Properties

Label 275.2.h.a.201.1
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(-0.227943 - 0.701538i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.a.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.596764 + 0.433574i) q^{2} +(0.868820 + 2.67395i) q^{3} +(-0.449894 + 1.38463i) q^{4} +(-1.67784 - 1.21902i) q^{6} +(-0.318714 + 0.980901i) q^{7} +(-0.787747 - 2.42443i) q^{8} +(-3.96813 + 2.88301i) q^{9} +(1.93675 + 2.69240i) q^{11} -4.09331 q^{12} +(2.79029 - 2.02726i) q^{13} +(-0.235096 - 0.723552i) q^{14} +(-0.834404 - 0.606230i) q^{16} +(1.94020 + 1.40964i) q^{17} +(1.11803 - 3.44095i) q^{18} +(-2.36979 - 7.29347i) q^{19} -2.89979 q^{21} +(-2.32313 - 0.767001i) q^{22} -2.45589 q^{23} +(5.79842 - 4.21280i) q^{24} +(-0.786174 + 2.41960i) q^{26} +(-4.33283 - 3.14799i) q^{27} +(-1.21480 - 0.882602i) q^{28} +(-1.83998 + 5.66289i) q^{29} +(2.98382 - 2.16787i) q^{31} +5.85919 q^{32} +(-5.51666 + 7.51798i) q^{33} -1.76902 q^{34} +(-2.20667 - 6.79144i) q^{36} +(-1.84130 + 5.66694i) q^{37} +(4.57646 + 3.32500i) q^{38} +(7.84507 + 5.69978i) q^{39} +(1.21637 + 3.74360i) q^{41} +(1.73049 - 1.25727i) q^{42} +7.64941 q^{43} +(-4.59931 + 1.47039i) q^{44} +(1.46558 - 1.06481i) q^{46} +(-1.80557 - 5.55697i) q^{47} +(0.896084 - 2.75786i) q^{48} +(4.80253 + 3.48924i) q^{49} +(-2.08362 + 6.41272i) q^{51} +(1.55168 + 4.77558i) q^{52} +(-9.58526 + 6.96410i) q^{53} +3.95056 q^{54} +2.62920 q^{56} +(17.4435 - 12.6734i) q^{57} +(-1.35725 - 4.17718i) q^{58} +(0.910456 - 2.80210i) q^{59} +(-2.00666 - 1.45792i) q^{61} +(-0.840701 + 2.58741i) q^{62} +(-1.56325 - 4.81120i) q^{63} +(-1.82774 + 1.32793i) q^{64} +(0.0325397 - 6.87834i) q^{66} +6.14702 q^{67} +(-2.82471 + 2.05227i) q^{68} +(-2.13372 - 6.56693i) q^{69} +(-1.63676 - 1.18918i) q^{71} +(10.1156 + 7.34938i) q^{72} +(0.255207 - 0.785446i) q^{73} +(-1.35822 - 4.18017i) q^{74} +11.1649 q^{76} +(-3.25824 + 1.04165i) q^{77} -7.15293 q^{78} +(9.77146 - 7.09938i) q^{79} +(0.106048 - 0.326382i) q^{81} +(-2.34901 - 1.70666i) q^{82} +(1.30253 + 0.946345i) q^{83} +(1.30460 - 4.01513i) q^{84} +(-4.56489 + 3.31659i) q^{86} -16.7409 q^{87} +(5.00188 - 6.81645i) q^{88} +8.16116 q^{89} +(1.09924 + 3.38312i) q^{91} +(1.10489 - 3.40050i) q^{92} +(8.38919 + 6.09510i) q^{93} +(3.48685 + 2.53335i) q^{94} +(5.09058 + 15.6672i) q^{96} +(1.97625 - 1.43583i) q^{97} -4.37882 q^{98} +(-15.4475 - 5.10011i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 5 q^{3} - 2 q^{4} - 7 q^{6} + q^{7} - 4 q^{8} - 5 q^{9} + 3 q^{11} - 16 q^{12} + 2 q^{13} - 16 q^{14} + 4 q^{16} + 13 q^{17} + 15 q^{19} - 20 q^{21} + 7 q^{22} - 10 q^{23} + 13 q^{24} + 10 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.596764 + 0.433574i −0.421976 + 0.306583i −0.778432 0.627729i \(-0.783985\pi\)
0.356457 + 0.934312i \(0.383985\pi\)
\(3\) 0.868820 + 2.67395i 0.501614 + 1.54381i 0.806390 + 0.591384i \(0.201418\pi\)
−0.304777 + 0.952424i \(0.598582\pi\)
\(4\) −0.449894 + 1.38463i −0.224947 + 0.692315i
\(5\) 0 0
\(6\) −1.67784 1.21902i −0.684974 0.497663i
\(7\) −0.318714 + 0.980901i −0.120463 + 0.370746i −0.993047 0.117717i \(-0.962442\pi\)
0.872585 + 0.488463i \(0.162442\pi\)
\(8\) −0.787747 2.42443i −0.278510 0.857167i
\(9\) −3.96813 + 2.88301i −1.32271 + 0.961005i
\(10\) 0 0
\(11\) 1.93675 + 2.69240i 0.583951 + 0.811789i
\(12\) −4.09331 −1.18164
\(13\) 2.79029 2.02726i 0.773887 0.562262i −0.129251 0.991612i \(-0.541257\pi\)
0.903138 + 0.429350i \(0.141257\pi\)
\(14\) −0.235096 0.723552i −0.0628321 0.193377i
\(15\) 0 0
\(16\) −0.834404 0.606230i −0.208601 0.151557i
\(17\) 1.94020 + 1.40964i 0.470567 + 0.341887i 0.797662 0.603105i \(-0.206070\pi\)
−0.327095 + 0.944991i \(0.606070\pi\)
\(18\) 1.11803 3.44095i 0.263523 0.811041i
\(19\) −2.36979 7.29347i −0.543668 1.67324i −0.724137 0.689656i \(-0.757762\pi\)
0.180470 0.983581i \(-0.442238\pi\)
\(20\) 0 0
\(21\) −2.89979 −0.632786
\(22\) −2.32313 0.767001i −0.495294 0.163525i
\(23\) −2.45589 −0.512088 −0.256044 0.966665i \(-0.582419\pi\)
−0.256044 + 0.966665i \(0.582419\pi\)
\(24\) 5.79842 4.21280i 1.18360 0.859933i
\(25\) 0 0
\(26\) −0.786174 + 2.41960i −0.154181 + 0.474522i
\(27\) −4.33283 3.14799i −0.833854 0.605830i
\(28\) −1.21480 0.882602i −0.229575 0.166796i
\(29\) −1.83998 + 5.66289i −0.341677 + 1.05157i 0.621663 + 0.783285i \(0.286458\pi\)
−0.963339 + 0.268287i \(0.913542\pi\)
\(30\) 0 0
\(31\) 2.98382 2.16787i 0.535909 0.389361i −0.286654 0.958034i \(-0.592543\pi\)
0.822564 + 0.568673i \(0.192543\pi\)
\(32\) 5.85919 1.03577
\(33\) −5.51666 + 7.51798i −0.960328 + 1.30871i
\(34\) −1.76902 −0.303384
\(35\) 0 0
\(36\) −2.20667 6.79144i −0.367779 1.13191i
\(37\) −1.84130 + 5.66694i −0.302708 + 0.931640i 0.677814 + 0.735233i \(0.262927\pi\)
−0.980523 + 0.196407i \(0.937073\pi\)
\(38\) 4.57646 + 3.32500i 0.742401 + 0.539386i
\(39\) 7.84507 + 5.69978i 1.25622 + 0.912695i
\(40\) 0 0
\(41\) 1.21637 + 3.74360i 0.189965 + 0.584652i 0.999999 0.00173135i \(-0.000551106\pi\)
−0.810033 + 0.586384i \(0.800551\pi\)
\(42\) 1.73049 1.25727i 0.267020 0.194001i
\(43\) 7.64941 1.16652 0.583262 0.812284i \(-0.301776\pi\)
0.583262 + 0.812284i \(0.301776\pi\)
\(44\) −4.59931 + 1.47039i −0.693372 + 0.221669i
\(45\) 0 0
\(46\) 1.46558 1.06481i 0.216089 0.156998i
\(47\) −1.80557 5.55697i −0.263369 0.810567i −0.992065 0.125729i \(-0.959873\pi\)
0.728695 0.684838i \(-0.240127\pi\)
\(48\) 0.896084 2.75786i 0.129339 0.398063i
\(49\) 4.80253 + 3.48924i 0.686076 + 0.498463i
\(50\) 0 0
\(51\) −2.08362 + 6.41272i −0.291765 + 0.897960i
\(52\) 1.55168 + 4.77558i 0.215179 + 0.662253i
\(53\) −9.58526 + 6.96410i −1.31664 + 0.956592i −0.316669 + 0.948536i \(0.602564\pi\)
−0.999968 + 0.00805607i \(0.997436\pi\)
\(54\) 3.95056 0.537603
\(55\) 0 0
\(56\) 2.62920 0.351341
\(57\) 17.4435 12.6734i 2.31044 1.67864i
\(58\) −1.35725 4.17718i −0.178215 0.548490i
\(59\) 0.910456 2.80210i 0.118531 0.364802i −0.874136 0.485681i \(-0.838572\pi\)
0.992667 + 0.120880i \(0.0385715\pi\)
\(60\) 0 0
\(61\) −2.00666 1.45792i −0.256927 0.186668i 0.451864 0.892087i \(-0.350759\pi\)
−0.708791 + 0.705419i \(0.750759\pi\)
\(62\) −0.840701 + 2.58741i −0.106769 + 0.328602i
\(63\) −1.56325 4.81120i −0.196951 0.606154i
\(64\) −1.82774 + 1.32793i −0.228468 + 0.165992i
\(65\) 0 0
\(66\) 0.0325397 6.87834i 0.00400536 0.846665i
\(67\) 6.14702 0.750978 0.375489 0.926827i \(-0.377475\pi\)
0.375489 + 0.926827i \(0.377475\pi\)
\(68\) −2.82471 + 2.05227i −0.342546 + 0.248874i
\(69\) −2.13372 6.56693i −0.256870 0.790565i
\(70\) 0 0
\(71\) −1.63676 1.18918i −0.194248 0.141129i 0.486410 0.873731i \(-0.338306\pi\)
−0.680658 + 0.732601i \(0.738306\pi\)
\(72\) 10.1156 + 7.34938i 1.19213 + 0.866133i
\(73\) 0.255207 0.785446i 0.0298697 0.0919295i −0.935010 0.354621i \(-0.884610\pi\)
0.964880 + 0.262691i \(0.0846100\pi\)
