Properties

Label 6048.2.c.d
Level 6048
Weight 2
Character orbit 6048.c
Analytic conductor 48.294
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6048 = 2^{5} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6048.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(48.2935231425\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 1512)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{40}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{40} - \zeta_{40}^{3} + \zeta_{40}^{5} - \zeta_{40}^{11} - \zeta_{40}^{13} + 2 \zeta_{40}^{15} ) q^{5} + q^{7} +O(q^{10})\) \( q + ( \zeta_{40} - \zeta_{40}^{3} + \zeta_{40}^{5} - \zeta_{40}^{11} - \zeta_{40}^{13} + 2 \zeta_{40}^{15} ) q^{5} + q^{7} + ( -2 \zeta_{40}^{5} - \zeta_{40}^{7} + \zeta_{40}^{9} + \zeta_{40}^{11} - \zeta_{40}^{13} - 2 \zeta_{40}^{15} ) q^{11} + ( 1 - 2 \zeta_{40}^{4} + 3 \zeta_{40}^{6} + \zeta_{40}^{8} - \zeta_{40}^{12} + 3 \zeta_{40}^{14} ) q^{13} + ( 2 \zeta_{40} + 2 \zeta_{40}^{3} - \zeta_{40}^{5} - 2 \zeta_{40}^{7} + 2 \zeta_{40}^{9} - \zeta_{40}^{15} ) q^{17} + ( -1 + 2 \zeta_{40}^{4} + 2 \zeta_{40}^{12} ) q^{19} + ( -\zeta_{40} - \zeta_{40}^{3} - 3 \zeta_{40}^{5} + 4 \zeta_{40}^{7} + 2 \zeta_{40}^{9} - 3 \zeta_{40}^{11} - 3 \zeta_{40}^{13} + 4 \zeta_{40}^{15} ) q^{23} + ( -3 + 6 \zeta_{40}^{2} - 2 \zeta_{40}^{8} + 3 \zeta_{40}^{10} + 2 \zeta_{40}^{12} - 6 \zeta_{40}^{14} ) q^{25} + ( -\zeta_{40} + \zeta_{40}^{3} - \zeta_{40}^{7} - 5 \zeta_{40}^{9} - 4 \zeta_{40}^{11} - \zeta_{40}^{15} ) q^{29} + ( -3 - 6 \zeta_{40}^{2} + 3 \zeta_{40}^{6} - \zeta_{40}^{8} - 3 \zeta_{40}^{10} + \zeta_{40}^{12} + 3 \zeta_{40}^{14} ) q^{31} + ( \zeta_{40} - \zeta_{40}^{3} + \zeta_{40}^{5} - \zeta_{40}^{11} - \zeta_{40}^{13} + 2 \zeta_{40}^{15} ) q^{35} + ( -1 + 2 \zeta_{40}^{4} + 3 \zeta_{40}^{6} - 3 \zeta_{40}^{8} - 3 \zeta_{40}^{10} - \zeta_{40}^{12} + 3 \zeta_{40}^{14} ) q^{37} + ( 2 \zeta_{40} + 2 \zeta_{40}^{3} + \zeta_{40}^{7} - \zeta_{40}^{9} + 3 \zeta_{40}^{11} - 3 \zeta_{40}^{13} - 2 \zeta_{40}^{15} ) q^{41} + ( 3 - 6 \zeta_{40}^{4} - 3 \zeta_{40}^{6} - \zeta_{40}^{8} + 6 \zeta_{40}^{10} - 7 \zeta_{40}^{12} - 3 \zeta_{40}^{14} ) q^{43} + ( 3 \zeta_{40} + 3 \zeta_{40}^{3} + 3 \zeta_{40}^{7} + 3 \zeta_{40}^{9} - 6 \zeta_{40}^{13} - 3 \zeta_{40}^{15} ) q^{47} + q^{49} + ( -6 \zeta_{40} + 6 \zeta_{40}^{3} + 4 \zeta_{40}^{5} - 4 \zeta_{40}^{7} - 2 \zeta_{40}^{9} + 4 \zeta_{40}^{11} + 2 \zeta_{40}^{13} - 2 \zeta_{40}^{15} ) q^{53} + ( 4 - 3 \zeta_{40}^{6} - \zeta_{40}^{8} + \zeta_{40}^{12} + 3 \zeta_{40}^{14} ) q^{55} + ( -\zeta_{40} + \zeta_{40}^{3} + 4 \zeta_{40}^{5} + \zeta_{40}^{7} - \zeta_{40}^{9} + 2 \zeta_{40}^{13} + 3 \zeta_{40}^{15} ) q^{59} + ( -2 + 4 \zeta_{40}^{4} - 2 \zeta_{40}^{8} + 6 \zeta_{40}^{10} + 2 \zeta_{40}^{12} ) q^{61} + ( \zeta_{40} + \zeta_{40}^{3} - 4 \zeta_{40}^{5} + 5 \zeta_{40}^{7} - 5 \zeta_{40}^{9} + 6 \zeta_{40}^{11} - 6 \zeta_{40}^{13} + 3 \zeta_{40}^{15} ) q^{65} + ( -3 + 6 \zeta_{40}^{4} - 3 \zeta_{40}^{6} - 7 \zeta_{40}^{8} - \zeta_{40}^{12} - 3 \zeta_{40}^{14} ) q^{67} + ( -\zeta_{40} - \zeta_{40}^{3} - 4 \zeta_{40}^{5} + 4 \zeta_{40}^{7} + 2 \zeta_{40}^{9} - 3 \zeta_{40}^{11} - 3 \zeta_{40}^{13} + 5 \zeta_{40}^{15} ) q^{71} + ( 3 + 3 \zeta_{40}^{6} + 3 \zeta_{40}^{8} - 3 \zeta_{40}^{12} - 3 \zeta_{40}^{14} ) q^{73} + ( -2 \zeta_{40}^{5} - \zeta_{40}^{7} + \zeta_{40}^{9} + \zeta_{40}^{11} - \zeta_{40}^{13} - 2 \zeta_{40}^{15} ) q^{77} + ( -3 + 12 \zeta_{40}^{2} - 9 \zeta_{40}^{6} - 3 \zeta_{40}^{8} + 6 \zeta_{40}^{10} + 3 \zeta_{40}^{12} - 3 \zeta_{40}^{14} ) q^{79} + ( -7 \zeta_{40} + 7 \zeta_{40}^{3} + 8 \zeta_{40}^{5} - 3 \zeta_{40}^{7} - 3 \zeta_{40}^{9} + 4 \zeta_{40}^{11} + 4 \zeta_{40}^{13} + \zeta_{40}^{15} ) q^{83} + ( 1 - 2 \zeta_{40}^{4} + 6 \zeta_{40}^{6} - 2 \zeta_{40}^{8} - 3 \zeta_{40}^{10} - 4 \zeta_{40}^{12} + 6 \zeta_{40}^{14} ) q^{85} + ( 4 \zeta_{40} + 4 \zeta_{40}^{3} - \zeta_{40}^{7} + 7 \zeta_{40}^{9} - 3 \zeta_{40}^{11} - 3 \zeta_{40}^{13} - 4 \zeta_{40}^{15} ) q^{89} + ( 1 - 2 \zeta_{40}^{4} + 3 \zeta_{40}^{6} + \zeta_{40}^{8} - \zeta_{40}^{12} + 3 \zeta_{40}^{14} ) q^{91} + ( -\zeta_{40} - \zeta_{40}^{3} + 3 \zeta_{40}^{5} - 2 \zeta_{40}^{7} + 2 \zeta_{40}^{9} - 3 \zeta_{40}^{11} + 3 \zeta_{40}^{13} - 2 \zeta_{40}^{15} ) q^{95} + ( -4 - 10 \zeta_{40}^{8} + 10 \zeta_{40}^{12} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 16q^{7} + O(q^{10}) \) \( 16q + 16q^{7} - 32q^{25} - 40q^{31} + 16q^{49} + 72q^{55} + 24q^{73} - 24q^{79} + 16q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6048\mathbb{Z}\right)^\times\).

