\) 9.92328 0.392559
\(640\) −3.10621 9.55992i −0.122784 0.377889i
\(641\) 35.9440 + 26.1149i 1.41970 + 1.03147i 0.991820 + 0.127641i \(0.0407405\pi\)
0.427883 + 0.903834i \(0.359260\pi\)
\(642\) 7.79654 5.66452i 0.307705 0.223561i
\(643\) 7.99148 24.5952i 0.315153 0.969942i −0.660538 0.750793i \(-0.729672\pi\)
0.975691 0.219149i \(-0.0703282\pi\)
\(644\) −1.13956 + 3.50720i −0.0449049 + 0.138203i
\(645\) 17.3994 12.6414i 0.685099 0.497754i
\(646\) −10.9753 7.97406i −0.431819 0.313735i
\(647\) 6.02166 + 18.5328i 0.236736 + 0.728598i 0.996886 + 0.0788509i \(0.0251251\pi\)
−0.760151 + 0.649747i \(0.774875\pi\)
\(648\) 0.874831 0.0343666
\(649\) 0 0
\(650\) −2.54411 −0.0997883
\(651\) 3.30494 + 10.1716i 0.129531 + 0.398654i
\(652\) 22.0128 + 15.9932i 0.862087 + 0.626343i
\(653\) 13.5347 9.83353i 0.529653 0.384816i −0.290575 0.956852i \(-0.593847\pi\)
0.820228 + 0.572037i \(0.193847\pi\)
\(654\) −3.41476 + 10.5096i −0.133528 + 0.410956i
\(655\) 3.45711 10.6399i 0.135081 0.415735i
\(656\) −3.28443 + 2.38628i −0.128235 + 0.0931684i
\(657\) 3.27714 + 2.38099i 0.127854 + 0.0928911i
\(658\) −1.37365 4.22767i −0.0535506 0.164812i
\(659\) −1.66127 −0.0647137 −0.0323569 0.999476i \(-0.510301\pi\)
−0.0323569 + 0.999476i \(0.510301\pi\)
\(660\) 0 0
\(661\) −44.0130 −1.71191 −0.855953 0.517053i \(-0.827029\pi\)
−0.855953 + 0.517053i \(0.827029\pi\)
\(662\) −3.50921 10.8002i −0.136389 0.419763i
\(663\) 18.8142 + 13.6693i 0.730682 + 0.530871i
\(664\) −3.32042 + 2.41242i −0.128857 + 0.0936202i
\(665\) 2.44416 7.52234i 0.0947803 0.291704i
\(666\) −6.66189 + 20.5032i −0.258143 + 0.794483i
\(667\) 11.8304 8.59526i 0.458073 0.332810i
\(668\) 9.24988 + 6.72043i 0.357889 + 0.260021i
\(669\) 13.9382 + 42.8974i 0.538882 + 1.65851i
\(670\) −4.53429 −0.175175
\(671\) 0 0
\(672\) 16.9904 0.655419
\(673\) −11.9265 36.7059i −0.459732 1.41491i −0.865489 0.500928i \(-0.832992\pi\)
0.405757 0.913981i \(-0.367008\pi\)
\(674\) −11.6350 8.45332i −0.448163 0.325610i
\(675\) 4.33283 3.14799i 0.166771 0.121166i
\(676\) 0.496897 1.52929i 0.0191114 0.0588189i
\(677\) −11.9277 + 36.7097i −0.458419 + 1.41087i 0.408656 + 0.912689i \(0.365998\pi\)
−0.867074 + 0.498179i \(0.834002\pi\)
\(678\) −0.511574 + 0.371680i −0.0196469 + 0.0142743i
\(679\) −2.03827 1.48089i −0.0782215 0.0568313i
\(680\) −1.88919 5.81432i −0.0724470 0.222969i
\(681\) 67.9167 2.60257
\(682\) 0 0
\(683\) −0.748158 −0.0286275 −0.0143137 0.999898i \(-0.504556\pi\)
−0.0143137 + 0.999898i \(0.504556\pi\)
\(684\) 16.9226 + 52.0823i 0.647050 + 1.99141i