\(74\) −1.35822 4.18017i −0.157890 0.485934i
\(75\) 0 0
\(76\) 11.1649 1.28070
\(77\) −3.25824 + 1.04165i −0.371311 + 0.118707i
\(78\) −7.15293 −0.809910
\(79\) 9.77146 7.09938i 1.09937 0.798742i 0.118417 0.992964i \(-0.462218\pi\)
0.980958 + 0.194221i \(0.0622180\pi\)
\(80\) 0 0
\(81\) 0.106048 0.326382i 0.0117831 0.0362647i
\(82\) −2.34901 1.70666i −0.259405 0.188469i
\(83\) 1.30253 + 0.946345i 0.142971 + 0.103875i 0.656972 0.753915i \(-0.271837\pi\)
−0.514000 + 0.857790i \(0.671837\pi\)
\(84\) 1.30460 4.01513i 0.142343 0.438087i
\(85\) 0 0
\(86\) −4.56489 + 3.31659i −0.492245 + 0.357637i
\(87\) −16.7409 −1.79481
\(88\) 5.00188 6.81645i 0.533202 0.726636i
\(89\) 8.16116 0.865081 0.432541 0.901614i \(-0.357617\pi\)
0.432541 + 0.901614i \(0.357617\pi\)
\(90\) 0 0
\(91\) 1.09924 + 3.38312i 0.115232 + 0.354647i
\(92\) 1.10489 3.40050i 0.115193 0.354526i
\(93\) 8.38919 + 6.09510i 0.869918 + 0.632032i
\(94\) 3.48685 + 2.53335i 0.359642 + 0.261295i
\(95\) 0 0
\(96\) 5.09058 + 15.6672i 0.519555 + 1.59903i
\(97\) 1.97625 1.43583i 0.200658 0.145787i −0.482919 0.875665i \(-0.660423\pi\)
0.683577 + 0.729879i \(0.260423\pi\)
\(98\) −4.37882 −0.442328
\(99\) −15.4475 5.10011i −1.55253 0.512580i
\(100\) 0 0
\(101\) 6.08683 4.42234i 0.605662 0.440039i −0.242222 0.970221i \(-0.577876\pi\)
0.847884 + 0.530182i \(0.177876\pi\)
\(102\) −1.53696 4.73028i −0.152182 0.468367i
\(103\) 2.93020 9.01821i 0.288721 0.888591i −0.696538 0.717520i \(-0.745277\pi\)
0.985259 0.171071i \(-0.0547228\pi\)
\(104\) −7.11301 5.16791i −0.697488 0.506755i
\(105\) 0 0
\(106\) 2.70068 8.31184i 0.262313 0.807317i
\(107\) 1.43593 + 4.41935i 0.138817 + 0.427235i 0.996164 0.0875039i \(-0.0278890\pi\)
−0.857347 + 0.514739i \(0.827889\pi\)
\(108\) 6.30811 4.58311i 0.606998 0.441010i
\(109\) −5.32826 −0.510355 −0.255178 0.966894i \(-0.582134\pi\)
−0.255178 + 0.966894i \(0.582134\pi\)
\(110\) 0 0
\(111\) −16.7529 −1.59012
\(112\) 0.860587 0.625253i 0.0813179 0.0590809i
\(113\) −0.0942195 0.289978i −0.00886342 0.0272788i 0.946527 0.322625i \(-0.104565\pi\)
−0.955390 + 0.295346i \(0.904565\pi\)
\(114\) −4.91476 + 15.1261i −0.460310 + 1.41669i
\(115\) 0 0
\(116\) −7.01321 5.09540i −0.651160 0.473096i
\(117\) −5.22760 + 16.0889i −0.483292 + 1.48742i
\(118\) 0.671589 + 2.06694i 0.0618248 + 0.190277i
\(119\) −2.00108 + 1.45387i −0.183439 + 0.133276i
\(120\) 0 0
\(121\) −3.49802 + 10.4290i −0.318001 + 0.948090i
\(122\) 1.82962 0.165646
\(123\) −8.95341 + 6.50503i −0.807302 + 0.586539i
\(124\) 1.65930 + 5.10680i 0.149009 + 0.458604i
\(125\) 0 0
\(126\) 3.01890 + 2.19336i 0.268945 + 0.195400i
\(127\) −9.63536 7.00050i −0.855000 0.621194i 0.0715199 0.997439i \(-0.477215\pi\)
−0.926520 + 0.376245i \(0.877215\pi\)
\(128\) −3.10621 + 9.55992i −0.274552 + 0.844985i
\(129\) 6.64596 + 20.4542i 0.585145 + 1.80089i
\(130\) 0 0
\(131\) −11.1875 −0.977452 −0.488726 0.872437i \(-0.662538\pi\)
−0.488726 + 0.872437i \(0.662538\pi\)
\(132\) −7.92772 11.0208i −0.690019 0.959240i
\(133\) 7.90945 0.685837
\(134\) −3.66832 + 2.66519i −0.316894 + 0.230237i
\(135\) 0 0
\(136\) 1.88919 5.81432i 0.161996 0.498573i
\(137\) −3.46360 2.51645i −0.295915 0.214995i 0.429914 0.902870i \(-0.358544\pi\)
−0.725829 + 0.687875i \(0.758544\pi\)
\(138\) 4.12058 + 2.99378i 0.350767 + 0.254847i
\(139\) −1.83964 + 5.66183i −0.156036 + 0.480230i −0.998264 0.0588913i \(-0.981243\pi\)
0.842228 + 0.539121i \(0.181243\pi\)
\(140\) 0 0
\(141\) 13.2904 9.65601i 1.11925 0.813183i
\(142\) 1.49235 0.125236
\(143\) 10.8623 + 3.58627i 0.908351 + 0.299899i
\(144\) 5.05879 0.421566
\(145\) 0 0
\(146\) 0.188251 + 0.579377i 0.0155798 + 0.0479495i
\(147\) −5.15754 + 15.8733i −0.425387 + 1.30921i
\(148\) −7.01823 5.09905i −0.576895 0.419139i
\(149\) 3.06168 + 2.22444i 0.250823 + 0.182233i 0.706091 0.708121i \(-0.250457\pi\)
−0.455269 + 0.890354i \(0.650457\pi\)
\(150\) 0 0
\(151\) −7.52661 23.1645i −0.612507 1.88510i −0.433159 0.901317i \(-0.642601\pi\)
−0.179348 0.983786i \(-0.557399\pi\)
\(152\) −15.8157 + 11.4908i −1.28283 + 0.932028i
\(153\) −11.7629 −0.950978
\(154\) 1.49277 2.03431i 0.120291 0.163929i
\(155\) 0 0
\(156\) −11.4215 + 8.29823i −0.914455 + 0.664390i
\(157\) −2.23484 6.87813i −0.178360 0.548935i 0.821411 0.570336i \(-0.193187\pi\)
−0.999771 + 0.0214015i \(0.993187\pi\)
\(158\) −2.75314 + 8.47330i −0.219028 + 0.674100i
\(159\) −26.9495 19.5800i −2.13724 1.55279i
\(160\) 0 0
\(161\) 0.782725 2.40898i 0.0616874 0.189854i
\(162\) 0.0782252 + 0.240753i 0.00614596 + 0.0189153i
\(163\) 15.1198 10.9852i 1.18428 0.860428i 0.191630 0.981467i \(-0.438623\pi\)
0.992648 + 0.121039i \(0.0386226\pi\)
\(164\) −5.73074 −0.447496
\(165\) 0 0
\(166\) −1.18761 −0.0921767
\(167\) 6.35343 4.61604i 0.491644 0.357200i −0.314172 0.949366i \(-0.601727\pi\)
0.805816 + 0.592166i \(0.201727\pi\)
\(168\) 2.28430 + 7.03035i 0.176237 + 0.542403i
\(169\) −0.341302 + 1.05042i −0.0262540 + 0.0808014i
\(170\) 0 0
\(171\) 30.4308 + 22.1093i 2.32710 + 1.69074i
\(172\) −3.44142 + 10.5916i −0.262406 + 0.807603i
\(173\) −3.46244 10.6563i −0.263244 0.810183i −0.992093 0.125508i \(-0.959944\pi\)
0.728848 0.684675i \(-0.240056\pi\)
\(174\) 9.99037 7.25843i 0.757368 0.550260i
\(175\) 0 0
\(176\) 0.0161823 3.42066i 0.00121979 0.257842i
\(177\) 8.28370 0.622641
\(178\) −4.87028 + 3.53847i −0.365043 + 0.265219i
\(179\) 0.452595 + 1.39295i 0.0338286 + 0.104114i 0.966545 0.256497i \(-0.0825684\pi\)
−0.932716 + 0.360611i \(0.882568\pi\)
\(180\) 0 0
\(181\) −7.51496 5.45994i −0.558583 0.405834i 0.272357 0.962196i \(-0.412197\pi\)
−0.830940 + 0.556362i \(0.812197\pi\)
\(182\) −2.12282 1.54232i −0.157354 0.114324i
\(183\) 2.15499 6.63239i 0.159302 0.490280i
\(184\) 1.93462 + 5.95414i 0.142622 + 0.438945i
\(185\) 0 0
\(186\) −7.64904 −0.560855
\(187\) −0.0376278 + 7.95389i −0.00275162 + 0.581646i
\(188\) 8.50666 0.620412
\(189\) 4.46880 3.24677i 0.325057 0.236168i
\(190\) 0 0
\(191\) −1.38222 + 4.25404i −0.100014 + 0.307811i −0.988528 0.151038i \(-0.951738\pi\)
0.888514 + 0.458850i \(0.151738\pi\)
\(192\) −5.13881 3.73357i −0.370862 0.269447i
\(193\) −18.3372 13.3227i −1.31994 0.958992i −0.999933 0.0115772i \(-0.996315\pi\)
−0.320007 0.947415i \(-0.603685\pi\)
\(194\) −0.556816 + 1.71370i −0.0399771 + 0.123037i
\(195\) 0 0
\(196\) −6.99194 + 5.07994i −0.499424 + 0.362853i
\(197\) 11.2080 0.798535 0.399267 0.916835i \(-0.369265\pi\)
0.399267 + 0.916835i \(0.369265\pi\)
\(198\) 11.4298 3.65407i 0.812278 0.259683i
\(199\) −7.81979 −0.554330 −0.277165 0.960822i \(-0.589395\pi\)
−0.277165 + 0.960822i \(0.589395\pi\)
\(200\) 0 0
\(201\) 5.34065 + 16.4368i 0.376701 + 1.15937i
\(202\) −1.71499 + 5.27818i −0.120666 + 0.371372i
\(203\) −4.96830 3.60968i −0.348707 0.253350i
\(204\) −7.94184 5.77008i −0.556040 0.403987i
\(205\) 0 0