\(n\) \(2593\) \(3781\) \(3809\) \(4159\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3025.1
0.156434 0.987688i
−0.156434 0.987688i
−0.891007 0.453990i
0.891007 0.453990i
−0.453990 + 0.891007i
0.453990 + 0.891007i
−0.987688 + 0.156434i
0.987688 + 0.156434i
0.987688 0.156434i
−0.987688 0.156434i
0.453990 0.891007i
−0.453990 0.891007i
0.891007 + 0.453990i
−0.891007 + 0.453990i
−0.156434 + 0.987688i
0.156434 + 0.987688i
0 0 0 4.29757i 0 1.00000 0 0 0
3025.2 0 0 0 4.29757i 0 1.00000 0 0 0
3025.3 0 0 0 2.63506i 0 1.00000 0 0 0
3025.4 0 0 0 2.63506i 0 1.00000 0 0 0
3025.5 0 0 0 1.60758i 0 1.00000 0 0 0
3025.6 0 0 0 1.60758i 0 1.00000 0 0 0
3025.7 0 0 0 0.0549306i 0 1.00000 0 0 0
3025.8 0 0 0 0.0549306i 0 1.00000 0 0 0
3025.9 0 0 0 0.0549306i 0 1.00000 0 0 0
3025.10 0 0 0 0.0549306i 0 1.00000 0 0 0
3025.11 0 0 0 1.60758i 0 1.00000 0 0 0
3025.12 0 0 0 1.60758i 0 1.00000 0 0 0
3025.13 0 0 0 2.63506i 0 1.00000 0 0 0
3025.14 0 0 0 2.63506i 0 1.00000 0 0 0
3025.15 0 0 0 4.29757i 0 1.00000 0 0 0
3025.16 0 0 0 4.29757i 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3025.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6048.2.c.d 16
3.b odd 2 1 inner 6048.2.c.d 16
4.b odd 2 1 1512.2.c.d 16
8.b even 2 1 inner 6048.2.c.d 16
8.d odd 2 1 1512.2.c.d 16
12.b even 2 1 1512.2.c.d 16
24.f even 2 1 1512.2.c.d 16
24.h odd 2 1 inner 6048.2.c.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.c.d 16 4.b odd 2 1
1512.2.c.d 16 8.d odd 2 1
1512.2.c.d 16 12.b even 2 1
1512.2.c.d 16 24.f even 2 1
6048.2.c.d 16 1.a even 1 1 trivial
6048.2.c.d 16 3.b odd 2 1 inner
6048.2.c.d 16 8.b even 2 1 inner
6048.2.c.d 16 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6048, [\chi])\):

\( T_{5}^{8} + 28 T_{5}^{6} + 194 T_{5}^{4} + 332 T_{5}^{2} + 1 \)
\( T_{17}^{2} - 10 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( ( 1 - 12 T^{2} + 54 T^{4} - 48 T^{6} - 469 T^{8} - 1200 T^{10} + 33750 T^{12} - 187500 T^{14} + 390625 T^{16} )^{2} \)
$7$ \( ( 1 - T )^{16} \)
$11$ \( ( 1 - 60 T^{2} + 1734 T^{4} - 31920 T^{6} + 413051 T^{8} - 3862320 T^{10} + 25387494 T^{12} - 106293660 T^{14} + 214358881 T^{16} )^{2} \)
$13$ \( ( 1 - 40 T^{2} + 936 T^{4} - 16040 T^{6} + 219326 T^{8} - 2710760 T^{10} + 26733096 T^{12} - 193072360 T^{14} + 815730721 T^{16} )^{2} \)
$17$ \( ( 1 + 24 T^{2} + 289 T^{4} )^{8} \)
$19$ \( ( 1 - 66 T^{2} + 1791 T^{4} - 23826 T^{6} + 130321 T^{8} )^{4} \)
$23$ \( ( 1 + 52 T^{2} + 2430 T^{4} + 71312 T^{6} + 1906499 T^{8} + 37724048 T^{10} + 680013630 T^{12} + 7697866228 T^{14} + 78310985281 T^{16} )^{2} \)
