Properties

Label 6031.2.a.c.1.10
Level $6031$
Weight $2$
Character 6031.1
Self dual yes
Analytic conductor $48.158$
Analytic rank $1$
Dimension $110$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6031,2,Mod(1,6031)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6031.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6031, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6031 = 37 \cdot 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6031.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [110] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1577774590\)
Analytic rank: \(1\)
Dimension: \(110\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 6031.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.45577 q^{2} -2.50707 q^{3} +4.03080 q^{4} -3.71982 q^{5} +6.15679 q^{6} -2.33961 q^{7} -4.98718 q^{8} +3.28541 q^{9} +9.13502 q^{10} +2.57303 q^{11} -10.1055 q^{12} +5.33790 q^{13} +5.74553 q^{14} +9.32586 q^{15} +4.18576 q^{16} +4.03274 q^{17} -8.06822 q^{18} -4.58211 q^{19} -14.9939 q^{20} +5.86556 q^{21} -6.31877 q^{22} -2.79877 q^{23} +12.5032 q^{24} +8.83707 q^{25} -13.1087 q^{26} -0.715550 q^{27} -9.43049 q^{28} -6.33486 q^{29} -22.9022 q^{30} +0.489920 q^{31} -0.304902 q^{32} -6.45077 q^{33} -9.90347 q^{34} +8.70291 q^{35} +13.2428 q^{36} -1.00000 q^{37} +11.2526 q^{38} -13.3825 q^{39} +18.5514 q^{40} -8.58242 q^{41} -14.4045 q^{42} +0.592609 q^{43} +10.3714 q^{44} -12.2211 q^{45} +6.87312 q^{46} -9.77727 q^{47} -10.4940 q^{48} -1.52625 q^{49} -21.7018 q^{50} -10.1104 q^{51} +21.5160 q^{52} -7.99488 q^{53} +1.75723 q^{54} -9.57121 q^{55} +11.6680 q^{56} +11.4877 q^{57} +15.5570 q^{58} +0.408646 q^{59} +37.5907 q^{60} +0.897776 q^{61} -1.20313 q^{62} -7.68657 q^{63} -7.62275 q^{64} -19.8560 q^{65} +15.8416 q^{66} -1.17207 q^{67} +16.2552 q^{68} +7.01671 q^{69} -21.3723 q^{70} +7.20994 q^{71} -16.3849 q^{72} +16.0979 q^{73} +2.45577 q^{74} -22.1552 q^{75} -18.4696 q^{76} -6.01987 q^{77} +32.8644 q^{78} +0.577220 q^{79} -15.5703 q^{80} -8.06230 q^{81} +21.0765 q^{82} +15.0091 q^{83} +23.6429 q^{84} -15.0011 q^{85} -1.45531 q^{86} +15.8820 q^{87} -12.8322 q^{88} +2.15432 q^{89} +30.0123 q^{90} -12.4886 q^{91} -11.2813 q^{92} -1.22827 q^{93} +24.0107 q^{94} +17.0446 q^{95} +0.764411 q^{96} +2.02030 q^{97} +3.74811 q^{98} +8.45346 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 9 q^{2} + 97 q^{4} - 26 q^{5} - 26 q^{6} - 4 q^{7} - 27 q^{8} + 62 q^{9} - 17 q^{10} - 9 q^{11} - 21 q^{13} - 29 q^{14} - 23 q^{15} + 79 q^{16} - 76 q^{17} - 31 q^{18} - 27 q^{19} - 67 q^{20} - 30 q^{21}+ \cdots - 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.45577 −1.73649 −0.868246 0.496135i \(-0.834752\pi\)