\(206\) 2.16143 + 6.65220i 0.150594 + 0.463481i
\(207\) 9.74527 7.08035i 0.677343 0.492119i
\(208\) −3.55722 −0.246649
\(209\) 15.0472 20.5060i 1.04084 1.41843i
\(210\) 0 0
\(211\) 18.4189 13.3821i 1.26801 0.921262i 0.268887 0.963172i \(-0.413344\pi\)
0.999121 + 0.0419098i \(0.0133442\pi\)
\(212\) −5.33035 16.4051i −0.366090 1.12671i
\(213\) 1.75775 5.40980i 0.120439 0.370673i
\(214\) −2.77303 2.01472i −0.189560 0.137724i
\(215\) 0 0
\(216\) −4.21891 + 12.9845i −0.287061 + 0.883482i
\(217\) 1.17548 + 3.61776i 0.0797969 + 0.245589i
\(218\) 3.17971 2.31020i 0.215357 0.156466i
\(219\) 2.32197 0.156905
\(220\) 0 0
\(221\) 8.27142 0.556396
\(222\) 9.99752 7.26363i 0.670990 0.487503i
\(223\) 4.95746 + 15.2575i 0.331976 + 1.02172i 0.968192 + 0.250207i \(0.0804985\pi\)
−0.636216 + 0.771511i \(0.719501\pi\)
\(224\) −1.86741 + 5.74728i −0.124771 + 0.384006i
\(225\) 0 0
\(226\) 0.181954 + 0.132197i 0.0121034 + 0.00879361i
\(227\) 7.46468 22.9739i 0.495448 1.52483i −0.320809 0.947144i \(-0.603955\pi\)
0.816257 0.577689i \(-0.196045\pi\)
\(228\) 9.70030 + 29.8545i 0.642418 + 1.97716i
\(229\) 12.1468 8.82517i 0.802684 0.583184i −0.109017 0.994040i \(-0.534770\pi\)
0.911700 + 0.410856i \(0.134770\pi\)
\(230\) 0 0
\(231\) −5.61616 7.80738i −0.369516 0.513688i
\(232\) 15.1787 0.996534
\(233\) 9.24378 6.71600i 0.605580 0.439980i −0.242275 0.970208i \(-0.577894\pi\)
0.847855 + 0.530228i \(0.177894\pi\)
\(234\) −3.85609 11.8678i −0.252080 0.775823i
\(235\) 0 0
\(236\) 3.47026 + 2.52129i 0.225895 + 0.164122i
\(237\) 27.4730 + 19.9603i 1.78457 + 1.29656i
\(238\) 0.563811 1.73523i 0.0365465 0.112478i
\(239\) 8.46914 + 26.0653i 0.547823 + 1.68603i 0.714181 + 0.699961i \(0.246799\pi\)
−0.166358 + 0.986065i \(0.553201\pi\)
\(240\) 0 0
\(241\) 10.9387 0.704624 0.352312 0.935883i \(-0.385396\pi\)
0.352312 + 0.935883i \(0.385396\pi\)
\(242\) −2.43425 7.74029i −0.156480 0.497565i
\(243\) −15.1022 −0.968804
\(244\) 2.92147 2.12257i 0.187028 0.135884i
\(245\) 0 0
\(246\) 2.52265 7.76393i 0.160839 0.495010i
\(247\) −21.3982 15.5467i −1.36154 0.989213i
\(248\) −7.60635 5.52634i −0.483004 0.350923i
\(249\) −1.39882 + 4.30511i −0.0886463 + 0.272825i
\(250\) 0 0
\(251\) −13.9403 + 10.1282i −0.879902 + 0.639286i −0.933225 0.359291i \(-0.883018\pi\)
0.0533238 + 0.998577i \(0.483018\pi\)
\(252\) 7.36503 0.463953
\(253\) −4.75643 6.61222i −0.299034 0.415707i
\(254\) 8.78527 0.551237
\(255\) 0 0
\(256\) −3.68753 11.3491i −0.230471 0.709316i
\(257\) −5.71540 + 17.5902i −0.356517 + 1.09725i 0.598608 + 0.801042i \(0.295721\pi\)
−0.955125 + 0.296204i \(0.904279\pi\)
\(258\) −12.8345 9.32479i −0.799039 0.580536i
\(259\) −4.97186 3.61227i −0.308936 0.224455i
\(260\) 0 0
\(261\) −9.02489 27.7758i −0.558627 1.71928i
\(262\) 6.67626 4.85059i 0.412461 0.299670i
\(263\) −3.69135 −0.227618 −0.113809 0.993503i \(-0.536305\pi\)
−0.113809 + 0.993503i \(0.536305\pi\)
\(264\) 22.5726 + 7.45252i 1.38925 + 0.458671i
\(265\) 0 0
\(266\) −4.72007 + 3.42933i −0.289406 + 0.210266i
\(267\) 7.09058 + 21.8226i 0.433937 + 1.33552i
\(268\) −2.76550 + 8.51135i −0.168930 + 0.519913i
\(269\) 8.04575 + 5.84558i 0.490558 + 0.356411i 0.805399 0.592733i \(-0.201951\pi\)
−0.314841 + 0.949145i \(0.601951\pi\)
\(270\) 0 0
\(271\) 0.387400 1.19229i 0.0235329 0.0724267i −0.938600 0.345006i \(-0.887877\pi\)
0.962133 + 0.272580i \(0.0878768\pi\)
\(272\) −0.764345 2.35241i −0.0463452 0.142636i
\(273\) −8.09125 + 5.87864i −0.489705 + 0.355791i
\(274\) 3.15802 0.190783
\(275\) 0 0
\(276\) 10.0527 0.605102
\(277\) −6.54763 + 4.75713i −0.393409 + 0.285828i −0.766851 0.641825i \(-0.778177\pi\)
0.373442 + 0.927654i \(0.378177\pi\)
\(278\) −1.35699 4.17639i −0.0813870 0.250483i
\(279\) −5.59017 + 17.2048i −0.334675 + 1.03002i
\(280\) 0 0
\(281\) −20.5250 14.9123i −1.22442 0.889591i −0.227958 0.973671i \(-0.573205\pi\)
−0.996459 + 0.0840804i \(0.973205\pi\)
\(282\) −3.74461 + 11.5247i −0.222988 + 0.686286i
\(283\) 6.31705 + 19.4419i 0.375510 + 1.15570i 0.943134 + 0.332412i \(0.107863\pi\)
−0.567624 + 0.823288i \(0.692137\pi\)
\(284\) 2.38294 1.73131i 0.141401 0.102734i
\(285\) 0 0
\(286\) −8.03714 + 2.56945i −0.475246 + 0.151935i
\(287\) −4.05977 −0.239641
\(288\) −23.2500 + 16.8921i −1.37002 + 0.995378i
\(289\) −3.47600 10.6980i −0.204470 0.629295i
\(290\) 0 0
\(291\) 5.55635 + 4.03693i 0.325719 + 0.236649i
\(292\) 0.972737 + 0.706734i 0.0569251 + 0.0413585i
\(293\) −0.787705 + 2.42431i −0.0460182 + 0.141630i −0.971426 0.237344i \(-0.923723\pi\)
0.925407 + 0.378974i \(0.123723\pi\)
\(294\) −3.80441 11.7088i −0.221878 0.682869i
\(295\) 0 0
\(296\) 15.1896 0.882878
\(297\) 0.0840302 17.7626i 0.00487593 1.03069i
\(298\) −2.79156 −0.161711
\(299\) −6.85264 + 4.97873i −0.396298 + 0.287928i
\(300\) 0 0
\(301\) −2.43797 + 7.50331i −0.140523 + 0.432484i
\(302\) 14.5352 + 10.5604i 0.836404 + 0.607683i
\(303\) 17.1135 + 12.4337i 0.983144 + 0.714296i
\(304\) −2.44416 + 7.52234i −0.140182 + 0.431436i
\(305\) 0 0
\(306\) 7.01970 5.10011i 0.401289 0.291554i
\(307\) −8.99273 −0.513242 −0.256621 0.966512i \(-0.582609\pi\)
−0.256621 + 0.966512i \(0.582609\pi\)
\(308\) 0.0235596 4.98010i 0.00134243 0.283767i
\(309\) 26.6601 1.51664
\(310\) 0 0
\(311\) −6.21840 19.1383i −0.352613 1.08523i −0.957380 0.288830i \(-0.906734\pi\)
0.604767 0.796402i \(-0.293266\pi\)
\(312\) 7.63881 23.5098i 0.432463 1.33098i
\(313\) 5.74792 + 4.17611i 0.324892 + 0.236048i 0.738260 0.674516i \(-0.235648\pi\)
−0.413368 + 0.910564i \(0.635648\pi\)
\(314\) 4.31585 + 3.13565i 0.243558 + 0.176955i
\(315\) 0 0
\(316\) 5.43390 + 16.7238i 0.305681 + 0.940789i
\(317\) 1.85526 1.34793i 0.104202 0.0757071i −0.534464 0.845191i \(-0.679487\pi\)
0.638666 + 0.769484i \(0.279487\pi\)
\(318\) 24.5719 1.37792
\(319\) −18.8103 + 6.01362i −1.05318 + 0.336698i
\(320\) 0 0
\(321\) −10.5696 + 7.67924i −0.589936 + 0.428613i
\(322\) 0.577370 + 1.77696i 0.0321756 + 0.0990262i
\(323\) 5.68327 17.4913i 0.316226 0.973242i
\(324\) 0.404208 + 0.293674i 0.0224560 + 0.0163152i
\(325\) 0 0
\(326\) −4.26007 + 13.1111i −0.235943 + 0.726159i
\(327\) −4.62930 14.2475i −0.256001 0.787890i
\(328\) 8.11793 5.89802i 0.448237 0.325664i
\(329\) 6.02629 0.332240
\(330\) 0 0
\(331\) 15.3951 0.846192 0.423096 0.906085i \(-0.360943\pi\)
0.423096 + 0.906085i \(0.360943\pi\)
\(332\) −1.89634 + 1.37777i −0.104075 + 0.0756150i
\(333\) −9.03136 27.7957i −0.494915 1.52319i
\(334\) −1.79010 + 5.50937i −0.0979501 + 0.301459i
\(335\) 0 0
\(336\) 2.41959 + 1.75794i 0.132000 + 0.0959034i
\(337\) 6.02485 18.5426i 0.328195 1.01008i −0.641783 0.766886i \(-0.721805\pi\)
0.969978 0.243193i \(-0.0781949\pi\)
\(338\) −0.251758 0.774831i −0.0136938 0.0421453i
\(339\) 0.693527 0.503877i 0.0376672 0.0273668i
\(340\) 0 0
\(341\) 11.6157 + 3.83501i 0.629024 + 0.207677i
\(342\) −27.7460 −1.50033