$29$ \( ( 1 - 44 T^{2} + 960 T^{4} - 18676 T^{6} + 833774 T^{8} - 15706516 T^{10} + 678989760 T^{12} - 26172226124 T^{14} + 500246412961 T^{16} )^{2} \)
$31$ \( ( 1 + 10 T + 114 T^{2} + 800 T^{3} + 5351 T^{4} + 24800 T^{5} + 109554 T^{6} + 297910 T^{7} + 923521 T^{8} )^{4} \)
$37$ \( ( 1 - 192 T^{2} + 17010 T^{4} - 960672 T^{6} + 40219139 T^{8} - 1315159968 T^{10} + 31879478610 T^{12} - 492619470528 T^{14} + 3512479453921 T^{16} )^{2} \)
$41$ \( ( 1 + 220 T^{2} + 24294 T^{4} + 1713680 T^{6} + 83598011 T^{8} + 2880696080 T^{10} + 68649037734 T^{12} + 1045022933020 T^{14} + 7984925229121 T^{16} )^{2} \)
$43$ \( ( 1 + 32 T^{2} + 4920 T^{4} + 158992 T^{6} + 11619614 T^{8} + 293976208 T^{10} + 16820500920 T^{12} + 202283617568 T^{14} + 11688200277601 T^{16} )^{2} \)
$47$ \( ( 1 + 124 T^{2} + 7312 T^{4} + 372292 T^{6} + 18784750 T^{8} + 822393028 T^{10} + 35680227472 T^{12} + 1336622700796 T^{14} + 23811286661761 T^{16} )^{2} \)
$53$ \( ( 1 - 216 T^{2} + 24972 T^{4} - 2015208 T^{6} + 122805830 T^{8} - 5660719272 T^{10} + 197041091532 T^{12} - 4787502003864 T^{14} + 62259690411361 T^{16} )^{2} \)
$59$ \( ( 1 - 380 T^{2} + 67344 T^{4} - 7257700 T^{6} + 519439886 T^{8} - 25264053700 T^{10} + 816031559184 T^{12} - 16028602783580 T^{14} + 146830437604321 T^{16} )^{2} \)
$61$ \( ( 1 - 304 T^{2} + 46620 T^{4} - 4694096 T^{6} + 336476774 T^{8} - 17466731216 T^{10} + 645493107420 T^{12} - 15662193805744 T^{14} + 191707312997281 T^{16} )^{2} \)
$67$ \( ( 1 - 232 T^{2} + 32520 T^{4} - 3258632 T^{6} + 244468094 T^{8} - 14627999048 T^{10} + 655314454920 T^{12} - 20986344663208 T^{14} + 406067677556641 T^{16} )^{2} \)
$71$ \( ( 1 + 396 T^{2} + 77350 T^{4} + 9537264 T^{6} + 808347579 T^{8} + 48077347824 T^{10} + 1965593525350 T^{12} + 50727712432716 T^{14} + 645753531245761 T^{16} )^{2} \)
$73$ \( ( 1 - 6 T + 238 T^{2} - 990 T^{3} + 23766 T^{4} - 72270 T^{5} + 1268302 T^{6} - 2334102 T^{7} + 28398241 T^{8} )^{4} \)
$79$ \( ( 1 + 6 T + 82 T^{2} + 18 T^{3} + 6630 T^{4} + 1422 T^{5} + 511762 T^{6} + 2958234 T^{7} + 38950081 T^{8} )^{4} \)
$83$ \( ( 1 - 252 T^{2} + 47280 T^{4} - 5629572 T^{6} + 552317774 T^{8} - 38782121508 T^{10} + 2243829416880 T^{12} - 82388974088988 T^{14} + 2252292232139041 T^{16} )^{2} \)
$89$ \( ( 1 + 364 T^{2} + 76230 T^{4} + 10653296 T^{6} + 1102200539 T^{8} + 84384757616 T^{10} + 4782841031430 T^{12} + 180901189909804 T^{14} + 3936588805702081 T^{16} )^{2} \)
$97$ \( ( 1 - 2 T + 70 T^{2} - 194 T^{3} + 9409 T^{4} )^{8} \)
show more
show less