Properties

Label 6031.2.a.c.1.8
Level $6031$
Weight $2$
Character 6031.1
Self dual yes
Analytic conductor $48.158$
Analytic rank $1$
Dimension $110$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6031,2,Mod(1,6031)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6031.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6031, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6031 = 37 \cdot 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6031.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [110] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1577774590\)
Analytic rank: \(1\)
Dimension: \(110\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 6031.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51631 q^{2} +1.27091 q^{3} +4.33182 q^{4} +1.33976 q^{5} -3.19800 q^{6} +0.944830 q^{7} -5.86759 q^{8} -1.38479 q^{9} -3.37125 q^{10} -5.51551 q^{11} +5.50536 q^{12} +4.59866 q^{13} -2.37749 q^{14} +1.70271 q^{15} +6.10104 q^{16} +4.46947 q^{17} +3.48456 q^{18} +4.49981 q^{19} +5.80359 q^{20} +1.20079 q^{21} +13.8787 q^{22} -0.690017 q^{23} -7.45718 q^{24} -3.20505 q^{25} -11.5716 q^{26} -5.57267 q^{27} +4.09284 q^{28} -1.70940 q^{29} -4.28455 q^{30} -2.74062 q^{31} -3.61694 q^{32} -7.00971 q^{33} -11.2466 q^{34} +1.26584 q^{35} -5.99866 q^{36} -1.00000 q^{37} -11.3229 q^{38} +5.84448 q^{39} -7.86115 q^{40} -5.29292 q^{41} -3.02157 q^{42} -5.16303 q^{43} -23.8922 q^{44} -1.85528 q^{45} +1.73630 q^{46} -5.44119 q^{47} +7.75387 q^{48} -6.10730 q^{49} +8.06490 q^{50} +5.68029 q^{51} +19.9206 q^{52} -10.1943 q^{53} +14.0226 q^{54} -7.38944 q^{55} -5.54388 q^{56} +5.71885 q^{57} +4.30139 q^{58} +5.35440 q^{59} +7.37584 q^{60} +10.7183 q^{61} +6.89625 q^{62} -1.30839 q^{63} -3.10074 q^{64} +6.16108 q^{65} +17.6386 q^{66} -4.84439 q^{67} +19.3609 q^{68} -0.876950 q^{69} -3.18526 q^{70} -2.04359 q^{71} +8.12537 q^{72} -6.62627 q^{73} +2.51631 q^{74} -4.07333 q^{75} +19.4924 q^{76} -5.21122 q^{77} -14.7065 q^{78} +8.67316 q^{79} +8.17392 q^{80} -2.92800 q^{81} +13.3186 q^{82} +3.60041 q^{83} +5.20163 q^{84} +5.98800 q^{85} +12.9918 q^{86} -2.17250 q^{87} +32.3627 q^{88} -10.2191 q^{89} +4.66846 q^{90} +4.34495 q^{91} -2.98903 q^{92} -3.48308 q^{93} +13.6917 q^{94} +6.02865 q^{95} -4.59680 q^{96} +7.11283 q^{97} +15.3679 q^{98} +7.63781 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 9 q^{2} + 97 q^{4} - 26 q^{5} - 26 q^{6} - 4 q^{7} - 27 q^{8} + 62 q^{9} - 17 q^{10} - 9 q^{11} - 21 q^{13} - 29 q^{14} - 23 q^{15} + 79 q^{16} - 76 q^{17} - 31 q^{18} - 27 q^{19} - 67 q^{20} - 30 q^{21}+ \cdots - 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51631 −1.77930 −0.889650 0.456642i \(-0.849052\pi\)
−0.889650 + 0.456642i \(0.849052\pi\)
\(3\) 1.27091 0.733760 0.366880 0.930268i \(-0.380426\pi\)
0.366880 + 0.930268i \(0.380426\pi\)
\(4\) 4.33182 2.16591
\(5\) 1.33976 0.599158 0.299579 0.954072i \(-0.403154\pi\)
0.299579 + 0.954072i \(0.403154\pi\)
\(6\) −3.19800 −1.30558
\(7\) 0.944830 0.357112 0.178556 0.983930i \(-0.442857\pi\)
0.178556 + 0.983930i \(0.442857\pi\)
\(8\) −5.86759 −2.07451
\(9\) −1.38479 −0.461596
\(10\) −3.37125 −1.06608
\(11\) −5.51551 −1.66299 −0.831494 0.555534i \(-0.812514\pi\)
−0.831494 + 0.555534i \(0.812514\pi\)
\(12\) 5.50536 1.58926
\(13\) 4.59866 1.27544 0.637719 0.770269i \(-0.279878\pi\)
0.637719 + 0.770269i \(0.279878\pi\)
\(14\) −2.37749 −0.635410
\(15\) 1.70271 0.439638
\(16\) 6.10104 1.52526
\(17\) 4.46947 1.08400 0.542002 0.840377i \(-0.317666\pi\)
0.542002 + 0.840377i \(0.317666\pi\)
\(18\) 3.48456 0.821318
\(19\) 4.49981 1.03233 0.516163 0.856490i \(-0.327360\pi\)
0.516163 + 0.856490i \(0.327360\pi\)
\(20\) 5.80359 1.29772
\(21\) 1.20079 0.262035
\(22\) 13.8787 2.95895
\(23\) −0.690017 −0.143879 −0.0719393 0.997409i \(-0.522919\pi\)
−0.0719393 + 0.997409i \(0.522919\pi\)
\(24\) −7.45718 −1.52219
\(25\) −3.20505 −0.641010
\(26\) −11.5716 −2.26939
\(27\) −5.57267 −1.07246
\(28\) 4.09284 0.773474
\(29\) −1.70940 −0.317428 −0.158714 0.987325i \(-0.550735\pi\)
−0.158714 + 0.987325i \(0.550735\pi\)
\(30\) −4.28455 −0.782248
\(31\) −2.74062 −0.492230 −0.246115 0.969241i \(-0.579154\pi\)
−0.246115 + 0.969241i \(0.579154\pi\)
\(32\) −3.61694 −0.639390
\(33\) −7.00971 −1.22023
\(34\) −11.2466 −1.92877
\(35\) 1.26584 0.213967
\(36\) −5.99866 −0.999776
\(37\) −1.00000 −0.164399
\(38\) −11.3229 −1.83682
\(39\) 5.84448 0.935865
\(40\) −7.86115 −1.24296
\(41\) −5.29292 −0.826615 −0.413308 0.910591i \(-0.635627\pi\)
−0.413308 + 0.910591i \(0.635627\pi\)
\(42\) −3.02157 −0.466239
\(43\) −5.16303 −0.787355 −0.393678 0.919249i \(-0.628797\pi\)
−0.393678 + 0.919249i \(0.628797\pi\)
\(44\) −23.8922 −3.60188
\(45\) −1.85528 −0.276569
\(46\) 1.73630 0.256003
\(47\) −5.44119 −0.793680 −0.396840 0.917888i \(-0.629893\pi\)
−0.396840 + 0.917888i \(0.629893\pi\)
\(48\) 7.75387 1.11918
\(49\) −6.10730 −0.872471
\(50\) 8.06490 1.14055
\(51\) 5.68029 0.795399
\(52\) 19.9206 2.76248
\(53\) −10.1943 −1.40030 −0.700148 0.713998i \(-0.746883\pi\)
−0.700148 + 0.713998i \(0.746883\pi\)
\(54\) 14.0226 1.90823
\(55\) −7.38944 −0.996392
\(56\) −5.54388 −0.740832
\(57\) 5.71885 0.757480