\(685\) −3.46360 2.51645i −0.132337 0.0961487i
\(686\) −7.96213 + 5.78483i −0.303996 + 0.220866i
\(687\) 13.0447 40.1475i 0.497687 1.53172i
\(688\) −2.43797 + 7.50331i −0.0929469 + 0.286061i
\(689\) 33.0594 24.0191i 1.25946 0.915055i
\(690\) 4.12058 + 2.99378i 0.156868 + 0.113971i
\(691\) 1.61364 + 4.96627i 0.0613857 + 0.188926i 0.977047 0.213026i \(-0.0683319\pi\)
−0.915661 + 0.401952i \(0.868332\pi\)
\(692\) −16.3128 −0.620118
\(693\) 0 0
\(694\) 1.59998 0.0607342
\(695\) 1.83964 + 5.66183i 0.0697815 + 0.214765i
\(696\) −34.5256 25.0843i −1.30869 0.950818i
\(697\) −7.63711 + 5.54869i −0.289276 + 0.210171i
\(698\) 5.71044 17.5749i 0.216143 0.665221i
\(699\) −9.92709 + 30.5524i −0.375477 + 1.15560i
\(700\) 1.21480 0.882602i 0.0459150 0.0333592i
\(701\) 11.4540 + 8.32185i 0.432613 + 0.314312i 0.782693 0.622408i \(-0.213845\pi\)
−0.350080 + 0.936720i \(0.613845\pi\)
\(702\) 4.21049 + 12.9586i 0.158915 + 0.489090i
\(703\) −45.6952 −1.72343
\(704\) 0 0
\(705\) 16.4278 0.618706
\(706\) 5.30041 + 16.3130i 0.199483 + 0.613947i
\(707\) 6.27783 + 4.56111i 0.236102 + 0.171538i
\(708\) −9.75685 + 7.08876i −0.366685 + 0.266412i
\(709\) −5.31953 + 16.3718i −0.199779 + 0.614857i 0.800108 + 0.599855i \(0.204775\pi\)
−0.999887 + 0.0150013i \(0.995225\pi\)
\(710\) 0.461163 1.41931i 0.0173071 0.0532659i
\(711\) 47.9278 34.8216i 1.79743 1.30591i
\(712\) −16.8312 12.2285i −0.630774 0.458284i
\(713\) −2.79902 8.61448i −0.104824 0.322615i
\(714\) 5.12978 0.191977
\(715\) 0 0
\(716\) −2.13233 −0.0796891
\(717\) −23.8115 73.2843i −0.889257 2.73685i
\(718\) 6.04066 + 4.38880i 0.225436 + 0.163789i
\(719\) 21.4842 15.6092i 0.801226 0.582125i −0.110048 0.993926i \(-0.535100\pi\)
0.911273 + 0.411802i \(0.135100\pi\)
\(720\) −1.56325 + 4.81120i −0.0582590 + 0.179303i
\(721\) −3.02214 + 9.30121i −0.112551 + 0.346395i
\(722\) 23.7575 17.2608i 0.884163 0.642382i
\(723\) 24.8812 + 18.0772i 0.925342 + 0.672300i
\(724\) −4.17906 12.8618i −0.155314 0.478006i
\(725\) −5.95431 −0.221138
\(726\) 0 0
\(727\) 44.1917 1.63898 0.819490 0.573094i \(-0.194257\pi\)
0.819490 + 0.573094i \(0.194257\pi\)
\(728\) 2.80219 + 8.62424i 0.103856 + 0.319636i
\(729\) 35.1843 + 25.5629i 1.30312 + 0.946773i
\(730\) 0.492847 0.358074i 0.0182411 0.0132529i
\(731\) −5.66890 + 17.4471i −0.209672 + 0.645303i
\(732\) 3.13743 9.65601i 0.115963 0.356896i
\(733\) −20.1934 + 14.6714i −0.745861 + 0.541900i −0.894541 0.446986i \(-0.852498\pi\)
0.148680 + 0.988885i \(0.452498\pi\)
\(734\) 2.21354 + 1.60823i 0.0817033 + 0.0593610i
\(735\) −5.15754 15.8733i −0.190239 0.585494i