\(343\) −10.7941 + 7.84234i −0.582825 + 0.423447i
\(344\) −6.02580 18.5455i −0.324889 0.999907i
\(345\) 0 0
\(346\) 6.68655 + 4.85806i 0.359471 + 0.261171i
\(347\) −1.75479 1.27493i −0.0942023 0.0684420i 0.539687 0.841866i \(-0.318543\pi\)
−0.633889 + 0.773424i \(0.718543\pi\)
\(348\) 7.53163 23.1800i 0.403738 1.24258i
\(349\) −7.74150 23.8259i −0.414393 1.27537i −0.912793 0.408423i \(-0.866079\pi\)
0.498400 0.866947i \(-0.333921\pi\)
\(350\) 0 0
\(351\) −18.4717 −0.985944
\(352\) 11.3478 + 15.7753i 0.604838 + 0.840825i
\(353\) 23.2532 1.23764 0.618821 0.785532i \(-0.287611\pi\)
0.618821 + 0.785532i \(0.287611\pi\)
\(354\) −4.94341 + 3.59160i −0.262739 + 0.190891i
\(355\) 0 0
\(356\) −3.67166 + 11.3002i −0.194597 + 0.598909i
\(357\) −5.62616 4.08764i −0.297768 0.216341i
\(358\) −0.874037 0.635025i −0.0461943 0.0335621i
\(359\) 3.12799 9.62695i 0.165089 0.508091i −0.833954 0.551834i \(-0.813928\pi\)
0.999043 + 0.0437429i \(0.0139282\pi\)
\(360\) 0 0
\(361\) −32.2075 + 23.4001i −1.69513 + 1.23158i
\(362\) 6.85194 0.360130
\(363\) −30.9258 0.292611i −1.62318 0.0153581i
\(364\) −5.17891 −0.271448
\(365\) 0 0
\(366\) 1.58961 + 4.89232i 0.0830903 + 0.255726i
\(367\) −1.14622 + 3.52770i −0.0598322 + 0.184145i −0.976505 0.215493i \(-0.930864\pi\)
0.916673 + 0.399638i \(0.130864\pi\)
\(368\) 2.04920 + 1.48883i 0.106822 + 0.0776107i
\(369\) −15.6196 11.3483i −0.813122 0.590768i
\(370\) 0 0
\(371\) −3.77613 11.6217i −0.196047 0.603371i
\(372\) −12.2137 + 8.87378i −0.633251 + 0.460084i
\(373\) 9.34017 0.483616 0.241808 0.970324i \(-0.422260\pi\)
0.241808 + 0.970324i \(0.422260\pi\)
\(374\) −3.42615 4.76291i −0.177162 0.246284i
\(375\) 0 0
\(376\) −12.0502 + 8.75496i −0.621440 + 0.451503i
\(377\) 6.34609 + 19.5312i 0.326840 + 1.00591i
\(378\) −1.25910 + 3.87511i −0.0647611 + 0.199314i
\(379\) 7.93783 + 5.76717i 0.407739 + 0.296240i 0.772686 0.634789i \(-0.218913\pi\)
−0.364947 + 0.931028i \(0.618913\pi\)
\(380\) 0 0
\(381\) 10.3476 31.8467i 0.530124 1.63156i
\(382\) −1.01958 3.13795i −0.0521663 0.160552i
\(383\) −14.6002 + 10.6076i −0.746034 + 0.542025i −0.894595 0.446878i \(-0.852536\pi\)
0.148561 + 0.988903i \(0.452536\pi\)
\(384\) −28.2615 −1.44221
\(385\) 0 0
\(386\) 16.7194 0.850993
\(387\) −30.3539 + 22.0534i −1.54297 + 1.12104i
\(388\) 1.09899 + 3.38235i 0.0557929 + 0.171713i
\(389\) 9.63871 29.6649i 0.488702 1.50407i −0.337844 0.941202i \(-0.609698\pi\)
0.826546 0.562869i \(-0.190302\pi\)
\(390\) 0 0
\(391\) −4.76490 3.46191i −0.240972 0.175076i
\(392\) 4.67626 14.3921i 0.236187 0.726909i
\(393\) −9.71989 29.9147i −0.490303 1.50900i
\(394\) −6.68851 + 4.85948i −0.336962 + 0.244817i
\(395\) 0 0
\(396\) 14.0115 19.0946i 0.704104 0.959537i
\(397\) 10.6212 0.533062 0.266531 0.963826i \(-0.414123\pi\)
0.266531 + 0.963826i \(0.414123\pi\)
\(398\) 4.66657 3.39046i 0.233914 0.169948i
\(399\) 6.87189 + 21.1495i 0.344025 + 1.05880i
\(400\) 0 0
\(401\) 22.3029 + 16.2040i 1.11375 + 0.809190i 0.983251 0.182258i \(-0.0583407\pi\)
0.130503 + 0.991448i \(0.458341\pi\)
\(402\) −10.3137 7.49334i −0.514400 0.373734i
\(403\) 3.93087 12.0980i 0.195811 0.602643i
\(404\) 3.38488 + 10.4176i 0.168404 + 0.518295i
\(405\) 0 0
\(406\) 4.52997 0.224818
\(407\) −18.8238 + 6.01792i −0.933061 + 0.298297i
\(408\) 17.1886 0.850961
\(409\) −11.6241 + 8.44540i −0.574774 + 0.417598i −0.836836 0.547453i \(-0.815598\pi\)
0.262062 + 0.965051i \(0.415598\pi\)
\(410\) 0 0
\(411\) 3.71963 11.4478i 0.183476 0.564681i
\(412\) 11.1686 + 8.11448i 0.550238 + 0.399772i
\(413\) 2.45840 + 1.78613i 0.120970 + 0.0878899i
\(414\) −2.74576 + 8.45060i −0.134947 + 0.415324i
\(415\) 0 0
\(416\) 16.3488 11.8781i 0.801568 0.582373i
\(417\) −16.7378 −0.819652
\(418\) −0.0887552 + 18.7613i −0.00434116 + 0.917647i
\(419\) −31.4707 −1.53744 −0.768722 0.639584i \(-0.779107\pi\)
−0.768722 + 0.639584i \(0.779107\pi\)
\(420\) 0 0
\(421\) 8.21095 + 25.2707i 0.400177 + 1.23162i 0.924856 + 0.380318i \(0.124185\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(422\) −5.18959 + 15.9719i −0.252625 + 0.777500i
\(423\) 23.1855 + 16.8453i 1.12732 + 0.819045i
\(424\) 24.4348 + 17.7529i 1.18666 + 0.862156i
\(425\) 0 0
\(426\) 1.29659 + 3.99049i 0.0628199 + 0.193340i
\(427\) 2.06963 1.50367i 0.100156 0.0727679i
\(428\) −6.76518 −0.327008
\(429\) −0.152146 + 32.1611i −0.00734568 + 1.55275i
\(430\) 0 0
\(431\) 3.12984 2.27397i 0.150759 0.109533i −0.509849 0.860264i \(-0.670299\pi\)
0.660608 + 0.750731i \(0.270299\pi\)
\(432\) 1.70693 + 5.25338i 0.0821246 + 0.252754i
\(433\) −12.4036 + 38.1743i −0.596077 + 1.83454i −0.0467895 + 0.998905i \(0.514899\pi\)
−0.549288 + 0.835633i \(0.685101\pi\)
\(434\) −2.27005 1.64929i −0.108966 0.0791684i
\(435\) 0 0
\(436\) 2.39715 7.37768i 0.114803 0.353327i
\(437\) 5.81994 + 17.9119i 0.278406 + 0.856844i
\(438\) −1.38567 + 1.00675i −0.0662099 + 0.0481043i
\(439\) 1.02336 0.0488425 0.0244212 0.999702i \(-0.492226\pi\)
0.0244212 + 0.999702i \(0.492226\pi\)
\(440\) 0 0
\(441\) −29.1166 −1.38650
\(442\) −4.93608 + 3.58627i −0.234785 + 0.170582i
\(443\) 4.96678 + 15.2862i 0.235979 + 0.726268i 0.996990 + 0.0775295i \(0.0247032\pi\)
−0.761011 + 0.648739i \(0.775297\pi\)
\(444\) 7.53703 23.1966i 0.357691 1.10086i
\(445\) 0 0
\(446\) −9.57368 6.95569i −0.453327 0.329361i
\(447\) −3.28800 + 10.1194i −0.155517 + 0.478633i
\(448\) −0.720043 2.21607i −0.0340188 0.104699i
\(449\) −28.9969 + 21.0675i −1.36845 + 0.994235i −0.370590 + 0.928797i \(0.620844\pi\)
−0.997857 + 0.0654379i \(0.979156\pi\)
\(450\) 0 0
\(451\) −7.72346 + 10.5254i −0.363684 + 0.495620i
\(452\) 0.443901 0.0208793
\(453\) 55.4016 40.2516i 2.60299 1.89119i
\(454\) 5.50625 + 16.9465i 0.258421 + 0.795338i
\(455\) 0 0
\(456\) −44.4669 32.3071i −2.08235 1.51292i
\(457\) −20.3488 14.7842i −0.951875 0.691578i −0.000625413 1.00000i \(-0.500199\pi\)
−0.951250 + 0.308422i \(0.900199\pi\)
\(458\) −3.42241 + 10.5331i −0.159919 + 0.492179i
\(459\) −3.96903 12.2154i −0.185259 0.570167i
\(460\) 0 0
\(461\) 6.65631 0.310015 0.155008 0.987913i \(-0.450460\pi\)
0.155008 + 0.987913i \(0.450460\pi\)
\(462\) 6.73660 + 2.22414i 0.313415 + 0.103476i
\(463\) −38.7730 −1.80194 −0.900968 0.433886i \(-0.857142\pi\)
−0.900968 + 0.433886i \(0.857142\pi\)
\(464\) 4.96830 3.60968i 0.230648 0.167575i
\(465\) 0 0
\(466\) −2.60447 + 8.01573i −0.120650 + 0.371321i
\(467\) 18.2429 + 13.2542i 0.844179 + 0.613332i 0.923535 0.383514i \(-0.125286\pi\)
−0.0793559 + 0.996846i \(0.525286\pi\)
\(468\) −19.9253 14.4766i −0.921048 0.669180i
\(469\) −1.95914 + 6.02961i −0.0904647 + 0.278422i
\(470\) 0 0
\(471\) 16.4501 11.9517i 0.757982 0.550706i
\(472\) −7.51071 −0.345708
\(473\) 14.8150 + 20.5953i 0.681194 + 0.946971i
\(474\) −25.0492 −1.15055
\(475\) 0 0
\(476\) −1.11280 3.42484i −0.0510051 0.156977i
\(477\) 17.9579 55.2689i 0.822238 2.53059i