\(58\) 4.30139 0.564801
\(59\) 5.35440 0.697084 0.348542 0.937293i \(-0.386677\pi\)
0.348542 + 0.937293i \(0.386677\pi\)
\(60\) 7.37584 0.952217
\(61\) 10.7183 1.37233 0.686167 0.727444i \(-0.259292\pi\)
0.686167 + 0.727444i \(0.259292\pi\)
\(62\) 6.89625 0.875825
\(63\) −1.30839 −0.164842
\(64\) −3.10074 −0.387593
\(65\) 6.16108 0.764188
\(66\) 17.6386 2.17116
\(67\) −4.84439 −0.591836 −0.295918 0.955213i \(-0.595626\pi\)
−0.295918 + 0.955213i \(0.595626\pi\)
\(68\) 19.3609 2.34786
\(69\) −0.876950 −0.105572
\(70\) −3.18526 −0.380711
\(71\) −2.04359 −0.242530 −0.121265 0.992620i \(-0.538695\pi\)
−0.121265 + 0.992620i \(0.538695\pi\)
\(72\) 8.12537 0.957584
\(73\) −6.62627 −0.775546 −0.387773 0.921755i \(-0.626756\pi\)
−0.387773 + 0.921755i \(0.626756\pi\)
\(74\) 2.51631 0.292515
\(75\) −4.07333 −0.470348
\(76\) 19.4924 2.23593
\(77\) −5.21122 −0.593873
\(78\) −14.7065 −1.66519
\(79\) 8.67316 0.975807 0.487903 0.872898i \(-0.337762\pi\)
0.487903 + 0.872898i \(0.337762\pi\)
\(80\) 8.17392 0.913872
\(81\) −2.92800 −0.325333
\(82\) 13.3186 1.47080
\(83\) 3.60041 0.395196 0.197598 0.980283i \(-0.436686\pi\)
0.197598 + 0.980283i \(0.436686\pi\)
\(84\) 5.20163 0.567544
\(85\) 5.98800 0.649490
\(86\) 12.9918 1.40094
\(87\) −2.17250 −0.232916
\(88\) 32.3627 3.44988
\(89\) −10.2191 −1.08322 −0.541610 0.840630i \(-0.682185\pi\)
−0.541610 + 0.840630i \(0.682185\pi\)
\(90\) 4.66846 0.492099
\(91\) 4.34495 0.455474
\(92\) −2.98903 −0.311628
\(93\) −3.48308 −0.361179
\(94\) 13.6917 1.41220
\(95\) 6.02865 0.618527
\(96\) −4.59680 −0.469159
\(97\) 7.11283 0.722199 0.361099 0.932527i \(-0.382402\pi\)
0.361099 + 0.932527i \(0.382402\pi\)
\(98\) 15.3679 1.55239
\(99\) 7.63781 0.767628
\(100\) −13.8837 −1.38837
\(101\) 3.76503 0.374635 0.187317 0.982299i \(-0.440021\pi\)
0.187317 + 0.982299i \(0.440021\pi\)
\(102\) −14.2934 −1.41525
\(103\) −13.9461 −1.37415 −0.687077 0.726584i \(-0.741107\pi\)
−0.687077 + 0.726584i \(0.741107\pi\)
\(104\) −26.9830 −2.64590
\(105\) 1.60877 0.157000
\(106\) 25.6521 2.49155
\(107\) −3.73079 −0.360669 −0.180335 0.983605i \(-0.557718\pi\)
−0.180335 + 0.983605i \(0.557718\pi\)
\(108\) −24.1398 −2.32286
\(109\) 6.13227 0.587365 0.293683 0.955903i \(-0.405119\pi\)
0.293683 + 0.955903i \(0.405119\pi\)
\(110\) 18.5941 1.77288
\(111\) −1.27091 −0.120629
\(112\) 5.76445 0.544689
\(113\) −17.6030 −1.65596 −0.827978 0.560761i \(-0.810509\pi\)
−0.827978 + 0.560761i \(0.810509\pi\)
\(114\) −14.3904 −1.34778
\(115\) −0.924456 −0.0862059
\(116\) −7.40484 −0.687522
\(117\) −6.36816 −0.588737
\(118\) −13.4733 −1.24032
\(119\) 4.22289 0.387111
\(120\) −9.99081 −0.912032
\(121\) 19.4208 1.76553
\(122\) −26.9705 −2.44180
\(123\) −6.72682 −0.606537
\(124\) −11.8719 −1.06613
\(125\) −10.9928 −0.983224
\(126\) 3.29232 0.293303
\(127\) 4.18528 0.371384 0.185692 0.982608i \(-0.440547\pi\)
0.185692 + 0.982608i \(0.440547\pi\)
\(128\) 15.0363 1.32903
\(129\) −6.56175 −0.577730
\(130\) −15.5032 −1.35972
\(131\) −7.32345 −0.639853 −0.319926 0.947442i \(-0.603658\pi\)
−0.319926 + 0.947442i \(0.603658\pi\)
\(132\) −30.3648 −2.64292
\(133\) 4.25156 0.368657
\(134\) 12.1900 1.05306
\(135\) −7.46603 −0.642573
\(136\) −26.2250 −2.24878
\(137\) 1.18902 0.101585 0.0507923 0.998709i \(-0.483825\pi\)
0.0507923 + 0.998709i \(0.483825\pi\)
\(138\) 2.20668 0.187845
\(139\) 4.34773 0.368770 0.184385 0.982854i \(-0.440971\pi\)
0.184385 + 0.982854i \(0.440971\pi\)
\(140\) 5.48341 0.463433
\(141\) −6.91527 −0.582371
\(142\) 5.14231 0.431533
\(143\) −25.3639 −2.12104
\(144\) −8.44865 −0.704054
\(145\) −2.29019 −0.190190
\(146\) 16.6738 1.37993
\(147\) −7.76182 −0.640184
\(148\) −4.33182 −0.356074
\(149\) −16.6117 −1.36089 −0.680443 0.732801i \(-0.738213\pi\)
−0.680443 + 0.732801i \(0.738213\pi\)
\(150\) 10.2498 0.836890
\(151\) 1.95178 0.158834 0.0794170 0.996841i \(-0.474694\pi\)
0.0794170 + 0.996841i \(0.474694\pi\)
\(152\) −26.4030 −2.14157
\(153\) −6.18926 −0.500372
\(154\) 13.1130 1.05668
\(155\) −3.67177 −0.294923
\(156\) 25.3172 2.02700
\(157\) 8.28109 0.660903 0.330452 0.943823i \(-0.392799\pi\)
0.330452 + 0.943823i \(0.392799\pi\)
\(158\) −21.8244 −1.73625
\(159\) −12.9561 −1.02748
\(160\) −4.84582 −0.383096
\(161\) −0.651949 −0.0513808
\(162\) 7.36775 0.578865
\(163\) −1.00000 −0.0783260
\(164\) −22.9280 −1.79038
\(165\) −9.39131 −0.731113
\(166\) −9.05974 −0.703173
\(167\) −11.7602 −0.910030 −0.455015 0.890484i \(-0.650366\pi\)
−0.455015 + 0.890484i \(0.650366\pi\)
\(168\) −7.04577 −0.543593
\(169\) 8.14763 0.626741
\(170\) −15.0677 −1.15564
\(171\) −6.23128 −0.476518
\(172\) −22.3653 −1.70534
\(173\) 0.732287 0.0556747 0.0278374 0.999612i \(-0.491138\pi\)
0.0278374 + 0.999612i \(0.491138\pi\)
\(174\) 5.46668 0.414428
\(175\) −3.02823 −0.228913
\(176\) −33.6503 −2.53649
\(177\) 6.80496 0.511492
\(178\) 25.7144 1.92738
\(179\) 7.29973 0.545608 0.272804 0.962070i \(-0.412049\pi\)
0.272804 + 0.962070i \(0.412049\pi\)
\(180\) −8.03675 −0.599024
\(181\) −4.38266 −0.325761 −0.162880 0.986646i \(-0.552078\pi\)
−0.162880 + 0.986646i \(0.552078\pi\)
\(182\) −10.9332 −0.810426
\(183\) 13.6220 1.00696
\(184\) 4.04874 0.298477