\(736\) −14.3895 −0.530404
\(737\) 0 0
\(738\) −14.2415 −0.524237
\(739\) 6.56174 + 20.1950i 0.241377 + 0.742883i 0.996211 + 0.0869672i \(0.0277175\pi\)
−0.754834 + 0.655916i \(0.772282\pi\)
\(740\) −7.01823 5.09905i −0.257995 0.187445i
\(741\) −60.1624 + 43.7105i −2.21012 + 1.60575i
\(742\) 2.78543 8.57266i 0.102256 0.314712i
\(743\) −9.47222 + 29.1525i −0.347502 + 1.06950i 0.612729 + 0.790293i \(0.290072\pi\)
−0.960231 + 0.279208i \(0.909928\pi\)
\(744\) −21.3857 + 15.5376i −0.784039 + 0.569637i
\(745\) −3.06168 2.22444i −0.112171 0.0814972i
\(746\) 2.12903 + 6.55248i 0.0779493 + 0.239903i
\(747\) 7.89694 0.288934
\(748\) 0 0
\(749\) −4.79259 −0.175118
\(750\) −0.640877 1.97242i −0.0234015 0.0720224i
\(751\) 24.5191 + 17.8142i 0.894716 + 0.650049i 0.937103 0.349052i \(-0.113496\pi\)
−0.0423872 + 0.999101i \(0.513496\pi\)
\(752\) −4.87537 + 3.54217i −0.177787 + 0.129169i
\(753\) −14.9707 + 46.0752i −0.545564 + 1.67907i
\(754\) 4.68113 14.4070i 0.170477 0.524673i
\(755\) −19.7049 + 14.3165i −0.717136 + 0.521030i
\(756\) −6.50606 4.72693i −0.236623 0.171917i
\(757\) −10.7752 33.1627i −0.391632 1.20532i −0.931553 0.363605i \(-0.881546\pi\)
0.539921 0.841716i \(-0.318454\pi\)
\(758\) 7.23750 0.262878
\(759\) 0 0
\(760\) 19.5493 0.709129
\(761\) −0.831169 2.55807i −0.0301298 0.0927301i 0.934861 0.355015i \(-0.115524\pi\)
−0.964991 + 0.262285i \(0.915524\pi\)
\(762\) 19.9830 + 14.5185i 0.723907 + 0.525949i
\(763\) 4.44592 3.23015i 0.160953 0.116939i
\(764\) 2.01236 6.19340i 0.0728045 0.224069i
\(765\) −3.63495 + 11.1872i −0.131422 + 0.404475i
\(766\) −10.7697 + 7.82463i −0.389124 + 0.282715i
\(767\) −8.22103 5.97293i −0.296844 0.215670i
\(768\) 10.3677 + 31.9086i 0.374113 + 1.15140i
\(769\) −32.5735 −1.17463 −0.587315 0.809359i \(-0.699815\pi\)
−0.587315 + 0.809359i \(0.699815\pi\)
\(770\) 0 0
\(771\) −52.0010 −1.87277
\(772\) 10.1973 + 31.3841i 0.367009 + 1.12954i
\(773\) −33.7067 24.4893i −1.21234 0.880820i −0.216903 0.976193i \(-0.569595\pi\)
−0.995442 + 0.0953734i \(0.969595\pi\)
\(774\) −22.3902 + 16.2675i −0.804800 + 0.584721i
\(775\) −1.13972 + 3.50769i −0.0409398 + 0.126000i
\(776\) 1.92429 5.92237i 0.0690781 0.212601i
\(777\) 13.9787 10.1561i 0.501483 0.364348i
\(778\) 18.6140 + 13.5238i 0.667343 + 0.484853i
\(779\) −9.32811 28.7090i −0.334214 1.02861i
\(780\) −14.1178 −0.505498
\(781\) 0 0
\(782\) −4.34451 −0.155359
\(783\) 9.85436 + 30.3286i 0.352166 + 1.08386i
\(784\) 4.95323 + 3.59874i 0.176901 + 0.128526i
\(785\) 5.85089 4.25092i 0.208827 0.151722i