\(478\) −16.3553 11.8828i −0.748075 0.543509i
\(479\) 1.32021 + 0.959186i 0.0603218 + 0.0438263i 0.617538 0.786541i \(-0.288130\pi\)
−0.557216 + 0.830368i \(0.688130\pi\)
\(480\) 0 0
\(481\) 6.35063 + 19.5452i 0.289564 + 0.891186i
\(482\) −6.52782 + 4.74274i −0.297334 + 0.216026i
\(483\) 7.12155 0.324042
\(484\) −12.8666 9.53540i −0.584844 0.433427i
\(485\) 0 0
\(486\) 9.01242 6.54790i 0.408811 0.297019i
\(487\) −0.324560 0.998894i −0.0147072 0.0452642i 0.943434 0.331562i \(-0.107575\pi\)
−0.958141 + 0.286297i \(0.907575\pi\)
\(488\) −1.95390 + 6.01349i −0.0884490 + 0.272218i
\(489\) 42.5104 + 30.8856i 1.92239 + 1.39669i
\(490\) 0 0
\(491\) −4.29969 + 13.2331i −0.194042 + 0.597201i 0.805944 + 0.591992i \(0.201658\pi\)
−0.999986 + 0.00520928i \(0.998342\pi\)
\(492\) −4.97898 15.3237i −0.224470 0.690847i
\(493\) −11.5525 + 8.39341i −0.520300 + 0.378020i
\(494\) 19.5103 0.877811
\(495\) 0 0
\(496\) −3.80394 −0.170802
\(497\) 1.68812 1.22649i 0.0757226 0.0550157i
\(498\) −1.03182 3.17562i −0.0462371 0.142303i
\(499\) 5.36679 16.5173i 0.240250 0.739415i −0.756131 0.654420i \(-0.772913\pi\)
0.996381 0.0849943i \(-0.0270872\pi\)
\(500\) 0 0
\(501\) 17.8631 + 12.9783i 0.798063 + 0.579827i
\(502\) 3.92772 12.0883i 0.175303 0.539526i
\(503\) −11.0794 34.0988i −0.494005 1.52039i −0.818502 0.574503i \(-0.805195\pi\)
0.324498 0.945887i \(-0.394805\pi\)
\(504\) −10.4330 + 7.58000i −0.464722 + 0.337640i
\(505\) 0 0
\(506\) 5.70536 + 1.88367i 0.253634 + 0.0837393i
\(507\) −3.10530 −0.137911
\(508\) 14.0280 10.1919i 0.622392 0.452194i
\(509\) 0.660921 + 2.03410i 0.0292948 + 0.0901601i 0.964635 0.263590i \(-0.0849065\pi\)
−0.935340 + 0.353750i \(0.884906\pi\)
\(510\) 0 0
\(511\) 0.689106 + 0.500665i 0.0304843 + 0.0221481i
\(512\) −9.14306 6.64282i −0.404070 0.293574i
\(513\) −12.6918 + 39.0614i −0.560358 + 1.72461i
\(514\) −4.21591 12.9752i −0.185956 0.572313i
\(515\) 0 0
\(516\) −31.3115 −1.37841
\(517\) 11.4646 15.6238i 0.504214 0.687132i
\(518\) 4.53321 0.199178
\(519\) 25.4862 18.5168i 1.11872 0.812797i
\(520\) 0 0
\(521\) −3.93540 + 12.1119i −0.172413 + 0.530633i −0.999506 0.0314326i \(-0.989993\pi\)
0.827093 + 0.562065i \(0.189993\pi\)
\(522\) 17.4286 + 12.6626i 0.762828 + 0.554227i
\(523\) 19.3426 + 14.0532i 0.845793 + 0.614504i 0.923983 0.382434i \(-0.124914\pi\)
−0.0781901 + 0.996938i \(0.524914\pi\)
\(524\) 5.03317 15.4905i 0.219875 0.676705i
\(525\) 0 0
\(526\) 2.20286 1.60047i 0.0960493 0.0697839i
\(527\) 8.84510 0.385299
\(528\) 9.16075 2.92867i 0.398670 0.127454i
\(529\) −16.9686 −0.737766
\(530\) 0 0
\(531\) 4.46567 + 13.7439i 0.193794 + 0.596436i
\(532\) −3.55841 + 10.9517i −0.154277 + 0.474815i
\(533\) 10.9833 + 7.97983i 0.475739 + 0.345645i
\(534\) −13.6931 9.94862i −0.592558 0.430519i
\(535\) 0 0
\(536\) −4.84229 14.9030i −0.209155 0.643713i
\(537\) −3.33145 + 2.42044i −0.143763 + 0.104450i
\(538\) −7.33590 −0.316273
\(539\) −0.0931395 + 19.6881i −0.00401180 + 0.848027i
\(540\) 0 0
\(541\) −1.06726 + 0.775410i −0.0458851 + 0.0333375i −0.610491 0.792023i \(-0.709028\pi\)
0.564606 + 0.825360i \(0.309028\pi\)
\(542\) 0.285762 + 0.879484i 0.0122745 + 0.0377771i
\(543\) 8.07047 24.8384i 0.346337 1.06592i
\(544\) 11.3680 + 8.25932i 0.487398 + 0.354116i
\(545\) 0 0
\(546\) 2.27974 7.01631i 0.0975638 0.300270i
\(547\) −2.88044 8.86507i −0.123159 0.379043i 0.870403 0.492341i \(-0.163859\pi\)
−0.993561 + 0.113298i \(0.963859\pi\)
\(548\) 5.04261 3.66367i 0.215410 0.156504i
\(549\) 12.1659 0.519228
\(550\) 0 0
\(551\) 45.6625 1.94529
\(552\) −14.2403 + 10.3461i −0.606105 + 0.440361i
\(553\) 3.84949 + 11.8475i 0.163697 + 0.503807i
\(554\) 1.84482 5.67776i 0.0783788 0.241225i
\(555\) 0 0
\(556\) −7.01190 5.09444i −0.297371 0.216052i
\(557\) −12.1497 + 37.3929i −0.514798 + 1.58439i 0.268850 + 0.963182i \(0.413356\pi\)
−0.783648 + 0.621205i \(0.786644\pi\)
\(558\) −4.12353 12.6909i −0.174563 0.537250i
\(559\) 21.3441 15.5074i 0.902759 0.655893i
\(560\) 0 0
\(561\) −21.3010 + 6.80989i −0.899330 + 0.287514i
\(562\) 18.7141 0.789407
\(563\) 16.1649 11.7445i 0.681271 0.494972i −0.192508 0.981295i \(-0.561662\pi\)
0.873779 + 0.486323i \(0.161662\pi\)
\(564\) 7.39076 + 22.7464i 0.311207 + 0.957797i
\(565\) 0 0
\(566\) −12.1993 8.86330i −0.512774 0.372552i
\(567\) 0.286349 + 0.208045i 0.0120255 + 0.00873707i
\(568\) −1.59373 + 4.90499i −0.0668713 + 0.205809i
\(569\) −10.6811 32.8730i −0.447775 1.37811i −0.879412 0.476061i \(-0.842064\pi\)
0.431637 0.902047i \(-0.357936\pi\)
\(570\) 0 0
\(571\) 3.15090 0.131861 0.0659306 0.997824i \(-0.478998\pi\)
0.0659306 + 0.997824i \(0.478998\pi\)
\(572\) −9.85254 + 13.4268i −0.411955 + 0.561404i
\(573\) −12.5760 −0.525370
\(574\) 2.42273 1.76021i 0.101123 0.0734699i
\(575\) 0 0
\(576\) 3.42427 10.5388i 0.142678 0.439117i
\(577\) 22.1044 + 16.0598i 0.920220 + 0.668579i 0.943579 0.331148i \(-0.107436\pi\)
−0.0233590 + 0.999727i \(0.507436\pi\)
\(578\) 6.71273 + 4.87709i 0.279213 + 0.202860i
\(579\) 19.6927 60.6079i 0.818400 2.51878i
\(580\) 0 0
\(581\) −1.34340 + 0.976041i −0.0557338 + 0.0404930i
\(582\) −5.06614 −0.209998
\(583\) −37.3143 12.3196i −1.54540 0.510227i
\(584\) −2.10530 −0.0871180
\(585\) 0 0
\(586\) −0.581043 1.78827i −0.0240027 0.0738726i
\(587\) 14.2667 43.9082i 0.588848 1.81229i 0.00561158 0.999984i \(-0.498214\pi\)
0.583236 0.812303i \(-0.301786\pi\)
\(588\) −19.6583 14.2826i −0.810694 0.589003i
\(589\) −22.8823 16.6250i −0.942850 0.685020i
\(590\) 0 0
\(591\) 9.73771 + 29.9696i 0.400556 + 1.23278i
\(592\) 4.97186 3.61227i 0.204342 0.148463i
\(593\) −39.4265 −1.61905 −0.809525 0.587085i \(-0.800275\pi\)
−0.809525 + 0.587085i \(0.800275\pi\)
\(594\) 7.65124 + 10.6365i 0.313934 + 0.436420i
\(595\) 0 0
\(596\) −4.45746 + 3.23853i −0.182585 + 0.132656i
\(597\) −6.79399 20.9098i −0.278060 0.855780i
\(598\) 1.93075 5.94225i 0.0789544 0.242997i
\(599\) −0.848455 0.616438i −0.0346669 0.0251870i 0.570317 0.821425i \(-0.306820\pi\)
−0.604984 + 0.796238i \(0.706820\pi\)
\(600\) 0 0
\(601\) 8.42065 25.9161i 0.343485 1.05714i −0.618904 0.785466i \(-0.712423\pi\)
0.962390 0.271673i \(-0.0875768\pi\)
\(602\) −1.79835 5.53475i −0.0732952 0.225579i
\(603\) −24.3921 + 17.7219i −0.993325 + 0.721693i
\(604\) 35.4605 1.44287
\(605\) 0 0
\(606\) −15.6036 −0.633854
\(607\) 17.7350 12.8852i 0.719842 0.522996i −0.166492 0.986043i \(-0.553244\pi\)
0.886334 + 0.463047i \(0.153244\pi\)
\(608\) −13.8851 42.7338i −0.563114 1.73309i
\(609\) 5.33556 16.4212i 0.216208 0.665420i
\(610\) 0 0
\(611\) −16.3035 11.8452i −0.659569 0.479205i
\(612\) 5.29208 16.2873i 0.213920 0.658377i
\(613\) −3.27313 10.0736i −0.132200 0.406871i 0.862944 0.505300i \(-0.168618\pi\)
−0.995144 + 0.0984293i \(0.968618\pi\)
\(614\) 5.36653 3.89901i 0.216576 0.157351i
\(615\) 0 0
