Properties

Label 6048.2.c
Level $6048$
Weight $2$
Character orbit 6048.c
Rep. character $\chi_{6048}(3025,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $7$
Sturm bound $2304$
Trace bound $31$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6048.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(2304\)
Trace bound: \(31\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6048, [\chi])\).

Total New Old
Modular forms 1200 96 1104
Cusp forms 1104 96 1008
Eisenstein series 96 0 96

Trace form

\( 96 q - 96 q^{25} + 16 q^{31} + 96 q^{49} - 32 q^{55} - 80 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(6048, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
6048.2.c.a 6048.c 8.b $2$ $48.294$ \(\Q(\sqrt{-1}) \) None 1512.2.c.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{5}+q^{7}-5 i q^{13}-q^{17}+4 i q^{19}+\cdots\)
6048.2.c.b 6048.c 8.b $2$ $48.294$ \(\Q(\sqrt{-1}) \) None 1512.2.c.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{5}+q^{7}+5 i q^{13}+q^{17}-4 i q^{19}+\cdots\)
6048.2.c.c 6048.c 8.b $8$ $48.294$ 8.0.3317760000.5 None 1512.2.c.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{5}+q^{7}+(2\beta _{2}+\beta _{6})q^{11}+(-\beta _{1}+\cdots)q^{13}+\cdots\)
6048.2.c.d 6048.c 8.b $16$ $48.294$ \(\Q(\zeta_{40})\) None 1512.2.c.d \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{12}+\beta_{11})q^{5}+q^{7}-\beta_{12} q^{11}+\cdots\)
6048.2.c.e 6048.c 8.b $20$ $48.294$ 20.0.\(\cdots\).1 None 1512.2.c.e \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{12}q^{5}+q^{7}+(-\beta _{4}-\beta _{10}+\beta _{12}+\cdots)q^{11}+\cdots\)
6048.2.c.f 6048.c 8.b $24$ $48.294$ None 1512.2.c.g \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{2}]$
6048.2.c.g 6048.c 8.b $24$ $48.294$ None 1512.2.c.f \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(6048, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6048, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1512, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)