\(185\) −1.33976 −0.0985009
\(186\) 8.76451 0.642645
\(187\) −24.6514 −1.80269
\(188\) −23.5703 −1.71904
\(189\) −5.26523 −0.382989
\(190\) −15.1700 −1.10054
\(191\) 8.70678 0.630000 0.315000 0.949092i \(-0.397995\pi\)
0.315000 + 0.949092i \(0.397995\pi\)
\(192\) −3.94076 −0.284400
\(193\) 5.10047 0.367140 0.183570 0.983007i \(-0.441235\pi\)
0.183570 + 0.983007i \(0.441235\pi\)
\(194\) −17.8981 −1.28501
\(195\) 7.83018 0.560731
\(196\) −26.4557 −1.88969
\(197\) −15.7326 −1.12090 −0.560450 0.828188i \(-0.689372\pi\)
−0.560450 + 0.828188i \(0.689372\pi\)
\(198\) −19.2191 −1.36584
\(199\) 12.0454 0.853876 0.426938 0.904281i \(-0.359592\pi\)
0.426938 + 0.904281i \(0.359592\pi\)
\(200\) 18.8059 1.32978
\(201\) −6.15678 −0.434266
\(202\) −9.47399 −0.666588
\(203\) −1.61510 −0.113358
\(204\) 24.6060 1.72276
\(205\) −7.09123 −0.495273
\(206\) 35.0928 2.44503
\(207\) 0.955528 0.0664138
\(208\) 28.0566 1.94537
\(209\) −24.8187 −1.71675
\(210\) −4.04817 −0.279351
\(211\) −3.09653 −0.213174 −0.106587 0.994303i \(-0.533992\pi\)
−0.106587 + 0.994303i \(0.533992\pi\)
\(212\) −44.1600 −3.03292
\(213\) −2.59722 −0.177959
\(214\) 9.38783 0.641739
\(215\) −6.91721 −0.471750
\(216\) 32.6982 2.22483
\(217\) −2.58942 −0.175781
\(218\) −15.4307 −1.04510
\(219\) −8.42139 −0.569065
\(220\) −32.0097 −2.15810
\(221\) 20.5535 1.38258
\(222\) 3.19800 0.214636
\(223\) 24.0868 1.61297 0.806485 0.591255i \(-0.201367\pi\)
0.806485 + 0.591255i \(0.201367\pi\)
\(224\) −3.41739 −0.228334
\(225\) 4.43831 0.295888
\(226\) 44.2947 2.94644
\(227\) 10.6082 0.704088 0.352044 0.935983i \(-0.385487\pi\)
0.352044 + 0.935983i \(0.385487\pi\)
\(228\) 24.7730 1.64063
\(229\) −4.84597 −0.320231 −0.160115 0.987098i \(-0.551187\pi\)
−0.160115 + 0.987098i \(0.551187\pi\)
\(230\) 2.32622 0.153386
\(231\) −6.62299 −0.435761
\(232\) 10.0301 0.658508
\(233\) −3.82485 −0.250574 −0.125287 0.992121i \(-0.539985\pi\)
−0.125287 + 0.992121i \(0.539985\pi\)
\(234\) 16.0243 1.04754
\(235\) −7.28988 −0.475539
\(236\) 23.1943 1.50982
\(237\) 11.0228 0.716008
\(238\) −10.6261 −0.688788
\(239\) −0.184794 −0.0119533 −0.00597666 0.999982i \(-0.501902\pi\)
−0.00597666 + 0.999982i \(0.501902\pi\)
\(240\) 10.3883 0.670563
\(241\) −1.68358 −0.108449 −0.0542245 0.998529i \(-0.517269\pi\)
−0.0542245 + 0.998529i \(0.517269\pi\)
\(242\) −48.8688 −3.14140
\(243\) 12.9968 0.833745
\(244\) 46.4297 2.97235
\(245\) −8.18230 −0.522748
\(246\) 16.9268 1.07921
\(247\) 20.6931 1.31667
\(248\) 16.0808 1.02113
\(249\) 4.57579 0.289979
\(250\) 27.6612 1.74945
\(251\) 1.31589 0.0830585 0.0415292 0.999137i \(-0.486777\pi\)
0.0415292 + 0.999137i \(0.486777\pi\)
\(252\) −5.66771 −0.357032
\(253\) 3.80579 0.239268
\(254\) −10.5315 −0.660803
\(255\) 7.61021 0.476570
\(256\) −31.6345 −1.97716
\(257\) 12.6586 0.789621 0.394811 0.918762i \(-0.370810\pi\)
0.394811 + 0.918762i \(0.370810\pi\)
\(258\) 16.5114 1.02796
\(259\) −0.944830 −0.0587089
\(260\) 26.6887 1.65516
\(261\) 2.36716 0.146524
\(262\) 18.4281 1.13849
\(263\) 13.4620 0.830100 0.415050 0.909799i \(-0.363764\pi\)
0.415050 + 0.909799i \(0.363764\pi\)
\(264\) 41.1301 2.53138
\(265\) −13.6579 −0.838998
\(266\) −10.6982 −0.655951
\(267\) −12.9875 −0.794824
\(268\) −20.9850 −1.28187
\(269\) −24.8224 −1.51345 −0.756725 0.653733i \(-0.773202\pi\)
−0.756725 + 0.653733i \(0.773202\pi\)
\(270\) 18.7868 1.14333
\(271\) −16.7039 −1.01469 −0.507344 0.861744i \(-0.669373\pi\)
−0.507344 + 0.861744i \(0.669373\pi\)
\(272\) 27.2684 1.65339
\(273\) 5.52204 0.334209
\(274\) −2.99194 −0.180749
\(275\) 17.6775 1.06599
\(276\) −3.79879 −0.228660
\(277\) −21.8644 −1.31371 −0.656854 0.754018i \(-0.728113\pi\)
−0.656854 + 0.754018i \(0.728113\pi\)
\(278\) −10.9402 −0.656152
\(279\) 3.79518 0.227211
\(280\) −7.42745 −0.443875
\(281\) 30.3526 1.81068 0.905341 0.424685i \(-0.139615\pi\)
0.905341 + 0.424685i \(0.139615\pi\)
\(282\) 17.4010 1.03621
\(283\) −9.00936 −0.535551 −0.267775 0.963481i \(-0.586288\pi\)
−0.267775 + 0.963481i \(0.586288\pi\)
\(284\) −8.85247 −0.525298
\(285\) 7.66187 0.453850
\(286\) 63.8235 3.77396
\(287\) −5.00091 −0.295194
\(288\) 5.00869 0.295140
\(289\) 2.97612 0.175066
\(290\) 5.76283 0.338405
\(291\) 9.03977 0.529920
\(292\) −28.7038 −1.67976
\(293\) −24.2877 −1.41890 −0.709450 0.704755i \(-0.751057\pi\)
−0.709450 + 0.704755i \(0.751057\pi\)
\(294\) 19.5312 1.13908
\(295\) 7.17360 0.417663
\(296\) 5.86759 0.341047
\(297\) 30.7361 1.78349
\(298\) 41.8003 2.42143
\(299\) −3.17315 −0.183508
\(300\) −17.6449 −1.01873
\(301\) −4.87819 −0.281174
\(302\) −4.91130 −0.282613
\(303\) 4.78502 0.274892
\(304\) 27.4535 1.57457
\(305\) 14.3599 0.822245
\(306\) 15.5741 0.890313
\(307\) −32.0740 −1.83056 −0.915281 0.402817i \(-0.868031\pi\)
−0.915281 + 0.402817i \(0.868031\pi\)
\(308\) −22.5741 −1.28628
\(309\) −17.7243 −1.00830
\(310\) 9.23931 0.524757
\(311\) −25.9238 −1.47000 −0.735001 0.678066i \(-0.762818\pi\)
−0.735001 + 0.678066i \(0.762818\pi\)
\(312\) −34.2930 −1.94146
\(313\) −25.4771 −1.44005 −0.720027 0.693946i \(-0.755870\pi\)
−0.720027 + 0.693946i \(0.755870\pi\)
\(314\) −20.8378 −1.17595
\(315\) −1.75293 −0.0987662