\(786\) −7.16978 + 22.0663i −0.255738 + 0.787079i
\(787\) −11.1001 + 34.1627i −0.395677 + 1.21777i 0.532757 + 0.846268i \(0.321156\pi\)
−0.928433 + 0.371499i \(0.878844\pi\)
\(788\) −13.2012 + 9.59120i −0.470272 + 0.341672i
\(789\) 8.39634 + 6.10030i 0.298918 + 0.217176i
\(790\) −2.75314 8.47330i −0.0979524 0.301466i
\(791\) 0.314468 0.0111812
\(792\) 0 0
\(793\) 8.55476 0.303789
\(794\) 2.42103 + 7.45116i 0.0859190 + 0.264432i
\(795\) 26.9495 + 19.5800i 0.955802 + 0.694430i
\(796\) −9.21044 + 6.69178i −0.326456 + 0.237184i
\(797\) −9.80193 + 30.1672i −0.347202 + 1.06858i 0.613192 + 0.789934i \(0.289885\pi\)
−0.960394 + 0.278645i \(0.910115\pi\)
\(798\) −5.06899 + 15.6007i −0.179440 + 0.552260i
\(799\) −11.3365 + 8.23642i −0.401055 + 0.291383i
\(800\) 4.74018 + 3.44395i 0.167591 + 0.121762i
\(801\) 12.3698 + 38.0703i 0.437065 + 1.34515i
\(802\) 20.3352 0.718061
\(803\) 0 0
\(804\) −25.1617 −0.887384
\(805\) −0.782725 2.40898i −0.0275874 0.0849054i
\(806\) −7.59117 5.51531i −0.267388 0.194268i
\(807\) −22.6211 + 16.4352i −0.796301 + 0.578547i
\(808\) −5.92680 + 18.2408i −0.208504 + 0.641709i
\(809\) −2.63150 + 8.09893i −0.0925187 + 0.284743i −0.986599 0.163163i \(-0.947830\pi\)
0.894080 + 0.447906i \(0.147830\pi\)
\(810\) −0.204796 + 0.148793i −0.00719581 + 0.00522806i
\(811\) −7.30566 5.30788i −0.256537 0.186385i 0.452082 0.891976i \(-0.350681\pi\)
−0.708619 + 0.705592i \(0.750681\pi\)
\(812\) 2.76287 + 8.50324i 0.0969577 + 0.298405i
\(813\) −3.52472 −0.123617
\(814\) 0 0
\(815\) −18.6892 −0.654653
\(816\) −2.14900 6.61395i −0.0752301 0.231534i
\(817\) −47.4585 34.4806i −1.66036 1.20632i
\(818\) 8.57440 6.22967i 0.299797 0.217815i
\(819\) 5.39164 16.5938i 0.188399 0.579833i
\(820\) 1.77090 5.45026i 0.0618424 0.190331i
\(821\) 43.9479 31.9300i 1.53379 1.11436i 0.579707 0.814825i \(-0.303167\pi\)
0.954084 0.299539i \(-0.0968328\pi\)
\(822\) 7.18323 + 5.21892i 0.250544 + 0.182031i
\(823\) 5.51887 + 16.9853i 0.192376 + 0.592072i 0.999997 + 0.00237039i \(0.000754519\pi\)
−0.807621 + 0.589701i \(0.799245\pi\)
\(824\) −24.1723 −0.842083
\(825\) 0 0
\(826\) −2.24151 −0.0779920
\(827\) −16.0533 49.4068i −0.558226 1.71804i −0.687267 0.726404i \(-0.741190\pi\)
0.129041 0.991639i \(-0.458810\pi\)
\(828\) 14.1880 + 10.3082i 0.493068 + 0.358235i
\(829\) 15.9749 11.6064i 0.554830 0.403107i −0.274733 0.961520i \(-0.588590\pi\)
0.829563 + 0.558413i \(0.188590\pi\)
\(830\) 0.366993 1.12949i 0.0127385 0.0392051i
\(831\) 7.03163 21.6411i 0.243925 0.750723i
\(832\) −6.30387 + 4.58003i −0.218547 + 0.158784i
