Properties

 Label 6034.2 Level 6034 Weight 2 Dimension 356039 Nonzero newspaces 16 Sturm bound 4.45824e+06

Defining parameters

 Level: $$N$$ = $$6034 = 2 \cdot 7 \cdot 431$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$16$$ Sturm bound: $$4458240$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(6034))$$.

Total New Old
Modular forms 1119720 356039 763681
Cusp forms 1109401 356039 753362
Eisenstein series 10319 0 10319

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(6034))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
6034.2.a $$\chi_{6034}(1, \cdot)$$ 6034.2.a.a 1 1
6034.2.a.b 1
6034.2.a.c 1
6034.2.a.d 1
6034.2.a.e 1
6034.2.a.f 1
6034.2.a.g 2
6034.2.a.h 2
6034.2.a.i 2
6034.2.a.j 4
6034.2.a.k 20
6034.2.a.l 20
6034.2.a.m 21
6034.2.a.n 24
6034.2.a.o 25
6034.2.a.p 27
6034.2.a.q 31
6034.2.a.r 31
6034.2.c $$\chi_{6034}(6033, \cdot)$$ n/a 288 1
6034.2.e $$\chi_{6034}(863, \cdot)$$ n/a 576 2
6034.2.f $$\chi_{6034}(547, \cdot)$$ n/a 864 4
6034.2.i $$\chi_{6034}(3447, \cdot)$$ n/a 576 2
6034.2.j $$\chi_{6034}(2491, \cdot)$$ n/a 1152 4
6034.2.m $$\chi_{6034}(95, \cdot)$$ n/a 2304 8
6034.2.o $$\chi_{6034}(1319, \cdot)$$ n/a 2304 8
6034.2.q $$\chi_{6034}(337, \cdot)$$ n/a 9072 42
6034.2.s $$\chi_{6034}(321, \cdot)$$ n/a 12096 42
6034.2.u $$\chi_{6034}(9, \cdot)$$ n/a 24192 84
6034.2.v $$\chi_{6034}(15, \cdot)$$ n/a 36288 168
6034.2.w $$\chi_{6034}(47, \cdot)$$ n/a 24192 84
6034.2.bb $$\chi_{6034}(13, \cdot)$$ n/a 48384 168
6034.2.bc $$\chi_{6034}(11, \cdot)$$ n/a 96768 336
6034.2.be $$\chi_{6034}(17, \cdot)$$ n/a 96768 336

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(6034))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(6034)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(14))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(431))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(862))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3017))$$$$^{\oplus 2}$$