\(316\) 37.5706 2.11351
\(317\) 9.71399 0.545592 0.272796 0.962072i \(-0.412052\pi\)
0.272796 + 0.962072i \(0.412052\pi\)
\(318\) 32.6015 1.82820
\(319\) 9.42823 0.527880
\(320\) −4.15424 −0.232229
\(321\) −4.74150 −0.264645
\(322\) 1.64051 0.0914219
\(323\) 20.1117 1.11905
\(324\) −12.6836 −0.704642
\(325\) −14.7389 −0.817568
\(326\) 2.51631 0.139366
\(327\) 7.79357 0.430985
\(328\) 31.0567 1.71482
\(329\) −5.14101 −0.283433
\(330\) 23.6315 1.30087
\(331\) −7.68091 −0.422181 −0.211091 0.977467i \(-0.567701\pi\)
−0.211091 + 0.977467i \(0.567701\pi\)
\(332\) 15.5963 0.855959
\(333\) 1.38479 0.0758859
\(334\) 29.5923 1.61922
\(335\) −6.49031 −0.354603
\(336\) 7.32610 0.399671
\(337\) −25.7743 −1.40401 −0.702007 0.712170i \(-0.747713\pi\)
−0.702007 + 0.712170i \(0.747713\pi\)
\(338\) −20.5020 −1.11516
\(339\) −22.3719 −1.21507
\(340\) 25.9390 1.40674
\(341\) 15.1159 0.818572
\(342\) 15.6798 0.847869
\(343\) −12.3842 −0.668682
\(344\) 30.2946 1.63337
\(345\) −1.17490 −0.0632545
\(346\) −1.84266 −0.0990621
\(347\) 34.9552 1.87649 0.938246 0.345970i \(-0.112450\pi\)
0.938246 + 0.345970i \(0.112450\pi\)
\(348\) −9.41088 −0.504476
\(349\) −3.43997 −0.184137 −0.0920687 0.995753i \(-0.529348\pi\)
−0.0920687 + 0.995753i \(0.529348\pi\)
\(350\) 7.61997 0.407304
\(351\) −25.6268 −1.36786
\(352\) 19.9492 1.06330
\(353\) −8.94045 −0.475852 −0.237926 0.971283i \(-0.576468\pi\)
−0.237926 + 0.971283i \(0.576468\pi\)
\(354\) −17.1234 −0.910099
\(355\) −2.73792 −0.145313
\(356\) −44.2673 −2.34616
\(357\) 5.36691 0.284047
\(358\) −18.3684 −0.970800
\(359\) 14.8573 0.784137 0.392068 0.919936i \(-0.371760\pi\)
0.392068 + 0.919936i \(0.371760\pi\)
\(360\) 10.8860 0.573744
\(361\) 1.24827 0.0656982
\(362\) 11.0281 0.579626
\(363\) 24.6821 1.29547
\(364\) 18.8216 0.986517
\(365\) −8.87759 −0.464675
\(366\) −34.2771 −1.79169
\(367\) 23.1680 1.20936 0.604680 0.796469i \(-0.293301\pi\)
0.604680 + 0.796469i \(0.293301\pi\)
\(368\) −4.20982 −0.219452
\(369\) 7.32957 0.381562
\(370\) 3.37125 0.175263
\(371\) −9.63190 −0.500063
\(372\) −15.0881 −0.782281
\(373\) 2.23160 0.115548 0.0577740 0.998330i \(-0.481600\pi\)
0.0577740 + 0.998330i \(0.481600\pi\)
\(374\) 62.0305 3.20752
\(375\) −13.9708 −0.721450
\(376\) 31.9267 1.64649
\(377\) −7.86096 −0.404860
\(378\) 13.2490 0.681453
\(379\) 12.4129 0.637610 0.318805 0.947820i \(-0.396718\pi\)
0.318805 + 0.947820i \(0.396718\pi\)
\(380\) 26.1150 1.33967
\(381\) 5.31912 0.272507
\(382\) −21.9090 −1.12096
\(383\) 3.31079 0.169174 0.0845868 0.996416i \(-0.473043\pi\)
0.0845868 + 0.996416i \(0.473043\pi\)
\(384\) 19.1098 0.975193
\(385\) −6.98177 −0.355824
\(386\) −12.8344 −0.653252
\(387\) 7.14971 0.363440
\(388\) 30.8115 1.56422
\(389\) −35.6876 −1.80943 −0.904716 0.426016i \(-0.859917\pi\)
−0.904716 + 0.426016i \(0.859917\pi\)
\(390\) −19.7032 −0.997709
\(391\) −3.08401 −0.155965
\(392\) 35.8351 1.80995
\(393\) −9.30745 −0.469499
\(394\) 39.5881 1.99442
\(395\) 11.6199 0.584662
\(396\) 33.0856 1.66262
\(397\) 7.19667 0.361190 0.180595 0.983558i \(-0.442198\pi\)
0.180595 + 0.983558i \(0.442198\pi\)
\(398\) −30.3100 −1.51930
\(399\) 5.40334 0.270506
\(400\) −19.5541 −0.977707
\(401\) −11.0222 −0.550421 −0.275211 0.961384i \(-0.588748\pi\)
−0.275211 + 0.961384i \(0.588748\pi\)
\(402\) 15.4924 0.772690
\(403\) −12.6032 −0.627808
\(404\) 16.3094 0.811425
\(405\) −3.92281 −0.194926
\(406\) 4.06409 0.201697
\(407\) 5.51551 0.273393
\(408\) −33.3296 −1.65006
\(409\) 5.09543 0.251953 0.125976 0.992033i \(-0.459794\pi\)
0.125976 + 0.992033i \(0.459794\pi\)
\(410\) 17.8437 0.881240
\(411\) 1.51113 0.0745387
\(412\) −60.4122 −2.97630
\(413\) 5.05900 0.248937
\(414\) −2.40441 −0.118170
\(415\) 4.82367 0.236785
\(416\) −16.6331 −0.815502
\(417\) 5.52557 0.270588
\(418\) 62.4516 3.05461
\(419\) 4.28923 0.209543 0.104771 0.994496i \(-0.466589\pi\)
0.104771 + 0.994496i \(0.466589\pi\)
\(420\) 6.96892 0.340049
\(421\) 9.77782 0.476542 0.238271 0.971199i \(-0.423419\pi\)
0.238271 + 0.971199i \(0.423419\pi\)
\(422\) 7.79184 0.379301
\(423\) 7.53490 0.366359
\(424\) 59.8161 2.90492
\(425\) −14.3249 −0.694858
\(426\) 6.53541 0.316642
\(427\) 10.1270 0.490078
\(428\) −16.1611 −0.781178
\(429\) −32.2352 −1.55633
\(430\) 17.4059 0.839385
\(431\) 7.15119 0.344461 0.172230 0.985057i \(-0.444903\pi\)
0.172230 + 0.985057i \(0.444903\pi\)
\(432\) −33.9991 −1.63578
\(433\) −2.45841 −0.118144 −0.0590719 0.998254i \(-0.518814\pi\)
−0.0590719 + 0.998254i \(0.518814\pi\)
\(434\) 6.51579 0.312768
\(435\) −2.91062 −0.139554
\(436\) 26.5639 1.27218
\(437\) −3.10494 −0.148530
\(438\) 21.1908 1.01254
\(439\) −1.75112 −0.0835763 −0.0417881 0.999126i \(-0.513305\pi\)
−0.0417881 + 0.999126i \(0.513305\pi\)
\(440\) 43.3582 2.06702
\(441\) 8.45731 0.402729
\(442\) −51.7191 −2.46003
\(443\) 12.5026 0.594019 0.297009 0.954875i \(-0.404011\pi\)
0.297009 + 0.954875i \(0.404011\pi\)
\(444\) −5.50536 −0.261273
\(445\) −13.6911 −0.649020
\(446\) −60.6098 −2.86996
\(447\) −21.1120 −0.998564
\(448\) −2.92968 −0.138414
\(449\) 2.02140 0.0953956 0.0476978 0.998862i \(-0.484812\pi\)
0.0476978 + 0.998862i \(0.484812\pi\)
\(450\) −11.1682 −0.526473