\(833\) 11.5175 + 8.36796i 0.399058 + 0.289933i
\(834\) −3.81526 11.7422i −0.132112 0.406598i
\(835\) −7.85328 −0.271774
\(836\) 0 0
\(837\) 19.7528 0.682757
\(838\) 7.17353 + 22.0779i 0.247806 + 0.762667i
\(839\) 3.33032 + 2.41962i 0.114975 + 0.0835344i 0.643787 0.765205i \(-0.277362\pi\)
−0.528812 + 0.848739i \(0.677362\pi\)
\(840\) −5.98037 + 4.34499i −0.206342 + 0.149916i
\(841\) 1.99435 6.13799i 0.0687708 0.211655i
\(842\) −6.05673 + 18.6407i −0.208729 + 0.642400i
\(843\) 57.7072 41.9267i 1.98754 1.44403i
\(844\) −26.8158 19.4828i −0.923038 0.670627i
\(845\) 0.341302 + 1.05042i 0.0117411 + 0.0361355i
\(846\) −21.1400 −0.726807
\(847\) 0 0
\(848\) −12.2198 −0.419630
\(849\) 17.7608 + 54.6620i 0.609548 + 1.87600i
\(850\) 1.43117 + 1.03980i 0.0490886 + 0.0356650i
\(851\) −11.8388 + 8.60141i −0.405830 + 0.294853i
\(852\) 2.55909 7.87606i 0.0876729 0.269829i
\(853\) 1.70047 5.23352i 0.0582231 0.179192i −0.917715 0.397239i \(-0.869968\pi\)
0.975938 + 0.218046i \(0.0699684\pi\)
\(854\) 1.52664 1.10917i 0.0522406 0.0379550i
\(855\) −30.4308 22.1093i −1.04071 0.756121i
\(856\) −3.66048 11.2658i −0.125113 0.385058i
\(857\) −26.9281 −0.919847 −0.459924 0.887959i \(-0.652123\pi\)
−0.459924 + 0.887959i \(0.652123\pi\)
\(858\) 0 0
\(859\) 19.1519 0.653456 0.326728 0.945118i \(-0.394054\pi\)
0.326728 + 0.945118i \(0.394054\pi\)
\(860\) −3.44142 10.5916i −0.117352 0.361171i
\(861\) 9.23437 + 6.70916i 0.314706 + 0.228648i
\(862\) −2.30870 + 1.67737i −0.0786346 + 0.0571314i
\(863\) 1.53319 4.71867i 0.0521904 0.160625i −0.921564 0.388226i \(-0.873088\pi\)
0.973755 + 0.227600i \(0.0730880\pi\)
\(864\) 9.69693 29.8441i 0.329896 1.01532i
\(865\) 9.06478 6.58595i 0.308212 0.223929i
\(866\) 23.9534 + 17.4031i 0.813969 + 0.591383i
\(867\) 9.77298 + 30.0781i 0.331908 + 1.02151i
\(868\) 5.53810 0.187975
\(869\) 0 0
\(870\) 12.3488 0.418663
\(871\) −6.55147 20.1633i −0.221988 0.683209i
\(872\) 10.9887 + 7.98378i 0.372125 + 0.270365i
\(873\) −9.69327 + 7.04257i −0.328068 + 0.238355i
\(874\) 4.29302 13.2126i 0.145214 0.446922i
\(875\) −0.318714 + 0.980901i −0.0107745 + 0.0331605i
\(876\) 2.73491 1.98703i 0.0924040 0.0671354i
\(877\) 22.0096 + 15.9909i 0.743211 + 0.539974i 0.893715 0.448635i \(-0.148090\pi\)
−0.150504 + 0.988609i \(0.548090\pi\)
\(878\) −0.233269 0.717928i −0.00787245 0.0242289i
\(879\) −7.16686 −0.241732
\(880\) 0 0
\(881\) 10.3570 0.348935 0.174467 0.984663i \(-0.444180\pi\)
0.174467 + 0.984663i \(0.444180\pi\)
\(882\) 6.63694 + 20.4264i 0.223477 + 0.687792i