\(616\) 5.09209 + 7.07884i 0.205166 + 0.285215i
\(617\) −4.60402 −0.185351 −0.0926755 0.995696i \(-0.529542\pi\)
−0.0926755 + 0.995696i \(0.529542\pi\)
\(618\) −15.9098 + 11.5591i −0.639985 + 0.464976i
\(619\) 11.4348 + 35.1926i 0.459603 + 1.41451i 0.865645 + 0.500657i \(0.166908\pi\)
−0.406043 + 0.913854i \(0.633092\pi\)
\(620\) 0 0
\(621\) 10.6409 + 7.73110i 0.427006 + 0.310238i
\(622\) 12.0088 + 8.72489i 0.481508 + 0.349836i
\(623\) −2.60108 + 8.00529i −0.104210 + 0.320725i
\(624\) −3.09058 9.51183i −0.123722 0.380778i
\(625\) 0 0
\(626\) −5.24081 −0.209465
\(627\) 67.9055 + 22.4195i 2.71189 + 0.895350i
\(628\) 10.5291 0.420157
\(629\) −11.5608 + 8.39942i −0.460960 + 0.334907i
\(630\) 0 0
\(631\) −7.67617 + 23.6248i −0.305583 + 0.940489i 0.673875 + 0.738845i \(0.264628\pi\)
−0.979459 + 0.201644i \(0.935372\pi\)
\(632\) −24.9094 18.0977i −0.990843 0.719890i
\(633\) 51.7858 + 37.6246i 2.05830 + 1.49544i
\(634\) −0.522727 + 1.60879i −0.0207601 + 0.0638931i
\(635\) 0 0
\(636\) 39.2355 28.5062i 1.55579 1.13035i
\(637\) 20.4741 0.811213
\(638\) 8.61798 11.7444i 0.341189 0.464965i
\(639\) 9.92328 0.392559
\(640\) 0 0
\(641\) −13.7294 42.2547i −0.542278 1.66896i −0.727374 0.686241i \(-0.759260\pi\)
0.185096 0.982720i \(-0.440740\pi\)
\(642\) 2.97801 9.16538i 0.117533 0.361729i
\(643\) 20.9220 + 15.2007i 0.825082 + 0.599457i 0.918164 0.396201i \(-0.129672\pi\)
−0.0930818 + 0.995658i \(0.529672\pi\)
\(644\) 2.98341 + 2.16757i 0.117563 + 0.0854143i
\(645\) 0 0
\(646\) 4.19221 + 12.9023i 0.164940 + 0.507634i
\(647\) 15.7649 11.4539i 0.619782 0.450298i −0.233063 0.972462i \(-0.574875\pi\)
0.852845 + 0.522163i \(0.174875\pi\)
\(648\) −0.874831 −0.0343666
\(649\) 9.30768 2.97564i 0.365358 0.116804i
\(650\) 0 0
\(651\) −8.65244 + 6.28636i −0.339116 + 0.246382i
\(652\) 8.40814 + 25.8776i 0.329288 + 1.01344i
\(653\) 5.16979 15.9110i 0.202310 0.622645i −0.797504 0.603314i \(-0.793847\pi\)
0.999813 0.0193305i \(-0.00615349\pi\)
\(654\) 8.93996 + 6.49526i 0.349580 + 0.253985i
\(655\) 0 0
\(656\) 1.25454 3.86108i 0.0489815 0.150750i
\(657\) 1.25176 + 3.85251i 0.0488357 + 0.150301i
\(658\) −3.59627 + 2.61284i −0.140197 + 0.101859i
\(659\) −1.66127 −0.0647137 −0.0323569 0.999476i \(-0.510301\pi\)
−0.0323569 + 0.999476i \(0.510301\pi\)
\(660\) 0 0
\(661\) −44.0130 −1.71191 −0.855953 0.517053i \(-0.827029\pi\)
−0.855953 + 0.517053i \(0.827029\pi\)
\(662\) −9.18724 + 6.67492i −0.357072 + 0.259428i
\(663\) 7.18637 + 22.1174i 0.279096 + 0.858968i
\(664\) 1.26829 3.90338i 0.0492190 0.151481i
\(665\) 0 0
\(666\) 17.4411 + 12.6717i 0.675827 + 0.491017i
\(667\) 4.51879 13.9074i 0.174968 0.538497i
\(668\) 3.53314 + 10.8739i 0.136701 + 0.420723i
\(669\) −36.4907 + 26.5120i −1.41081 + 1.02501i
\(670\) 0 0
\(671\) 0.0389168 8.22636i 0.00150237 0.317575i
\(672\) −16.9904 −0.655419
\(673\) −31.2239 + 22.6855i −1.20359 + 0.874462i −0.994633 0.103462i \(-0.967008\pi\)
−0.208961 + 0.977924i \(0.567008\pi\)
\(674\) 4.44417 + 13.6778i 0.171183 + 0.526848i
\(675\) 0 0
\(676\) −1.30089 0.945154i −0.0500343 0.0363521i
\(677\) −31.2271 22.6878i −1.20016 0.871964i −0.205855 0.978582i \(-0.565998\pi\)
−0.994300 + 0.106619i \(0.965998\pi\)
\(678\) −0.195404 + 0.601391i −0.00750443 + 0.0230963i
\(679\) 0.778549 + 2.39613i 0.0298780 + 0.0919549i
\(680\) 0 0
\(681\) 67.9167 2.60257
\(682\) −8.59457 + 2.74766i −0.329103 + 0.105213i
\(683\) 0.748158 0.0286275 0.0143137 0.999898i \(-0.495444\pi\)
0.0143137 + 0.999898i \(0.495444\pi\)
\(684\) −44.3038 + 32.1886i −1.69400 + 1.23076i
\(685\) 0 0
\(686\) 3.04126 9.36005i 0.116116 0.357368i
\(687\) 34.1515 + 24.8125i 1.30296 + 0.946656i
\(688\) −6.38270 4.63730i −0.243338 0.176796i
\(689\) −12.6276 + 38.8637i −0.481073 + 1.48059i
\(690\) 0 0
\(691\) −4.22456 + 3.06932i −0.160710 + 0.116763i −0.665234 0.746635i \(-0.731668\pi\)
0.504524 + 0.863398i \(0.331668\pi\)
\(692\) 16.3128 0.620118
\(693\) 9.92603 13.5270i 0.377059 0.513847i
\(694\) 1.59998 0.0607342
\(695\) 0 0
\(696\) 13.1876 + 40.5873i 0.499875 + 1.53846i
\(697\) −2.91712 + 8.97796i −0.110494 + 0.340065i
\(698\) 14.9501 + 10.8619i 0.565871 + 0.411129i
\(699\) 25.9895 + 18.8824i 0.983011 + 0.714200i
\(700\) 0 0
\(701\) −4.37506 13.4650i −0.165244 0.508568i 0.833811 0.552051i \(-0.186155\pi\)
−0.999054 + 0.0434831i \(0.986155\pi\)
\(702\) 11.0232 8.00883i 0.416044 0.302274i
\(703\) 45.6952 1.72343
\(704\) −7.11520 2.34914i −0.268164 0.0885366i
\(705\) 0 0
\(706\) −13.8766 + 10.0820i −0.522255 + 0.379440i
\(707\) 2.39792 + 7.38004i 0.0901830 + 0.277555i
\(708\) −3.72678 + 11.4699i −0.140061 + 0.431064i
\(709\) 13.9267 + 10.1183i 0.523028 + 0.380002i 0.817744 0.575583i \(-0.195225\pi\)
−0.294715 + 0.955585i \(0.595225\pi\)
\(710\) 0 0
\(711\) −18.3068 + 56.3425i −0.686558 + 2.11301i
\(712\) −6.42893 19.7862i −0.240934 0.741519i
\(713\) −7.32792 + 5.32404i −0.274433 + 0.199387i
\(714\) 5.12978 0.191977
\(715\) 0 0
\(716\) −2.13233 −0.0796891
\(717\) −62.3393 + 45.2922i −2.32811 + 1.69147i
\(718\) 2.30733 + 7.10123i 0.0861087 + 0.265015i
\(719\) −8.20624 + 25.2562i −0.306041 + 0.941897i 0.673246 + 0.739419i \(0.264900\pi\)
−0.979287 + 0.202478i \(0.935100\pi\)
\(720\) 0 0
\(721\) 7.91208 + 5.74846i 0.294661 + 0.214084i
\(722\) 9.07457 27.9286i 0.337720 1.03940i
\(723\) 9.50377 + 29.2496i 0.353449 + 1.08780i
\(724\) 10.9409 7.94905i 0.406617 0.295424i
\(725\) 0 0
\(726\) 18.5823 13.2340i 0.689652 0.491160i
\(727\) −44.1917 −1.63898 −0.819490 0.573094i \(-0.805743\pi\)
−0.819490 + 0.573094i \(0.805743\pi\)
\(728\) 7.33622 5.33007i 0.271898 0.197546i
\(729\) −13.4392 41.3616i −0.497748 1.53191i
\(730\) 0 0
\(731\) 14.8414 + 10.7829i 0.548928 + 0.398819i
\(732\) 8.21389 + 5.96774i 0.303594 + 0.220574i
\(733\) −7.71320 + 23.7388i −0.284894 + 0.876812i 0.701537 + 0.712633i \(0.252498\pi\)
−0.986431 + 0.164179i \(0.947502\pi\)
\(734\) −0.845498 2.60218i −0.0312079 0.0960480i
\(735\) 0 0
\(736\) −14.3895 −0.530404
\(737\) 11.9052 + 16.5502i 0.438534 + 0.609635i
\(738\) 14.2415 0.524237
\(739\) −17.1789 + 12.4812i −0.631934 + 0.459127i −0.857070 0.515200i \(-0.827718\pi\)
0.225135 + 0.974327i \(0.427718\pi\)
\(740\) 0 0
\(741\) 22.9800 70.7251i 0.844190 2.59815i
\(742\) 7.29234 + 5.29820i 0.267710 + 0.194503i
\(743\) −24.7986 18.0172i −0.909772 0.660988i 0.0311852 0.999514i \(-0.490072\pi\)
−0.940957 + 0.338526i \(0.890072\pi\)
\(744\) 8.16862 25.1404i 0.299476 0.921693i
\(745\) 0 0
\(746\) −5.57387 + 4.04965i −0.204074 + 0.148268i
\(747\) −7.89694 −0.288934
\(748\) −10.9963 3.63051i −0.402064 0.132744i
\(749\) −4.79259 −0.175118
\(750\) 0 0
\(751\) −9.36548 28.8240i −0.341751 1.05180i −0.963300 0.268427i \(-0.913496\pi\)
0.621549 0.783375i \(-0.286504\pi\)
\(752\) −1.86223 + 5.73134i −0.0679084 + 0.209001i
\(753\) −39.1939 28.4760i −1.42831 1.03772i