\(451\) 29.1931 1.37465
\(452\) −76.2533 −3.58665
\(453\) 2.48054 0.116546
\(454\) −26.6934 −1.25278
\(455\) 5.82118 0.272901
\(456\) −33.5559 −1.57140
\(457\) 18.0880 0.846123 0.423062 0.906101i \(-0.360955\pi\)
0.423062 + 0.906101i \(0.360955\pi\)
\(458\) 12.1940 0.569787
\(459\) −24.9069 −1.16255
\(460\) −4.00458 −0.186714
\(461\) −3.77816 −0.175967 −0.0879833 0.996122i \(-0.528042\pi\)
−0.0879833 + 0.996122i \(0.528042\pi\)
\(462\) 16.6655 0.775349
\(463\) 1.46342 0.0680108 0.0340054 0.999422i \(-0.489174\pi\)
0.0340054 + 0.999422i \(0.489174\pi\)
\(464\) −10.4291 −0.484161
\(465\) −4.66648 −0.216403
\(466\) 9.62450 0.445846
\(467\) 38.7040 1.79101 0.895504 0.445054i \(-0.146816\pi\)
0.895504 + 0.445054i \(0.146816\pi\)
\(468\) −27.5858 −1.27515
\(469\) −4.57713 −0.211352
\(470\) 18.3436 0.846128
\(471\) 10.5245 0.484944
\(472\) −31.4174 −1.44611
\(473\) 28.4767 1.30936
\(474\) −27.7368 −1.27399
\(475\) −14.4221 −0.661732
\(476\) 18.2928 0.838449
\(477\) 14.1170 0.646371
\(478\) 0.464999 0.0212686
\(479\) −16.5769 −0.757419 −0.378709 0.925516i \(-0.623632\pi\)
−0.378709 + 0.925516i \(0.623632\pi\)
\(480\) −6.15860 −0.281100
\(481\) −4.59866 −0.209681
\(482\) 4.23642 0.192964
\(483\) −0.828569 −0.0377012
\(484\) 84.1275 3.82398
\(485\) 9.52947 0.432711
\(486\) −32.7040 −1.48348
\(487\) −13.1919 −0.597782 −0.298891 0.954287i \(-0.596617\pi\)
−0.298891 + 0.954287i \(0.596617\pi\)
\(488\) −62.8905 −2.84692
\(489\) −1.27091 −0.0574725
\(490\) 20.5892 0.930125
\(491\) −30.5758 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(492\) −29.1394 −1.31371
\(493\) −7.64012 −0.344094
\(494\) −52.0702 −2.34275
\(495\) 10.2328 0.459931
\(496\) −16.7206 −0.750779
\(497\) −1.93085 −0.0866103
\(498\) −11.5141 −0.515960
\(499\) −21.3430 −0.955444 −0.477722 0.878511i \(-0.658537\pi\)
−0.477722 + 0.878511i \(0.658537\pi\)
\(500\) −47.6188 −2.12958
\(501\) −14.9461 −0.667744
\(502\) −3.31120 −0.147786
\(503\) 30.7941 1.37304 0.686520 0.727111i \(-0.259137\pi\)
0.686520 + 0.727111i \(0.259137\pi\)
\(504\) 7.67710 0.341965
\(505\) 5.04423 0.224465
\(506\) −9.57656 −0.425730
\(507\) 10.3549 0.459877
\(508\) 18.1299 0.804384
\(509\) −7.47722 −0.331422 −0.165711 0.986174i \(-0.552992\pi\)
−0.165711 + 0.986174i \(0.552992\pi\)
\(510\) −19.1497 −0.847961
\(511\) −6.26070 −0.276957
\(512\) 49.5298 2.18893
\(513\) −25.0759 −1.10713
\(514\) −31.8530 −1.40497
\(515\) −18.6845 −0.823335
\(516\) −28.4243 −1.25131
\(517\) 30.0109 1.31988
\(518\) 2.37749 0.104461
\(519\) 0.930670 0.0408519
\(520\) −36.1507 −1.58531
\(521\) 16.1617 0.708057 0.354029 0.935235i \(-0.384812\pi\)
0.354029 + 0.935235i \(0.384812\pi\)
\(522\) −5.95652 −0.260710
\(523\) −36.0238 −1.57521 −0.787605 0.616180i \(-0.788679\pi\)
−0.787605 + 0.616180i \(0.788679\pi\)
\(524\) −31.7239 −1.38586
\(525\) −3.84861 −0.167967
\(526\) −33.8745 −1.47700
\(527\) −12.2491 −0.533579
\(528\) −42.7665 −1.86117
\(529\) −22.5239 −0.979299
\(530\) 34.3675 1.49283
\(531\) −7.41471 −0.321771
\(532\) 18.4170 0.798477
\(533\) −24.3403 −1.05430
\(534\) 32.6807 1.41423
\(535\) −4.99836 −0.216098
\(536\) 28.4249 1.22777
\(537\) 9.27730 0.400345
\(538\) 62.4609 2.69288
\(539\) 33.6848 1.45091
\(540\) −32.3415 −1.39176
\(541\) −13.3161 −0.572506 −0.286253 0.958154i \(-0.592410\pi\)
−0.286253 + 0.958154i \(0.592410\pi\)
\(542\) 42.0321 1.80543
\(543\) −5.56997 −0.239030
\(544\) −16.1658 −0.693102
\(545\) 8.21576 0.351925
\(546\) −13.8952 −0.594658
\(547\) −20.4389 −0.873904 −0.436952 0.899485i \(-0.643942\pi\)
−0.436952 + 0.899485i \(0.643942\pi\)
\(548\) 5.15061 0.220023
\(549\) −14.8425 −0.633464
\(550\) −44.4820 −1.89672
\(551\) −7.69199 −0.327690
\(552\) 5.14558 0.219011
\(553\) 8.19466 0.348473
\(554\) 55.0178 2.33748
\(555\) −1.70271 −0.0722761
\(556\) 18.8336 0.798722
\(557\) −45.0023 −1.90681 −0.953403 0.301698i \(-0.902447\pi\)
−0.953403 + 0.301698i \(0.902447\pi\)
\(558\) −9.54985 −0.404277
\(559\) −23.7430 −1.00422
\(560\) 7.72297 0.326355
\(561\) −31.3297 −1.32274
\(562\) −76.3765 −3.22175
\(563\) 28.6987 1.20951 0.604753 0.796413i \(-0.293272\pi\)
0.604753 + 0.796413i \(0.293272\pi\)
\(564\) −29.9557 −1.26136
\(565\) −23.5838 −0.992179
\(566\) 22.6703 0.952906
\(567\) −2.76646 −0.116180
\(568\) 11.9910 0.503129
\(569\) −14.6149 −0.612689 −0.306345 0.951921i \(-0.599106\pi\)
−0.306345 + 0.951921i \(0.599106\pi\)
\(570\) −19.2797 −0.807536
\(571\) 13.9105 0.582134 0.291067 0.956703i \(-0.405990\pi\)
0.291067 + 0.956703i \(0.405990\pi\)
\(572\) −109.872 −4.59398
\(573\) 11.0655 0.462269
\(574\) 12.5839 0.525240
\(575\) 2.21154 0.0922276
\(576\) 4.29387 0.178911
\(577\) 7.38262 0.307343 0.153671 0.988122i \(-0.450890\pi\)
0.153671 + 0.988122i \(0.450890\pi\)
\(578\) −7.48885 −0.311495
\(579\) 6.48224 0.269393
\(580\) −9.92069 −0.411934
\(581\) 3.40177 0.141129
\(582\) −22.7469 −0.942888
\(583\) 56.2268 2.32868
\(584\) 38.8802 1.60888
\(585\) −8.53179 −0.352746
\(586\) 61.1153 2.52465
\(587\) −16.0656 −0.663099 −0.331550 0.943438i \(-0.607571\pi\)
−0.331550 + 0.943438i \(0.607571\pi\)
\(588\) −33.6228 −1.38658
\(589\) −12.3323 −0.508142
\(590\) −18.0510 −0.743148