\(883\) −5.98260 4.34661i −0.201330 0.146275i 0.482552 0.875867i \(-0.339710\pi\)
−0.683882 + 0.729592i \(0.739710\pi\)
\(884\) 9.74238 7.07826i 0.327672 0.238067i
\(885\) 2.55980 7.87826i 0.0860468 0.264825i
\(886\) 3.66370 11.2757i 0.123084 0.378815i
\(887\) 14.6101 10.6148i 0.490558 0.356411i −0.314841 0.949144i \(-0.601951\pi\)
0.805399 + 0.592733i \(0.201951\pi\)
\(888\) 34.5503 + 25.1023i 1.15943 + 0.842377i
\(889\) −3.79587 11.6825i −0.127309 0.391818i
\(890\) 6.02000 0.201791
\(891\) 0 0
\(892\) 23.3563 0.782027
\(893\) −13.8466 42.6153i −0.463357 1.42607i
\(894\) 6.34968 + 4.61331i 0.212365 + 0.154292i
\(895\) 1.18491 0.860888i 0.0396072 0.0287763i
\(896\) 3.20368 9.85991i 0.107027 0.329396i
\(897\) −7.35919 + 22.6493i −0.245716 + 0.756237i
\(898\) 21.3893 15.5402i 0.713769 0.518583i
\(899\) −17.7666 12.9082i −0.592549 0.430512i
\(900\) −2.20667 6.79144i −0.0735558 0.226381i
\(901\) −28.4141 −0.946612
\(902\) 0 0
\(903\) 22.1817 0.738160
\(904\) 0.240184 + 0.739212i 0.00798841 + 0.0245858i
\(905\) 7.51496 + 5.45994i 0.249806 + 0.181494i
\(906\) 40.8665 29.6912i 1.35770 0.986425i
\(907\) 8.12624 25.0100i 0.269827 0.830443i −0.720715 0.693232i \(-0.756186\pi\)
0.990542 0.137211i \(-0.0438138\pi\)
\(908\) 10.8677 33.4474i 0.360658 1.10999i
\(909\) 29.8551 21.6910i 0.990233 0.719446i
\(910\) −2.12282 1.54232i −0.0703707 0.0511273i
\(911\) 8.85298 + 27.2467i 0.293312 + 0.902723i 0.983783 + 0.179362i \(0.0574035\pi\)
−0.690471 + 0.723360i \(0.742597\pi\)
\(912\) 22.2379 0.736371
\(913\) 0 0
\(914\) 18.5535 0.613694
\(915\) 2.15499 + 6.63239i 0.0712419 + 0.219260i
\(916\) −17.6844 12.8485i −0.584308 0.424525i
\(917\) 9.33485 6.78217i 0.308264 0.223967i
\(918\) 2.92772 9.01059i 0.0966291 0.297394i
\(919\) 12.0074 36.9550i 0.396088 1.21903i −0.532023 0.846730i \(-0.678568\pi\)
0.928111 0.372303i \(-0.121432\pi\)
\(920\) 5.06489 3.67986i 0.166985 0.121321i
\(921\) 20.4549 + 14.8613i 0.674011 + 0.489697i
\(922\) −1.51726 4.66965i −0.0499684 0.153787i
\(923\) 6.97781 0.229677
\(924\) 0 0
\(925\) 5.95858 0.195917
\(926\) −8.83806 27.2007i −0.290437 0.893872i
\(927\) 37.6270 + 27.3376i 1.23583 + 0.897886i
\(928\) −28.2245 + 20.5063i −0.926516 + 0.673153i
\(929\) 2.29331 7.05810i 0.0752412 0.231569i −0.906362 0.422503i \(-0.861152\pi\)
0.981603 + 0.190934i \(0.0611517\pi\)
\(930\) 2.36368 7.27467i 0.0775082 0.238546i
\(931\) −36.8297 + 26.7583i −1.20704 + 0.876969i
\(932\) 13.4579 + 9.77773i 0.440828 + 0.320280i
\(933\) 17.4834 + 53.8084i 0.572382 + 1.76161i
\(934\) −16.6334 −0.544260
\(935\) 0 0
