Properties

Label 6048.2.c.c
Level 6048
Weight 2
Character orbit 6048.c
Analytic conductor 48.294
Analytic rank 0
Dimension 8
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(48.2935231425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.5
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1512)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{5} + q^{7} +O(q^{10})\) \( q + \beta_{6} q^{5} + q^{7} + ( 2 \beta_{2} + \beta_{6} ) q^{11} + ( -\beta_{1} - \beta_{7} ) q^{13} + ( \beta_{4} - \beta_{5} ) q^{17} + ( -4 \beta_{1} - \beta_{7} ) q^{19} -\beta_{5} q^{23} + ( 1 - \beta_{3} ) q^{25} + ( -\beta_{2} + \beta_{6} ) q^{29} + 7 q^{31} + \beta_{6} q^{35} + ( 2 \beta_{1} + \beta_{7} ) q^{37} + ( 4 \beta_{4} + 3 \beta_{5} ) q^{41} + ( -5 \beta_{1} - \beta_{7} ) q^{43} + ( -3 \beta_{4} - 3 \beta_{5} ) q^{47} + q^{49} + ( -6 - \beta_{3} ) q^{55} + ( 3 \beta_{2} - 5 \beta_{6} ) q^{59} + ( -6 \beta_{1} + 2 \beta_{7} ) q^{61} + ( 5 \beta_{4} + \beta_{5} ) q^{65} + ( -3 \beta_{1} - 3 \beta_{7} ) q^{67} + ( -\beta_{4} + 2 \beta_{5} ) q^{71} + ( -3 - \beta_{3} ) q^{73} + ( 2 \beta_{2} + \beta_{6} ) q^{77} + ( -1 + 3 \beta_{3} ) q^{79} + ( 3 \beta_{2} - 5 \beta_{6} ) q^{83} + ( 5 \beta_{1} + \beta_{7} ) q^{85} + ( 4 \beta_{4} + 3 \beta_{5} ) q^{89} + ( -\beta_{1} - \beta_{7} ) q^{91} + ( 8 \beta_{4} + \beta_{5} ) q^{95} + ( -2 + 2 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{7} + O(q^{10}) \) \( 8q + 8q^{7} + 8q^{25} + 56q^{31} + 8q^{49} - 48q^{55} - 24q^{73} - 8q^{79} - 16q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 7 x^{4} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{6} - 3 \nu^{2} \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{7} - 7 \nu^{3} + 8 \nu \)\()/8\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{6} + 11 \nu^{2} \)\()/4\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} + 7 \nu^{3} + 8 \nu \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{7} - 2 \nu^{5} - 3 \nu^{3} + 6 \nu \)\()/4\)
\(\beta_{6}\)\(=\)\((\)\( \nu^{7} + 2 \nu^{5} - 3 \nu^{3} - 6 \nu \)\()/4\)
\(\beta_{7}\)\(=\)\( 2 \nu^{4} - 7 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} + \beta_{2}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + \beta_{1}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{6} + \beta_{5} + 2 \beta_{4} - 2 \beta_{2}\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(\beta_{7} + 7\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(2 \beta_{6} - 2 \beta_{5} + 3 \beta_{4} + 3 \beta_{2}\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(3 \beta_{3} + 11 \beta_{1}\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(7 \beta_{6} + 7 \beta_{5} + 6 \beta_{4} - 6 \beta_{2}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6048\mathbb{Z}\right)^\times\).