\(591\) −19.9947 −0.822472
\(592\) −6.10104 −0.250751
\(593\) −0.479184 −0.0196777 −0.00983887 0.999952i \(-0.503132\pi\)
−0.00983887 + 0.999952i \(0.503132\pi\)
\(594\) −77.3416 −3.17336
\(595\) 5.65764 0.231941
\(596\) −71.9591 −2.94756
\(597\) 15.3086 0.626540
\(598\) 7.98464 0.326516
\(599\) −13.2676 −0.542101 −0.271051 0.962565i \(-0.587371\pi\)
−0.271051 + 0.962565i \(0.587371\pi\)
\(600\) 23.9006 0.975739
\(601\) 45.9011 1.87234 0.936172 0.351543i \(-0.114343\pi\)
0.936172 + 0.351543i \(0.114343\pi\)
\(602\) 12.2750 0.500294
\(603\) 6.70845 0.273189
\(604\) 8.45478 0.344020
\(605\) 26.0192 1.05783
\(606\) −12.0406 −0.489115
\(607\) 11.5188 0.467532 0.233766 0.972293i \(-0.424895\pi\)
0.233766 + 0.972293i \(0.424895\pi\)
\(608\) −16.2755 −0.660060
\(609\) −2.05264 −0.0831773
\(610\) −36.1339 −1.46302
\(611\) −25.0222 −1.01229
\(612\) −26.8108 −1.08376
\(613\) 6.69363 0.270353 0.135177 0.990822i \(-0.456840\pi\)
0.135177 + 0.990822i \(0.456840\pi\)
\(614\) 80.7082 3.25712
\(615\) −9.01231 −0.363412
\(616\) 30.5773 1.23199
\(617\) −21.3686 −0.860268 −0.430134 0.902765i \(-0.641534\pi\)
−0.430134 + 0.902765i \(0.641534\pi\)
\(618\) 44.5998 1.79407
\(619\) −5.90911 −0.237507 −0.118754 0.992924i \(-0.537890\pi\)
−0.118754 + 0.992924i \(0.537890\pi\)
\(620\) −15.9054 −0.638778
\(621\) 3.84524 0.154304
\(622\) 65.2323 2.61558
\(623\) −9.65530 −0.386831
\(624\) 35.6574 1.42744
\(625\) 1.29759 0.0519037
\(626\) 64.1084 2.56229
\(627\) −31.5423 −1.25968
\(628\) 35.8722 1.43146
\(629\) −4.46947 −0.178209
\(630\) 4.41091 0.175735
\(631\) 39.8538 1.58656 0.793278 0.608860i \(-0.208373\pi\)
0.793278 + 0.608860i \(0.208373\pi\)
\(632\) −50.8906 −2.02432
\(633\) −3.93541 −0.156419
\(634\) −24.4434 −0.970772
\(635\) 5.60726 0.222517
\(636\) −56.1233 −2.22543
\(637\) −28.0853 −1.11278
\(638\) −23.7244 −0.939256
\(639\) 2.82994 0.111951
\(640\) 20.1450 0.796301
\(641\) −24.0629 −0.950428 −0.475214 0.879870i \(-0.657629\pi\)
−0.475214 + 0.879870i \(0.657629\pi\)
\(642\) 11.9311 0.470883
\(643\) 30.4954 1.20262 0.601310 0.799016i \(-0.294646\pi\)
0.601310 + 0.799016i \(0.294646\pi\)
\(644\) −2.82413 −0.111286
\(645\) −8.79115 −0.346151
\(646\) −50.6074 −1.99112
\(647\) −12.7208 −0.500105 −0.250053 0.968232i \(-0.580448\pi\)
−0.250053 + 0.968232i \(0.580448\pi\)
\(648\) 17.1803 0.674906
\(649\) −29.5322 −1.15924
\(650\) 37.0877 1.45470
\(651\) −3.29092 −0.128981
\(652\) −4.33182 −0.169647
\(653\) 25.2315 0.987384 0.493692 0.869637i \(-0.335647\pi\)
0.493692 + 0.869637i \(0.335647\pi\)
\(654\) −19.6110 −0.766853
\(655\) −9.81165 −0.383373
\(656\) −32.2923 −1.26080
\(657\) 9.17598 0.357989
\(658\) 12.9364 0.504312
\(659\) 8.22627 0.320450 0.160225 0.987081i \(-0.448778\pi\)
0.160225 + 0.987081i \(0.448778\pi\)
\(660\) −40.6815 −1.58353
\(661\) −1.04179 −0.0405210 −0.0202605 0.999795i \(-0.506450\pi\)
−0.0202605 + 0.999795i \(0.506450\pi\)
\(662\) 19.3276 0.751187
\(663\) 26.1217 1.01448
\(664\) −21.1257 −0.819837
\(665\) 5.69605 0.220883
\(666\) −3.48456 −0.135024
\(667\) 1.17952 0.0456711
\(668\) −50.9430 −1.97104
\(669\) 30.6121 1.18353
\(670\) 16.3316 0.630946
\(671\) −59.1167 −2.28217
\(672\) −4.34320 −0.167543
\(673\) 16.7931 0.647325 0.323662 0.946173i \(-0.395086\pi\)
0.323662 + 0.946173i \(0.395086\pi\)
\(674\) 64.8561 2.49816
\(675\) 17.8607 0.687458
\(676\) 35.2941 1.35746
\(677\) −35.1265 −1.35002 −0.675011 0.737808i \(-0.735861\pi\)
−0.675011 + 0.737808i \(0.735861\pi\)
\(678\) 56.2946 2.16198
\(679\) 6.72042 0.257906
\(680\) −35.1351 −1.34737
\(681\) 13.4820 0.516632
\(682\) −38.0363 −1.45649
\(683\) 5.42740 0.207674 0.103837 0.994594i \(-0.466888\pi\)
0.103837 + 0.994594i \(0.466888\pi\)
\(684\) −26.9928 −1.03210
\(685\) 1.59299 0.0608652
\(686\) 31.1624 1.18979
\(687\) −6.15880 −0.234973
\(688\) −31.4999 −1.20092
\(689\) −46.8801 −1.78599
\(690\) 2.95641 0.112549
\(691\) −49.6085 −1.88720 −0.943598 0.331092i \(-0.892583\pi\)
−0.943598 + 0.331092i \(0.892583\pi\)
\(692\) 3.17214 0.120587
\(693\) 7.21643 0.274130
\(694\) −87.9581 −3.33884
\(695\) 5.82490 0.220951
\(696\) 12.7473 0.483187
\(697\) −23.6565 −0.896055
\(698\) 8.65604 0.327636
\(699\) −4.86103 −0.183861
\(700\) −13.1177 −0.495804
\(701\) −35.2367 −1.33087 −0.665435 0.746456i \(-0.731754\pi\)
−0.665435 + 0.746456i \(0.731754\pi\)
\(702\) 64.4850 2.43383
\(703\) −4.49981 −0.169713
\(704\) 17.1022 0.644562
\(705\) −9.26478 −0.348932
\(706\) 22.4969 0.846684
\(707\) 3.55732 0.133787
\(708\) 29.4779 1.10785
\(709\) 14.5252 0.545506 0.272753 0.962084i \(-0.412066\pi\)
0.272753 + 0.962084i \(0.412066\pi\)
\(710\) 6.88945 0.258556
\(711\) −12.0105 −0.450428
\(712\) 59.9614 2.24715
\(713\) 1.89107 0.0708213
\(714\) −13.5048 −0.505405
\(715\) −33.9815 −1.27084
\(716\) 31.6212 1.18174
\(717\) −0.234856 −0.00877087
\(718\) −37.3855 −1.39522
\(719\) −26.8160 −1.00007 −0.500034 0.866006i \(-0.666679\pi\)
−0.500034 + 0.866006i \(0.666679\pi\)
\(720\) −11.3191 −0.421840
\(721\) −13.1767 −0.490728
\(722\) −3.14103 −0.116897
\(723\) −2.13968 −0.0795756
\(724\) −18.9849 −0.705569
\(725\) 5.47873 0.203475
\(726\) −62.1078 −2.30504