\(936\) 43.1245 1.40957
\(937\) −4.61547 14.2049i −0.150781 0.464055i 0.846928 0.531707i \(-0.178449\pi\)
−0.997709 + 0.0676518i \(0.978449\pi\)
\(938\) −3.78343 2.74882i −0.123533 0.0897522i
\(939\) 16.1606 11.7414i 0.527383 0.383166i
\(940\) 2.62870 8.09031i 0.0857388 0.263877i
\(941\) −16.1742 + 49.7791i −0.527265 + 1.62275i 0.232529 + 0.972589i \(0.425300\pi\)
−0.759794 + 0.650164i \(0.774700\pi\)
\(942\) −12.1343 + 8.81607i −0.395356 + 0.287243i
\(943\) −7.82077 5.68212i −0.254679 0.185035i
\(944\) 0.939026 + 2.89003i 0.0305627 + 0.0940623i
\(945\) 5.52373 0.179687
\(946\) 0 0
\(947\) −3.69553 −0.120088 −0.0600442 0.998196i \(-0.519124\pi\)
−0.0600442 + 0.998196i \(0.519124\pi\)
\(948\) −15.2777 47.0201i −0.496198 1.52714i
\(949\) 2.30441 + 1.67425i 0.0748043 + 0.0543485i
\(950\) −4.57646 + 3.32500i −0.148480 + 0.107877i
\(951\) −1.99240 + 6.13199i −0.0646081 + 0.198843i
\(952\) 1.94847 5.99677i 0.0631502 0.194356i
\(953\) −34.9112 + 25.3645i −1.13088 + 0.821635i −0.985823 0.167787i \(-0.946338\pi\)
−0.145061 + 0.989423i \(0.546338\pi\)
\(954\) −34.6798 25.1963i −1.12280 0.815762i
\(955\) 1.38222 + 4.25404i 0.0447276 + 0.137657i
\(956\) −39.9011 −1.29049
\(957\) 0 0
\(958\) 1.20373 0.0388907
\(959\) −1.36449 4.19947i −0.0440617 0.135608i
\(960\) −5.13881 3.73357i −0.165854 0.120500i
\(961\) 14.0746 10.2258i 0.454020 0.329865i
\(962\) −4.68448 + 14.4173i −0.151034 + 0.464834i
\(963\) −7.04308 + 21.6764i −0.226960 + 0.698511i
\(964\) 12.8840 9.36079i 0.414966 0.301491i
\(965\) −18.3372 13.3227i −0.590295 0.428874i
\(966\) 1.62331 + 4.99604i 0.0522291 + 0.160745i
\(967\) −29.2144 −0.939471 −0.469736 0.882807i \(-0.655651\pi\)
−0.469736 + 0.882807i \(0.655651\pi\)
\(968\) 0 0
\(969\) 51.7087 1.66112
\(970\) 0.556816 + 1.71370i 0.0178783 + 0.0550237i
\(971\) 21.3618 + 15.5203i 0.685533 + 0.498069i 0.875189 0.483782i \(-0.160737\pi\)
−0.189656 + 0.981851i \(0.560737\pi\)
\(972\) 17.7879 12.9237i 0.570547 0.414526i
\(973\) −1.89737 + 5.83949i −0.0608268 + 0.187206i
\(974\) −0.239409 + 0.736824i −0.00767115 + 0.0236094i
\(975\) 7.84507 5.69978i 0.251243 0.182539i
\(976\) −2.06963 1.50367i −0.0662472 0.0481314i
\(977\) −4.89588 15.0680i −0.156633 0.482067i 0.841690 0.539961i \(-0.181561\pi\)
−0.998323 + 0.0578948i \(0.981561\pi\)
\(978\) 38.7598 1.23940
\(979\) 0 0
\(980\) −8.64252 −0.276075
\(981\) −8.07600 24.8554i −0.257847 0.793571i
\(982\) −8.30342 6.03279i −0.264973 0.192514i
\(983\) −28.3997 + 20.6336i −0.905809 + 0.658109i −0.939951 0.341308i \(-0.889130\pi\)
