Newspace parameters
Level: | \( N \) | = | \( 6034 = 2 \cdot 7 \cdot 431 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 6034.a (trivial) |
Newform invariants
Self dual: | Yes |
Analytic conductor: | \(48.1817325796\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −1.00000 | −2.83864 | 1.00000 | 0.330019 | 2.83864 | −1.00000 | −1.00000 | 5.05788 | −0.330019 | ||||||||||||||||||
1.2 | −1.00000 | −2.67063 | 1.00000 | 3.15601 | 2.67063 | −1.00000 | −1.00000 | 4.13228 | −3.15601 | ||||||||||||||||||
1.3 | −1.00000 | −2.58057 | 1.00000 | −2.90281 | 2.58057 | −1.00000 | −1.00000 | 3.65935 | 2.90281 | ||||||||||||||||||
1.4 | −1.00000 | −1.92027 | 1.00000 | −2.53143 | 1.92027 | −1.00000 | −1.00000 | 0.687441 | 2.53143 | ||||||||||||||||||
1.5 | −1.00000 | −1.91791 | 1.00000 | 0.374562 | 1.91791 | −1.00000 | −1.00000 | 0.678384 | −0.374562 | ||||||||||||||||||
1.6 | −1.00000 | −1.69422 | 1.00000 | 3.76480 | 1.69422 | −1.00000 | −1.00000 | −0.129635 | −3.76480 | ||||||||||||||||||
1.7 | −1.00000 | −1.44122 | 1.00000 | −2.06061 | 1.44122 | −1.00000 | −1.00000 | −0.922894 | 2.06061 | ||||||||||||||||||
1.8 | −1.00000 | −0.920246 | 1.00000 | 2.96551 | 0.920246 | −1.00000 | −1.00000 | −2.15315 | −2.96551 | ||||||||||||||||||
1.9 | −1.00000 | −0.797155 | 1.00000 | 1.40867 | 0.797155 | −1.00000 | −1.00000 | −2.36454 | −1.40867 | ||||||||||||||||||
1.10 | −1.00000 | −0.0752307 | 1.00000 | −2.78876 | 0.0752307 | −1.00000 | −1.00000 | −2.99434 | 2.78876 | ||||||||||||||||||
1.11 | −1.00000 | 0.0287183 | 1.00000 | 1.06252 | −0.0287183 | −1.00000 | −1.00000 | −2.99918 | −1.06252 | ||||||||||||||||||
1.12 | −1.00000 | 0.430787 | 1.00000 | 1.34011 | −0.430787 | −1.00000 | −1.00000 | −2.81442 | −1.34011 | ||||||||||||||||||
1.13 | −1.00000 | 0.632516 | 1.00000 | −0.321740 | −0.632516 | −1.00000 | −1.00000 | −2.59992 | 0.321740 | ||||||||||||||||||
1.14 | −1.00000 | 0.685916 | 1.00000 | 1.44966 | −0.685916 | −1.00000 | −1.00000 | −2.52952 | −1.44966 | ||||||||||||||||||
1.15 | −1.00000 | 1.20386 | 1.00000 | −2.97794 | −1.20386 | −1.00000 | −1.00000 | −1.55072 | 2.97794 | ||||||||||||||||||
1.16 | −1.00000 | 1.44853 | 1.00000 | −1.26403 | −1.44853 | −1.00000 | −1.00000 | −0.901751 | 1.26403 | ||||||||||||||||||
1.17 | −1.00000 | 1.52105 | 1.00000 | −3.19164 | −1.52105 | −1.00000 | −1.00000 | −0.686407 | 3.19164 | ||||||||||||||||||
1.18 | −1.00000 | 1.56085 | 1.00000 | −1.28710 | −1.56085 | −1.00000 | −1.00000 | −0.563752 | 1.28710 | ||||||||||||||||||
1.19 | −1.00000 | 2.10114 | 1.00000 | 4.16694 | −2.10114 | −1.00000 | −1.00000 | 1.41477 | −4.16694 | ||||||||||||||||||
1.20 | −1.00000 | 2.39691 | 1.00000 | 1.79254 | −2.39691 | −1.00000 | −1.00000 | 2.74520 | −1.79254 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
This newform does not have CM; other inner twists have not been computed.
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(7\) | \(1\) |
\(431\) | \(-1\) |
Hecke kernels
This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6034))\):
\(T_{3}^{24} - \cdots\) |
\(T_{5}^{24} - \cdots\) |
\(T_{11}^{24} - \cdots\) |