\(727\) 24.0361 0.891449 0.445725 0.895170i \(-0.352946\pi\)
0.445725 + 0.895170i \(0.352946\pi\)
\(728\) −25.4944 −0.944885
\(729\) 25.3017 0.937102
\(730\) 22.3388 0.826796
\(731\) −23.0760 −0.853497
\(732\) 59.0079 2.18100
\(733\) −7.11404 −0.262763 −0.131381 0.991332i \(-0.541941\pi\)
−0.131381 + 0.991332i \(0.541941\pi\)
\(734\) −58.2979 −2.15182
\(735\) −10.3990 −0.383571
\(736\) 2.49575 0.0919946
\(737\) 26.7193 0.984217
\(738\) −18.4435 −0.678914
\(739\) 10.0648 0.370239 0.185119 0.982716i \(-0.440733\pi\)
0.185119 + 0.982716i \(0.440733\pi\)
\(740\) −5.80359 −0.213344
\(741\) 26.2990 0.966119
\(742\) 24.2368 0.889763
\(743\) −7.91098 −0.290226 −0.145113 0.989415i \(-0.546354\pi\)
−0.145113 + 0.989415i \(0.546354\pi\)
\(744\) 20.4373 0.749268
\(745\) −22.2557 −0.815386
\(746\) −5.61541 −0.205595
\(747\) −4.98580 −0.182421
\(748\) −106.785 −3.90446
\(749\) −3.52497 −0.128799
\(750\) 35.1550 1.28368
\(751\) −6.73784 −0.245867 −0.122934 0.992415i \(-0.539230\pi\)
−0.122934 + 0.992415i \(0.539230\pi\)
\(752\) −33.1970 −1.21057
\(753\) 1.67238 0.0609450
\(754\) 19.7806 0.720368
\(755\) 2.61492 0.0951666
\(756\) −22.8080 −0.829520
\(757\) 18.3449 0.666755 0.333378 0.942793i \(-0.391812\pi\)
0.333378 + 0.942793i \(0.391812\pi\)
\(758\) −31.2348 −1.13450
\(759\) 4.83682 0.175565
\(760\) −35.3737 −1.28314
\(761\) 26.9508 0.976965 0.488482 0.872574i \(-0.337551\pi\)
0.488482 + 0.872574i \(0.337551\pi\)
\(762\) −13.3846 −0.484871
\(763\) 5.79396 0.209755
\(764\) 37.7162 1.36452
\(765\) −8.29211 −0.299802
\(766\) −8.33098 −0.301011
\(767\) 24.6231 0.889087
\(768\) −40.2047 −1.45076
\(769\) 13.3211 0.480373 0.240186 0.970727i \(-0.422791\pi\)
0.240186 + 0.970727i \(0.422791\pi\)
\(770\) 17.5683 0.633118
\(771\) 16.0879 0.579393
\(772\) 22.0943 0.795193
\(773\) −38.3966 −1.38103 −0.690514 0.723319i \(-0.742616\pi\)
−0.690514 + 0.723319i \(0.742616\pi\)
\(774\) −17.9909 −0.646669
\(775\) 8.78382 0.315524
\(776\) −41.7352 −1.49821
\(777\) −1.20079 −0.0430783
\(778\) 89.8010 3.21952
\(779\) −23.8171 −0.853337
\(780\) 33.9190 1.21449
\(781\) 11.2714 0.403324
\(782\) 7.76032 0.277509
\(783\) 9.52595 0.340430
\(784\) −37.2609 −1.33075
\(785\) 11.0947 0.395985
\(786\) 23.4204 0.835379
\(787\) 16.6153 0.592272 0.296136 0.955146i \(-0.404302\pi\)
0.296136 + 0.955146i \(0.404302\pi\)
\(788\) −68.1508 −2.42777
\(789\) 17.1089 0.609094
\(790\) −29.2394 −1.04029
\(791\) −16.6319 −0.591362
\(792\) −44.8155 −1.59245
\(793\) 49.2896 1.75033
\(794\) −18.1090 −0.642666
\(795\) −17.3580 −0.615624
\(796\) 52.1786 1.84942
\(797\) −39.5554 −1.40113 −0.700563 0.713591i \(-0.747068\pi\)
−0.700563 + 0.713591i \(0.747068\pi\)
\(798\) −13.5965 −0.481311
\(799\) −24.3192 −0.860353
\(800\) 11.5925 0.409856
\(801\) 14.1513 0.500010
\(802\) 27.7352 0.979365
\(803\) 36.5472 1.28972
\(804\) −26.6701 −0.940582
\(805\) −0.873454 −0.0307852
\(806\) 31.7135 1.11706
\(807\) −31.5471 −1.11051
\(808\) −22.0917 −0.777182
\(809\) 36.7855 1.29331 0.646654 0.762783i \(-0.276168\pi\)
0.646654 + 0.762783i \(0.276168\pi\)
\(810\) 9.87100 0.346832
\(811\) 42.4513 1.49067 0.745334 0.666691i \(-0.232290\pi\)
0.745334 + 0.666691i \(0.232290\pi\)
\(812\) −6.99632 −0.245523
\(813\) −21.2291 −0.744537
\(814\) −13.8787 −0.486449
\(815\) −1.33976 −0.0469297
\(816\) 34.6557 1.21319
\(817\) −23.2327 −0.812808
\(818\) −12.8217 −0.448299
\(819\) −6.01683 −0.210245
\(820\) −30.7179 −1.07272
\(821\) −0.876650 −0.0305953 −0.0152976 0.999883i \(-0.504870\pi\)
−0.0152976 + 0.999883i \(0.504870\pi\)
\(822\) −3.80248 −0.132627
\(823\) −30.7344 −1.07133 −0.535667 0.844430i \(-0.679940\pi\)
−0.535667 + 0.844430i \(0.679940\pi\)
\(824\) 81.8303 2.85069
\(825\) 22.4665 0.782182
\(826\) −12.7300 −0.442934
\(827\) 21.3093 0.740997 0.370499 0.928833i \(-0.379187\pi\)
0.370499 + 0.928833i \(0.379187\pi\)
\(828\) 4.13918 0.143846
\(829\) −5.17379 −0.179693 −0.0898467 0.995956i \(-0.528638\pi\)
−0.0898467 + 0.995956i \(0.528638\pi\)
\(830\) −12.1379 −0.421311
\(831\) −27.7877 −0.963946
\(832\) −14.2592 −0.494350
\(833\) −27.2963 −0.945762
\(834\) −13.9041 −0.481458
\(835\) −15.7558 −0.545252
\(836\) −107.510 −3.71832
\(837\) 15.2726 0.527897
\(838\) −10.7930 −0.372839
\(839\) 7.42054 0.256186 0.128093 0.991762i \(-0.459114\pi\)
0.128093 + 0.991762i \(0.459114\pi\)
\(840\) −9.43962 −0.325698
\(841\) −26.0779 −0.899239
\(842\) −24.6040 −0.847911
\(843\) 38.5754 1.32861
\(844\) −13.4136 −0.461716
\(845\) 10.9158 0.375517
\(846\) −18.9602 −0.651864
\(847\) 18.3494 0.630492
\(848\) −62.1959 −2.13582
\(849\) −11.4501 −0.392966
\(850\) 36.0458 1.23636
\(851\) 0.690017 0.0236535
\(852\) −11.2507 −0.385442
\(853\) 41.3126 1.41452 0.707258 0.706956i \(-0.249932\pi\)
0.707258 + 0.706956i \(0.249932\pi\)
\(854\) −25.4826 −0.871995
\(855\) −8.34840 −0.285509
\(856\) 21.8908 0.748211
\(857\) −7.62215 −0.260368 −0.130184 0.991490i \(-0.541557\pi\)
−0.130184 + 0.991490i \(0.541557\pi\)
\(858\) 81.1139 2.76918
\(859\) −1.32702 −0.0452773 −0.0226387 0.999744i \(-0.507207\pi\)
−0.0226387 + 0.999744i \(0.507207\pi\)
\(860\) −29.9641 −1.02177
\(861\) −6.35571 −0.216602
\(862\) −17.9946 −0.612899