\(n\) \(2593\) \(3781\) \(3809\) \(4159\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3025.1
−1.40294 0.178197i
1.40294 0.178197i
0.178197 1.40294i
−0.178197 1.40294i
−0.178197 + 1.40294i
0.178197 + 1.40294i
1.40294 + 0.178197i
−1.40294 + 0.178197i
0 0 0 2.80588i 0 1.00000 0 0 0
3025.2 0 0 0 2.80588i 0 1.00000 0 0 0
3025.3 0 0 0 0.356394i 0 1.00000 0 0 0
3025.4 0 0 0 0.356394i 0 1.00000 0 0 0
3025.5 0 0 0 0.356394i 0 1.00000 0 0 0
3025.6 0 0 0 0.356394i 0 1.00000 0 0 0
3025.7 0 0 0 2.80588i 0 1.00000 0 0 0
3025.8 0 0 0 2.80588i 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3025.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6048.2.c.c 8
3.b odd 2 1 inner 6048.2.c.c 8
4.b odd 2 1 1512.2.c.c 8
8.b even 2 1 inner 6048.2.c.c 8
8.d odd 2 1 1512.2.c.c 8
12.b even 2 1 1512.2.c.c 8
24.f even 2 1 1512.2.c.c 8
24.h odd 2 1 inner 6048.2.c.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.c.c 8 4.b odd 2 1
1512.2.c.c 8 8.d odd 2 1
1512.2.c.c 8 12.b even 2 1
1512.2.c.c 8 24.f even 2 1
6048.2.c.c 8 1.a even 1 1 trivial
6048.2.c.c 8 3.b odd 2 1 inner
6048.2.c.c 8 8.b even 2 1 inner
6048.2.c.c 8 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6048, [\chi])\):

\( T_{5}^{4} + 8 T_{5}^{2} + 1 \)
\( T_{17}^{2} - 10 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( ( 1 - 12 T^{2} + 71 T^{4} - 300 T^{6} + 625 T^{8} )^{2} \)
$7$ \( ( 1 - T )^{8} \)
$11$ \( ( 1 + 4 T^{2} + 111 T^{4} + 484 T^{6} + 14641 T^{8} )^{2} \)
$13$ \( ( 1 - 20 T^{2} + 378 T^{4} - 3380 T^{6} + 28561 T^{8} )^{2} \)
$17$ \( ( 1 + 24 T^{2} + 289 T^{4} )^{4} \)
$19$ \( ( 1 - 14 T^{2} - 189 T^{4} - 5054 T^{6} + 130321 T^{8} )^{2} \)
$23$ \( ( 1 + 84 T^{2} + 2807 T^{4} + 44436 T^{6} + 279841 T^{8} )^{2} \)
$29$ \( ( 1 - 52 T^{2} + 841 T^{4} )^{4} \)
$31$ \( ( 1 - 7 T + 31 T^{2} )^{8} \)
$37$ \( ( 1 - 110 T^{2} + 5523 T^{4} - 150590 T^{6} + 1874161 T^{8} )^{2} \)
$41$ \( ( 1 + 12 T^{2} + 2663 T^{4} + 20172 T^{6} + 2825761 T^{8} )^{2} \)
$43$ \( ( 1 - 92 T^{2} + 4314 T^{4} - 170108 T^{6} + 3418801 T^{8} )^{2} \)
$47$ \( ( 1 + 40 T^{2} + 2209 T^{4} )^{4} \)
$53$ \( ( 1 - 53 T^{2} )^{8} \)
$59$ \( ( 1 - 24 T^{2} + 3266 T^{4} - 83544 T^{6} + 12117361 T^{8} )^{2} \)
$61$ \( ( 1 - 52 T^{2} - 522 T^{4} - 193492 T^{6} + 13845841 T^{8} )^{2} \)
$67$ \( ( 1 + 20 T^{2} + 4218 T^{4} + 89780 T^{6} + 20151121 T^{8} )^{2} \)
$71$ \( ( 1 + 236 T^{2} + 23871 T^{4} + 1189676 T^{6} + 25411681 T^{8} )^{2} \)
$73$ \( ( 1 + 6 T + 140 T^{2} + 438 T^{3} + 5329 T^{4} )^{4} \)
$79$ \( ( 1 + 2 T + 24 T^{2} + 158 T^{3} + 6241 T^{4} )^{4} \)
$83$ \( ( 1 - 120 T^{2} + 13538 T^{4} - 826680 T^{6} + 47458321 T^{8} )^{2} \)
$89$ \( ( 1 + 204 T^{2} + 25511 T^{4} + 1615884 T^{6} + 62742241 T^{8} )^{2} \)
$97$ \( ( 1 + 4 T + 138 T^{2} + 388 T^{3} + 9409 T^{4} )^{4} \)
show more
show less