Properties

Label 6034.2.a
Level $6034$
Weight $2$
Character orbit 6034.a
Rep. character $\chi_{6034}(1,\cdot)$
Character field $\Q$
Dimension $215$
Newform subspaces $18$
Sturm bound $1728$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6034 = 2 \cdot 7 \cdot 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6034.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(1728\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6034))\).

Total New Old
Modular forms 868 215 653
Cusp forms 861 215 646
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(431\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(102\)\(28\)\(74\)\(102\)\(28\)\(74\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(113\)\(25\)\(88\)\(112\)\(25\)\(87\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(115\)\(27\)\(88\)\(114\)\(27\)\(87\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(104\)\(26\)\(78\)\(103\)\(26\)\(77\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(108\)\(32\)\(76\)\(107\)\(32\)\(75\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(109\)\(23\)\(86\)\(108\)\(23\)\(85\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(109\)\(21\)\(88\)\(108\)\(21\)\(87\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(108\)\(33\)\(75\)\(107\)\(33\)\(74\)\(1\)\(0\)\(1\)
Plus space\(+\)\(424\)\(98\)\(326\)\(421\)\(98\)\(323\)\(3\)\(0\)\(3\)
Minus space\(-\)\(444\)\(117\)\(327\)\(440\)\(117\)\(323\)\(4\)\(0\)\(4\)

Trace form

\( 215 q + 3 q^{2} + 8 q^{3} + 215 q^{4} + 6 q^{5} - q^{7} + 3 q^{8} + 219 q^{9} + 6 q^{10} - 4 q^{11} + 8 q^{12} - 2 q^{13} - q^{14} - 8 q^{15} + 215 q^{16} - 10 q^{17} + 7 q^{18} - 8 q^{19} + 6 q^{20}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6034))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 431
6034.2.a.a 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.a \(-1\) \(-3\) \(-1\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}-q^{5}+3q^{6}-q^{7}+\cdots\)
6034.2.a.b 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.b \(-1\) \(-3\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}-q^{5}+3q^{6}+q^{7}+\cdots\)
6034.2.a.c 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.c \(-1\) \(-2\) \(-4\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}-4q^{5}+2q^{6}-q^{7}+\cdots\)
6034.2.a.d 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.d \(-1\) \(0\) \(-4\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}+q^{7}-q^{8}-3q^{9}+\cdots\)
6034.2.a.e 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.e \(1\) \(-1\) \(-3\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
6034.2.a.f 6034.a 1.a $1$ $48.182$ \(\Q\) None 6034.2.a.f \(1\) \(3\) \(2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+2q^{5}+3q^{6}-q^{7}+\cdots\)
6034.2.a.g 6034.a 1.a $2$ $48.182$ \(\Q(\sqrt{5}) \) None 6034.2.a.g \(-2\) \(4\) \(-5\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}+(-2-\beta )q^{5}-2q^{6}+\cdots\)
6034.2.a.h 6034.a 1.a $2$ $48.182$ \(\Q(\sqrt{5}) \) None 6034.2.a.h \(2\) \(-2\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-\beta q^{5}-q^{6}-q^{7}+\cdots\)
6034.2.a.i 6034.a 1.a $2$ $48.182$ \(\Q(\sqrt{3}) \) None 6034.2.a.i \(2\) \(4\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}+q^{7}+q^{8}+\cdots\)
6034.2.a.j 6034.a 1.a $4$ $48.182$ 4.4.10273.1 None 6034.2.a.j \(-4\) \(-2\) \(1\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta _{1})q^{3}+q^{4}+\beta _{3}q^{5}+\cdots\)
6034.2.a.k 6034.a 1.a $20$ $48.182$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 6034.2.a.k \(-20\) \(3\) \(-3\) \(20\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{15}q^{5}-\beta _{1}q^{6}+\cdots\)
6034.2.a.l 6034.a 1.a $20$ $48.182$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 6034.2.a.l \(20\) \(-3\) \(-10\) \(-20\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(-1+\beta _{7})q^{5}+\cdots\)
6034.2.a.m 6034.a 1.a $21$ $48.182$ None 6034.2.a.m \(21\) \(-6\) \(-11\) \(21\) $-$ $-$ $+$ $\mathrm{SU}(2)$
6034.2.a.n 6034.a 1.a $24$ $48.182$ None 6034.2.a.n \(-24\) \(7\) \(8\) \(-24\) $+$ $+$ $-$ $\mathrm{SU}(2)$
6034.2.a.o 6034.a 1.a $25$ $48.182$ None 6034.2.a.o \(-25\) \(-4\) \(0\) \(-25\) $+$ $+$ $+$ $\mathrm{SU}(2)$
6034.2.a.p 6034.a 1.a $27$ $48.182$ None 6034.2.a.p \(-27\) \(4\) \(9\) \(27\) $+$ $-$ $+$ $\mathrm{SU}(2)$
6034.2.a.q 6034.a 1.a $31$ $48.182$ None 6034.2.a.q \(31\) \(2\) \(13\) \(31\) $-$ $-$ $-$ $\mathrm{SU}(2)$
6034.2.a.r 6034.a 1.a $31$ $48.182$ None 6034.2.a.r \(31\) \(7\) \(15\) \(-31\) $-$ $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6034))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(6034)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(431))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(862))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3017))\)\(^{\oplus 2}\)