\(863\) 45.2045 1.53878 0.769389 0.638781i \(-0.220561\pi\)
0.769389 + 0.638781i \(0.220561\pi\)
\(864\) 20.1560 0.685721
\(865\) 0.981087 0.0333579
\(866\) 6.18613 0.210213
\(867\) 3.78238 0.128456
\(868\) −11.2169 −0.380727
\(869\) −47.8369 −1.62275
\(870\) 7.32403 0.248308
\(871\) −22.2777 −0.754850
\(872\) −35.9817 −1.21849
\(873\) −9.84976 −0.333364
\(874\) 7.81301 0.264279
\(875\) −10.3863 −0.351121
\(876\) −36.4800 −1.23254
\(877\) 9.01613 0.304453 0.152227 0.988346i \(-0.451356\pi\)
0.152227 + 0.988346i \(0.451356\pi\)
\(878\) 4.40636 0.148707
\(879\) −30.8674 −1.04113
\(880\) −45.0833 −1.51976
\(881\) −14.9177 −0.502591 −0.251295 0.967910i \(-0.580857\pi\)
−0.251295 + 0.967910i \(0.580857\pi\)
\(882\) −21.2812 −0.716576
\(883\) −0.649985 −0.0218737 −0.0109369 0.999940i \(-0.503481\pi\)
−0.0109369 + 0.999940i \(0.503481\pi\)
\(884\) 89.0342 2.99455
\(885\) 9.11700 0.306465
\(886\) −31.4605 −1.05694
\(887\) −49.6056 −1.66559 −0.832796 0.553580i \(-0.813261\pi\)
−0.832796 + 0.553580i \(0.813261\pi\)
\(888\) 7.45718 0.250247
\(889\) 3.95438 0.132626
\(890\) 34.4511 1.15480
\(891\) 16.1494 0.541025
\(892\) 104.340 3.49355
\(893\) −24.4843 −0.819337
\(894\) 53.1244 1.77675
\(895\) 9.77987 0.326905
\(896\) 14.2068 0.474615
\(897\) −4.03279 −0.134651
\(898\) −5.08646 −0.169737
\(899\) 4.68483 0.156248
\(900\) 19.2260 0.640866
\(901\) −45.5631 −1.51793
\(902\) −73.4590 −2.44592
\(903\) −6.19974 −0.206314
\(904\) 103.287 3.43529
\(905\) −5.87170 −0.195182
\(906\) −6.24182 −0.207370
\(907\) 16.0169 0.531831 0.265915 0.963996i \(-0.414326\pi\)
0.265915 + 0.963996i \(0.414326\pi\)
\(908\) 45.9527 1.52499
\(909\) −5.21377 −0.172930
\(910\) −14.6479 −0.485573
\(911\) −37.7233 −1.24983 −0.624914 0.780693i \(-0.714866\pi\)
−0.624914 + 0.780693i \(0.714866\pi\)
\(912\) 34.8909 1.15535
\(913\) −19.8581 −0.657206
\(914\) −45.5152 −1.50551
\(915\) 18.2501 0.603330
\(916\) −20.9919 −0.693592
\(917\) −6.91942 −0.228499
\(918\) 62.6734 2.06853
\(919\) −26.2770 −0.866799 −0.433399 0.901202i \(-0.642686\pi\)
−0.433399 + 0.901202i \(0.642686\pi\)
\(920\) 5.42433 0.178835
\(921\) −40.7632 −1.34319
\(922\) 9.50703 0.313097
\(923\) −9.39777 −0.309331
\(924\) −28.6896 −0.943819
\(925\) 3.20505 0.105381
\(926\) −3.68242 −0.121012
\(927\) 19.3125 0.634304
\(928\) 6.18281 0.202961
\(929\) −38.3851 −1.25937 −0.629687 0.776849i \(-0.716817\pi\)
−0.629687 + 0.776849i \(0.716817\pi\)
\(930\) 11.7423 0.385046
\(931\) −27.4817 −0.900675
\(932\) −16.5686 −0.542721
\(933\) −32.9468 −1.07863
\(934\) −97.3913 −3.18674
\(935\) −33.0268 −1.08009
\(936\) 37.3658 1.22134
\(937\) −20.9040 −0.682903 −0.341452 0.939899i \(-0.610919\pi\)
−0.341452 + 0.939899i \(0.610919\pi\)
\(938\) 11.5175 0.376059
\(939\) −32.3792 −1.05665
\(940\) −31.5785 −1.02998
\(941\) −37.8154 −1.23275 −0.616373 0.787455i \(-0.711399\pi\)
−0.616373 + 0.787455i \(0.711399\pi\)
\(942\) −26.4830 −0.862862
\(943\) 3.65221 0.118932
\(944\) 32.6674 1.06323
\(945\) −7.05413 −0.229471
\(946\) −71.6563 −2.32975
\(947\) 16.5748 0.538608 0.269304 0.963055i \(-0.413206\pi\)
0.269304 + 0.963055i \(0.413206\pi\)
\(948\) 47.7488 1.55081
\(949\) −30.4719 −0.989161
\(950\) 36.2905 1.17742
\(951\) 12.3456 0.400334
\(952\) −24.7782 −0.803065
\(953\) −41.4797 −1.34366 −0.671830 0.740705i \(-0.734492\pi\)
−0.671830 + 0.740705i \(0.734492\pi\)
\(954\) −35.5227 −1.15009
\(955\) 11.6650 0.377470
\(956\) −0.800494 −0.0258898
\(957\) 11.9824 0.387337
\(958\) 41.7127 1.34768
\(959\) 1.12342 0.0362771
\(960\) −5.27967 −0.170401
\(961\) −23.4890 −0.757710
\(962\) 11.5716 0.373085
\(963\) 5.16636 0.166484
\(964\) −7.29298 −0.234891
\(965\) 6.83340 0.219975
\(966\) 2.08494 0.0670817
\(967\) −18.5153 −0.595413 −0.297706 0.954658i \(-0.596222\pi\)
−0.297706 + 0.954658i \(0.596222\pi\)
\(968\) −113.953 −3.66260
\(969\) 25.5602 0.821112
\(970\) −23.9791 −0.769923
\(971\) −2.69210 −0.0863936 −0.0431968 0.999067i \(-0.513754\pi\)
−0.0431968 + 0.999067i \(0.513754\pi\)
\(972\) 56.2998 1.80582
\(973\) 4.10787 0.131692
\(974\) 33.1949 1.06363
\(975\) −18.7318 −0.599899
\(976\) 65.3926 2.09317
\(977\) −40.0618 −1.28169 −0.640845 0.767670i \(-0.721416\pi\)
−0.640845 + 0.767670i \(0.721416\pi\)
\(978\) 3.19800 0.102261
\(979\) 56.3634 1.80138
\(980\) −35.4443 −1.13223
\(981\) −8.49190 −0.271126
\(982\) 76.9382 2.45520
\(983\) 4.82297 0.153829 0.0769145 0.997038i \(-0.475493\pi\)
0.0769145 + 0.997038i \(0.475493\pi\)
\(984\) 39.4703 1.25827
\(985\) −21.0779 −0.671596
\(986\) 19.2249 0.612247
\(987\) −6.53376 −0.207972
\(988\) 89.6387 2.85179
\(989\) 3.56258 0.113283
\(990\) −25.7489 −0.818355
\(991\) 46.4468 1.47543 0.737716 0.675112i \(-0.235905\pi\)
0.737716 + 0.675112i \(0.235905\pi\)
\(992\) 9.91265 0.314727
\(993\) −9.76175 −0.309780
\(994\) 4.85861 0.154106
\(995\) 16.1379 0.511606
\(996\) 19.8215 0.628069
\(997\) 34.6536 1.09749 0.548746 0.835989i \(-0.315105\pi\)
0.548746 + 0.835989i \(0.315105\pi\)
\(998\) 53.7056 1.70002
\(999\) 5.57267 0.176311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6031.2.a.c.1.8 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6031.2.a.c.1.8 110 1.1 even 1 trivial