0.0341426 + 0.999417i \(0.489130\pi\)
\(984\) −8.71801 + 26.8313i −0.277920 + 0.855350i
\(985\) 3.46345 10.6594i 0.110355 0.339637i
\(986\) −8.52162 + 6.19132i −0.271384 + 0.197172i
\(987\) 13.7074 + 9.95901i 0.436312 + 0.316999i
\(988\) 11.8995 + 36.6230i 0.378574 + 1.16513i
\(989\) −18.7861 −0.597363
\(990\) 0 0
\(991\) 18.9700 0.602600 0.301300 0.953529i \(-0.402579\pi\)
0.301300 + 0.953529i \(0.402579\pi\)
\(992\) 6.67782 + 20.5522i 0.212021 + 0.652533i
\(993\) 35.0177 + 25.4419i 1.11125 + 0.807373i
\(994\) 1.24523 0.904710i 0.0394962 0.0286957i
\(995\) 2.41645 7.43707i 0.0766066 0.235771i
\(996\) 2.03652 6.26776i 0.0645295 0.198601i
\(997\) −24.3795 + 17.7127i −0.772106 + 0.560968i −0.902599 0.430481i \(-0.858344\pi\)
0.130494 + 0.991449i \(0.458344\pi\)
\(998\) 10.3642 + 7.53000i 0.328072 + 0.238358i
\(999\) −9.86141 30.3503i −0.312001 0.960241i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.m.511.1 8
11.2 odd 10 605.2.g.e.251.2 8
11.3 even 5 605.2.a.j.1.2 4
11.4 even 5 55.2.g.b.36.2 yes 8
11.5 even 5 55.2.g.b.26.2 8
11.6 odd 10 605.2.g.k.81.1 8
11.7 odd 10 605.2.g.k.366.1 8
11.8 odd 10 605.2.a.k.1.3 4
11.9 even 5 inner 605.2.g.m.251.1 8
11.10 odd 2 605.2.g.e.511.2 8
33.5 odd 10 495.2.n.e.136.1 8
33.8 even 10 5445.2.a.bi.1.2 4
33.14 odd 10 5445.2.a.bp.1.3 4
33.26 odd 10 495.2.n.e.91.1 8
44.3 odd 10 9680.2.a.cn.1.4 4
44.15 odd 10 880.2.bo.h.641.2 8
44.19 even 10 9680.2.a.cm.1.4 4
44.27 odd 10 880.2.bo.h.81.2 8
55.4 even 10 275.2.h.a.201.1 8
55.14 even 10 3025.2.a.bd.1.3 4
55.19 odd 10 3025.2.a.w.1.2 4
55.27 odd 20 275.2.z.a.224.2 16
55.37 odd 20 275.2.z.a.124.3 16
55.38 odd 20 275.2.z.a.224.3 16
55.48 odd 20 275.2.z.a.124.2 16
55.49 even 10 275.2.h.a.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.26.2 8 11.5 even 5
55.2.g.b.36.2 yes 8 11.4 even 5
275.2.h.a.26.1 8 55.49 even 10
275.2.h.a.201.1 8 55.4 even 10
275.2.z.a.124.2 16 55.48 odd 20
275.2.z.a.124.3 16 55.37 odd 20
275.2.z.a.224.2 16 55.27 odd 20
275.2.z.a.224.3 16 55.38 odd 20
495.2.n.e.91.1 8 33.26 odd 10
495.2.n.e.136.1 8 33.5 odd 10
605.2.a.j.1.2 4 11.3 even 5
605.2.a.k.1.3 4 11.8 odd 10
605.2.g.e.251.2 8 11.2 odd 10
605.2.g.e.511.2 8 11.10 odd 2
605.2.g.k.81.1 8 11.6 odd 10
605.2.g.k.366.1 8 11.7 odd 10
605.2.g.m.251.1 8 11.9 even 5 inner
605.2.g.m.511.1 8 1.1 even 1 trivial
880.2.bo.h.81.2 8 44.27 odd 10
880.2.bo.h.641.2 8 44.15 odd 10
3025.2.a.w.1.2 4 55.19 odd 10
3025.2.a.bd.1.3 4 55.14 even 10
5445.2.a.bi.1.2 4 33.8 even 10
5445.2.a.bp.1.3 4 33.14 odd 10
9680.2.a.cm.1.4 4 44.19 even 10
9680.2.a.cn.1.4 4 44.3 odd 10