\(754\) −12.2554 8.90404i −0.446314 0.324266i
\(755\) 0 0
\(756\) 2.48509 + 7.64833i 0.0903820 + 0.278167i
\(757\) −28.2099 + 20.4957i −1.02531 + 0.744929i −0.967364 0.253391i \(-0.918454\pi\)
−0.0579427 + 0.998320i \(0.518454\pi\)
\(758\) −7.23750 −0.262878
\(759\) 13.5483 18.4633i 0.491772 0.670176i
\(760\) 0 0
\(761\) 2.17603 1.58098i 0.0788809 0.0573104i −0.547646 0.836710i \(-0.684476\pi\)
0.626527 + 0.779400i \(0.284476\pi\)
\(762\) 7.63282 + 23.4914i 0.276508 + 0.851004i
\(763\) 1.69819 5.22650i 0.0614787 0.189212i
\(764\) −5.26842 3.82773i −0.190605 0.138482i
\(765\) 0 0
\(766\) 4.11365 12.6605i 0.148632 0.457443i
\(767\) −3.14015 9.66440i −0.113384 0.348961i
\(768\) 27.1431 19.7206i 0.979441 0.711605i
\(769\) −32.5735 −1.17463 −0.587315 0.809359i \(-0.699815\pi\)
−0.587315 + 0.809359i \(0.699815\pi\)
\(770\) 0 0
\(771\) −52.0010 −1.87277
\(772\) 26.6969 19.3964i 0.960841 0.698092i
\(773\) −12.8748 39.6246i −0.463074 1.42520i −0.861388 0.507947i \(-0.830405\pi\)
0.398314 0.917249i \(-0.369595\pi\)
\(774\) 8.55230 26.3213i 0.307406 0.946099i
\(775\) 0 0
\(776\) −5.03787 3.66022i −0.180849 0.131394i
\(777\) 5.33938 16.4329i 0.191549 0.589528i
\(778\) 7.10990 + 21.8820i 0.254902 + 0.784509i
\(779\) 24.4213 17.7431i 0.874984 0.635713i
\(780\) 0 0
\(781\) 0.0317431 6.70994i 0.00113586 0.240101i
\(782\) 4.34451 0.155359
\(783\) 25.7990 18.7441i 0.921983 0.669860i
\(784\) −1.89197 5.82288i −0.0675703 0.207960i
\(785\) 0 0
\(786\) 18.7707 + 13.6377i 0.669530 + 0.486442i
\(787\) −29.0605 21.1137i −1.03589 0.752622i −0.0664148 0.997792i \(-0.521156\pi\)
−0.969480 + 0.245170i \(0.921156\pi\)
\(788\) −5.04239 + 15.5189i −0.179628 + 0.552838i
\(789\) −3.20712 9.87049i −0.114176 0.351399i
\(790\) 0 0
\(791\) 0.314468 0.0111812
\(792\) −0.196179 + 41.4690i −0.00697093 + 1.47354i
\(793\) −8.55476 −0.303789
\(794\) −6.33833 + 4.60507i −0.224939 + 0.163428i
\(795\) 0 0
\(796\) 3.51808 10.8275i 0.124695 0.383771i
\(797\) −25.6618 18.6444i −0.908987 0.660418i 0.0317713 0.999495i \(-0.489885\pi\)
−0.940759 + 0.339077i \(0.889885\pi\)
\(798\) −13.2708 9.64178i −0.469780 0.341315i
\(799\) 4.33014 13.3268i 0.153189 0.471468i
\(800\) 0 0
\(801\) −32.3845 + 23.5287i −1.14425 + 0.831347i
\(802\) −20.3352 −0.718061
\(803\) 2.60900 0.834092i 0.0920698 0.0294345i
\(804\) −25.1617 −0.887384
\(805\) 0 0
\(806\) 2.89957 + 8.92396i 0.102133 + 0.314333i
\(807\) −8.64050 + 26.5927i −0.304160 + 0.936108i
\(808\) −15.5166 11.2734i −0.545870 0.396598i
\(809\) 6.88936 + 5.00541i 0.242217 + 0.175981i 0.702270 0.711910i \(-0.252170\pi\)
−0.460053 + 0.887891i \(0.652170\pi\)
\(810\) 0 0
\(811\) 2.79052 + 8.58832i 0.0979882 + 0.301577i 0.988021 0.154320i \(-0.0493186\pi\)
−0.890033 + 0.455897i \(0.849319\pi\)
\(812\) 7.23329 5.25529i 0.253839 0.184425i
\(813\) 3.52472 0.123617
\(814\) 8.62415 11.7528i 0.302276 0.411935i
\(815\) 0 0
\(816\) 5.62616 4.08764i 0.196955 0.143096i
\(817\) −18.1275 55.7908i −0.634202 1.95187i
\(818\) 3.27513 10.0798i 0.114512 0.352432i
\(819\) −14.1155 10.2555i −0.493235 0.358356i
\(820\) 0 0
\(821\) −16.7866 + 51.6638i −0.585856 + 1.80308i 0.00994979 + 0.999950i \(0.496833\pi\)
−0.595806 + 0.803129i \(0.703167\pi\)
\(822\) 2.74375 + 8.44439i 0.0956993 + 0.294532i
\(823\) 14.4486 10.4975i 0.503646 0.365920i −0.306762 0.951786i \(-0.599245\pi\)
0.810408 + 0.585866i \(0.199245\pi\)
\(824\) −24.1723 −0.842083
\(825\) 0 0
\(826\) −2.24151 −0.0779920
\(827\) −42.0280 + 30.5351i −1.46146 + 1.06181i −0.478474 + 0.878102i \(0.658810\pi\)
−0.982981 + 0.183708i \(0.941190\pi\)
\(828\) 5.41934 + 16.6790i 0.188335 + 0.579636i
\(829\) −6.10185 + 18.7796i −0.211926 + 0.652241i 0.787431 + 0.616402i \(0.211410\pi\)
−0.999358 + 0.0358392i \(0.988590\pi\)
\(830\) 0 0
\(831\) −18.4091 13.3750i −0.638603 0.463972i
\(832\) −2.40786 + 7.41064i −0.0834776 + 0.256918i
\(833\) 4.39930 + 13.5396i 0.152427 + 0.469121i
\(834\) 9.98849 7.25707i 0.345873 0.251292i
\(835\) 0 0
\(836\) 21.6236 + 30.0604i 0.747869 + 1.03966i
\(837\) −19.7528 −0.682757
\(838\) 18.7806 13.6449i 0.648763 0.471354i
\(839\) −1.27207 3.91502i −0.0439166 0.135162i 0.926694 0.375817i \(-0.122638\pi\)
−0.970611 + 0.240655i \(0.922638\pi\)
\(840\) 0 0
\(841\) −5.22128 3.79348i −0.180044 0.130810i
\(842\) −15.8567 11.5206i −0.546458 0.397025i
\(843\) 22.0422 67.8389i 0.759173 2.33649i
\(844\) 10.2427 + 31.5239i 0.352569 + 1.08510i
\(845\) 0 0
\(846\) −21.1400 −0.726807
\(847\) −9.11494 6.75507i −0.313193 0.232107i
\(848\) 12.2198 0.419630
\(849\) −46.4983 + 33.7830i −1.59582 + 1.15943i
\(850\) 0 0
\(851\) 4.52203 13.9174i 0.155013 0.477081i
\(852\) 6.69978 + 4.86767i 0.229531 + 0.166764i
\(853\) 4.45190 + 3.23449i 0.152430 + 0.110747i 0.661386 0.750046i \(-0.269968\pi\)
−0.508956 + 0.860792i \(0.669968\pi\)
\(854\) −0.583125 + 1.79468i −0.0199541 + 0.0614125i
\(855\) 0 0
\(856\) 9.58327 6.96265i 0.327549 0.237979i
\(857\) 26.9281 0.919847 0.459924 0.887959i \(-0.347877\pi\)
0.459924 + 0.887959i \(0.347877\pi\)
\(858\) −13.8534 19.2585i −0.472948 0.657476i
\(859\) 19.1519 0.653456 0.326728 0.945118i \(-0.394054\pi\)
0.326728 + 0.945118i \(0.394054\pi\)
\(860\) 0 0
\(861\) −3.52721 10.8556i −0.120207 0.369960i
\(862\) −0.881845 + 2.71404i −0.0300358 + 0.0924405i
\(863\) 4.01394 + 2.91630i 0.136636 + 0.0992720i 0.654004 0.756491i \(-0.273088\pi\)
−0.517368 + 0.855763i \(0.673088\pi\)
\(864\) −25.3869 18.4447i −0.863679 0.627500i
\(865\) 0 0
\(866\) −9.14937 28.1589i −0.310908 0.956877i
\(867\) 25.5860 18.5893i 0.868946 0.631326i
\(868\) −5.53810 −0.187975
\(869\) 38.0392 + 12.5589i 1.29039 + 0.426033i
\(870\) 0 0
\(871\) 17.1520 12.4616i 0.581172 0.422246i
\(872\) 4.19732 + 12.9180i 0.142139 + 0.437460i
\(873\) −3.70250 + 11.3951i −0.125311 + 0.385667i
\(874\) −11.2393 8.16581i −0.380174 0.276213i
\(875\) 0 0
\(876\) −1.04464 + 3.21508i −0.0352952 + 0.108627i
\(877\) 8.40691 + 25.8738i 0.283881 + 0.873696i 0.986732 + 0.162359i \(0.0519102\pi\)
−0.702851 + 0.711338i \(0.748090\pi\)
\(878\) −0.610706 + 0.443704i −0.0206103 + 0.0149743i
\(879\) −7.16686 −0.241732
\(880\) 0 0
\(881\) 10.3570 0.348935 0.174467 0.984663i \(-0.444180\pi\)
0.174467 + 0.984663i \(0.444180\pi\)
\(882\) 17.3757 12.6242i 0.585071 0.425079i
\(883\) −2.28515 7.03296i −0.0769014 0.236678i 0.905215 0.424954i \(-0.139710\pi\)
−0.982116 + 0.188276i \(0.939710\pi\)
\(884\) −3.72126 + 11.4529i −0.125159 + 0.385201i
\(885\) 0 0
\(886\) −9.59168 6.96877i −0.322239 0.234120i
\(887\) 5.58054 17.1752i 0.187376 0.576685i −0.812605 0.582815i \(-0.801951\pi\)
0.999981 + 0.00612989i \(0.00195122\pi\)
\(888\) 13.1970 + 40.6163i 0.442864 + 1.36299i
\(889\) 9.93772 7.22018i 0.333300 0.242157i
\(890\) 0 0
\(891\) 1.08414 0.346596i 0.0363200 0.0116114i
\(892\) −23.3563 −0.782027
\(893\) −36.2507 + 26.3377i −1.21309 + 0.881358i
\(894\) −2.42536 7.46450i −0.0811163 0.249650i
\(895\) 0 0
\(896\) −8.38734 6.09376i −0.280201 0.203578i
\(897\) −19.2666 13.9980i −0.643293 0.467380i
\(898\) 8.16997 25.1446i 0.272635 0.839085i
\(899\) 6.78623 + 20.8859i 0.226334 + 0.696583i
\(900\) 0 0
\(901\) −28.4141 −0.946612
\(902\) 0.0455564 9.62985i 0.00151686 0.320639i
\(903\) −22.1817 −0.738160
\(904\) −0.628811 + 0.456858i −0.0209139 + 0.0151949i
\(905\) 0 0
\(906\) −15.6096 + 48.0414i −0.518594 + 1.59607i
\(907\) 21.2748 + 15.4570i 0.706417 + 0.513242i 0.882016 0.471220i \(-0.156186\pi\)
−0.175599 + 0.984462i \(0.556186\pi\)
\(908\) 28.4521 + 20.6716i 0.944215 + 0.686013i
\(909\) −11.4036 + 35.0968i −0.378235 + 1.16409i
\(910\) 0 0
\(911\) −23.1774 + 16.8394i −0.767902 + 0.557913i −0.901324 0.433146i \(-0.857403\pi\)
0.133422 + 0.991059i \(0.457403\pi\)
\(912\) −22.2379 −0.736371
\(913\) −0.0252611 + 5.33976i −0.000836020 + 0.176720i
\(914\) 18.5535 0.613694
\(915\) 0 0
\(916\) 6.75483 + 20.7892i 0.223186 + 0.686896i
\(917\) 3.56560 10.9738i 0.117746 0.362386i
\(918\) 7.66487 + 5.56885i 0.252978 + 0.183799i
\(919\) −31.4358 22.8394i −1.03697 0.753404i −0.0672794 0.997734i \(-0.521432\pi\)
−0.969692 + 0.244330i \(0.921432\pi\)
\(920\) 0 0
\(921\) −7.81306 24.0461i −0.257449 0.792347i
\(922\) −3.97224 + 2.88600i −0.130819 + 0.0950455i
\(923\) −6.97781 −0.229677
\(924\) 13.3370 4.26381i 0.438756 0.140269i
\(925\) 0 0
\(926\) 23.1383 16.8110i 0.760373 0.552443i
\(927\) 14.3722 + 44.2332i 0.472046 + 1.45281i
\(928\) −10.7808 + 33.1799i −0.353898 + 1.08919i
\(929\) −6.00397 4.36214i −0.196984 0.143117i 0.484921 0.874558i \(-0.338848\pi\)
−0.681905 + 0.731441i \(0.738848\pi\)
\(930\) 0 0
\(931\) 14.0677 43.2959i 0.461050 1.41897i
\(932\) 5.14046 + 15.8207i 0.168381 + 0.518224i
\(933\) 45.7722 33.2554i 1.49851 1.08873i
\(934\) −16.6334 −0.544260
\(935\) 0 0
\(936\) 43.1245 1.40957
\(937\) −12.0834 + 8.77914i −0.394749 + 0.286802i −0.767399 0.641170i \(-0.778449\pi\)
0.372650 + 0.927972i \(0.378449\pi\)
\(938\) −1.44514 4.44768i −0.0471855 0.145222i
\(939\) −6.17282 + 18.9980i −0.201442 + 0.619975i
\(940\) 0 0
\(941\) 42.3447 + 30.7652i 1.38040 + 1.00292i 0.996843 + 0.0793986i \(0.0253000\pi\)
0.383554 + 0.923518i \(0.374700\pi\)
\(942\) −4.63488 + 14.2647i −0.151013 + 0.464769i
\(943\) −2.98727 9.19386i −0.0972788 0.299393i
\(944\) −2.45840 + 1.78613i −0.0800142 + 0.0581337i
\(945\) 0 0
\(946\) −17.7706 5.86711i −0.577773 0.190756i
\(947\) 3.69553 0.120088 0.0600442 0.998196i \(-0.480876\pi\)
0.0600442 + 0.998196i \(0.480876\pi\)
\(948\) −39.9976 + 29.0600i −1.29906 + 0.943825i
\(949\) −0.880206 2.70899i −0.0285727 0.0879377i
\(950\) 0 0
\(951\) 5.21618 + 3.78978i 0.169146 + 0.122892i
\(952\) 5.10116 + 3.70621i 0.165329 + 0.120119i
\(953\) −13.3349 + 41.0406i −0.431959 + 1.32943i 0.464211 + 0.885724i \(0.346338\pi\)
−0.896171 + 0.443709i \(0.853662\pi\)
\(954\) 13.2465 + 40.7685i 0.428871 + 1.31993i
\(955\) 0 0
\(956\) −39.9011 −1.29049
\(957\) −32.4229 45.0732i −1.04808 1.45701i
\(958\) −1.20373 −0.0388907
\(959\) 3.57229 2.59542i 0.115355 0.0838104i
\(960\) 0 0
\(961\) −5.37602 + 16.5457i −0.173420 + 0.533732i
\(962\) −12.2641 8.91041i −0.395411 0.287283i
\(963\) −18.4390 13.3967i −0.594189 0.431704i
\(964\) −4.92126 + 15.1461i −0.158503 + 0.487822i
\(965\) 0 0
\(966\) −4.24988 + 3.08772i −0.136738 + 0.0993457i
\(967\) 29.2144 0.939471 0.469736 0.882807i \(-0.344349\pi\)
0.469736 + 0.882807i \(0.344349\pi\)
\(968\) 28.0400 + 0.265306i 0.901238 + 0.00852725i
\(969\) 51.7087 1.66112
\(970\) 0 0
\(971\) −8.15948 25.1123i −0.261850 0.805892i −0.992402 0.123035i \(-0.960737\pi\)
0.730552 0.682857i \(-0.239263\pi\)
\(972\) 6.79437 20.9109i 0.217929 0.670718i
\(973\) −4.96737 3.60901i −0.159247 0.115699i
\(974\) 0.626780 + 0.455382i 0.0200833 + 0.0145914i
\(975\) 0 0
\(976\) 0.790528 + 2.43300i 0.0253042 + 0.0778783i
\(977\) −12.8176 + 9.31251i −0.410070 + 0.297934i −0.773630 0.633637i \(-0.781561\pi\)
0.363560 + 0.931571i \(0.381561\pi\)
\(978\) −38.7598 −1.23940
\(979\) 15.8061 + 21.9731i 0.505166 + 0.702263i
\(980\) 0 0
\(981\) 21.1432 15.3615i 0.675051 0.490454i
\(982\) −3.17163 9.76126i −0.101211 0.311494i
\(983\) −10.8477 + 33.3858i −0.345988 + 1.06484i 0.615064 + 0.788477i \(0.289130\pi\)
−0.961053 + 0.276365i \(0.910870\pi\)
\(984\) 22.8240 + 16.5826i 0.727604 + 0.528635i
\(985\) 0 0
\(986\) 3.25497 10.0178i 0.103659 0.319031i
\(987\) 5.23576 + 16.1140i 0.166656 + 0.512915i
\(988\) 31.1534 22.6342i 0.991120 0.720091i
\(989\) −18.7861 −0.597363
\(990\) 0 0
\(991\) 18.9700 0.602600 0.301300 0.953529i \(-0.402579\pi\)
0.301300 + 0.953529i \(0.402579\pi\)
\(992\) 17.4828 12.7020i 0.555078 0.403288i
\(993\) 13.3756 + 41.1658i 0.424461 + 1.30636i
\(994\) −0.475634 + 1.46385i −0.0150862 + 0.0464306i
\(995\) 0 0
\(996\) −5.33167 3.87369i −0.168940 0.122742i
\(997\) −9.31213 + 28.6598i −0.294918 + 0.907665i 0.688331 + 0.725397i \(0.258344\pi\)
−0.983249 + 0.182268i \(0.941656\pi\)
\(998\) 3.95876 + 12.1838i 0.125312 + 0.385672i
\(999\) 25.8175 18.7575i 0.816830 0.593462i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.a.201.1 8
5.2 odd 4 275.2.z.a.124.2 16
5.3 odd 4 275.2.z.a.124.3 16
5.4 even 2 55.2.g.b.36.2 yes 8
11.2 odd 10 3025.2.a.w.1.2 4
11.4 even 5 inner 275.2.h.a.26.1 8
11.9 even 5 3025.2.a.bd.1.3 4
15.14 odd 2 495.2.n.e.91.1 8
20.19 odd 2 880.2.bo.h.641.2 8
55.4 even 10 55.2.g.b.26.2 8
55.9 even 10 605.2.a.j.1.2 4
55.14 even 10 605.2.g.m.511.1 8
55.19 odd 10 605.2.g.e.511.2 8
55.24 odd 10 605.2.a.k.1.3 4
55.29 odd 10 605.2.g.k.81.1 8
55.37 odd 20 275.2.z.a.224.3 16
55.39 odd 10 605.2.g.e.251.2 8
55.48 odd 20 275.2.z.a.224.2 16
55.49 even 10 605.2.g.m.251.1 8
55.54 odd 2 605.2.g.k.366.1 8
165.59 odd 10 495.2.n.e.136.1 8
165.119 odd 10 5445.2.a.bp.1.3 4
165.134 even 10 5445.2.a.bi.1.2 4
220.59 odd 10 880.2.bo.h.81.2 8
220.79 even 10 9680.2.a.cm.1.4 4
220.119 odd 10 9680.2.a.cn.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.26.2 8 55.4 even 10
55.2.g.b.36.2 yes 8 5.4 even 2
275.2.h.a.26.1 8 11.4 even 5 inner
275.2.h.a.201.1 8 1.1 even 1 trivial
275.2.z.a.124.2 16 5.2 odd 4
275.2.z.a.124.3 16 5.3 odd 4
275.2.z.a.224.2 16 55.48 odd 20
275.2.z.a.224.3 16 55.37 odd 20
495.2.n.e.91.1 8 15.14 odd 2
495.2.n.e.136.1 8 165.59 odd 10
605.2.a.j.1.2 4 55.9 even 10
605.2.a.k.1.3 4 55.24 odd 10
605.2.g.e.251.2 8 55.39 odd 10
605.2.g.e.511.2 8 55.19 odd 10
605.2.g.k.81.1 8 55.29 odd 10
605.2.g.k.366.1 8 55.54 odd 2
605.2.g.m.251.1 8 55.49 even 10
605.2.g.m.511.1 8 55.14 even 10
880.2.bo.h.81.2 8 220.59 odd 10
880.2.bo.h.641.2 8 20.19 odd 2
3025.2.a.w.1.2 4 11.2 odd 10
3025.2.a.bd.1.3 4 11.9 even 5
5445.2.a.bi.1.2 4 165.134 even 10
5445.2.a.bp.1.3 4 165.119 odd 10
9680.2.a.cm.1.4 4 220.79 even 10
9680.2.a.cn.1.4 4 220.119 odd 10