−0.868246 + 0.496135i \(0.834752\pi\)
\(3\) −2.50707 −1.44746 −0.723730 0.690084i \(-0.757574\pi\)
−0.723730 + 0.690084i \(0.757574\pi\)
\(4\) 4.03080 2.01540
\(5\) −3.71982 −1.66355 −0.831777 0.555110i \(-0.812676\pi\)
−0.831777 + 0.555110i \(0.812676\pi\)
\(6\) 6.15679 2.51350
\(7\) −2.33961 −0.884288 −0.442144 0.896944i \(-0.645782\pi\)
−0.442144 + 0.896944i \(0.645782\pi\)
\(8\) −4.98718 −1.76323
\(9\) 3.28541 1.09514
\(10\) 9.13502 2.88875
\(11\) 2.57303 0.775797 0.387899 0.921702i \(-0.373201\pi\)
0.387899 + 0.921702i \(0.373201\pi\)
\(12\) −10.1055 −2.91721
\(13\) 5.33790 1.48047 0.740234 0.672349i \(-0.234715\pi\)
0.740234 + 0.672349i \(0.234715\pi\)
\(14\) 5.74553 1.53556
\(15\) 9.32586 2.40793
\(16\) 4.18576 1.04644
\(17\) 4.03274 0.978083 0.489041 0.872261i \(-0.337347\pi\)
0.489041 + 0.872261i \(0.337347\pi\)
\(18\) −8.06822 −1.90170
\(19\) −4.58211 −1.05121 −0.525604 0.850729i \(-0.676161\pi\)
−0.525604 + 0.850729i \(0.676161\pi\)
\(20\) −14.9939 −3.35273
\(21\) 5.86556 1.27997
\(22\) −6.31877 −1.34717
\(23\) −2.79877 −0.583583 −0.291791 0.956482i \(-0.594251\pi\)
−0.291791 + 0.956482i \(0.594251\pi\)
\(24\) 12.5032 2.55221
\(25\) 8.83707 1.76741
\(26\) −13.1087 −2.57082
\(27\) −0.715550 −0.137708
\(28\) −9.43049 −1.78219
\(29\) −6.33486 −1.17635 −0.588177 0.808732i \(-0.700154\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(30\) −22.9022 −4.18134
\(31\) 0.489920 0.0879922 0.0439961 0.999032i \(-0.485991\pi\)
0.0439961 + 0.999032i \(0.485991\pi\)
\(32\) −0.304902 −0.0538996
\(33\) −6.45077 −1.12294
\(34\) −9.90347 −1.69843
\(35\) 8.70291 1.47106
\(36\) 13.2428 2.20714
\(37\) −1.00000 −0.164399
\(38\) 11.2526 1.82541
\(39\) −13.3825 −2.14292
\(40\) 18.5514 2.93324
\(41\) −8.58242 −1.34035 −0.670175 0.742203i \(-0.733781\pi\)
−0.670175 + 0.742203i \(0.733781\pi\)
\(42\) −14.4045 −2.22266
\(43\) 0.592609 0.0903720 0.0451860 0.998979i \(-0.485612\pi\)
0.0451860 + 0.998979i \(0.485612\pi\)
\(44\) 10.3714 1.56354
\(45\) −12.2211 −1.82182
\(46\) 6.87312 1.01339
\(47\) −9.77727 −1.42616 −0.713080 0.701082i \(-0.752701\pi\)
−0.713080 + 0.701082i \(0.752701\pi\)
\(48\) −10.4940 −1.51468
\(49\) −1.52625 −0.218035
\(50\) −21.7018 −3.06910
\(51\) −10.1104 −1.41573
\(52\) 21.5160 2.98374
\(53\) −7.99488 −1.09818 −0.549091 0.835763i \(-0.685026\pi\)
−0.549091 + 0.835763i \(0.685026\pi\)
\(54\) 1.75723 0.239128
\(55\) −9.57121 −1.29058
\(56\) 11.6680 1.55921
\(57\) 11.4877 1.52158
\(58\) 15.5570 2.04273
\(59\) 0.408646 0.0532012 0.0266006 0.999646i \(-0.491532\pi\)
0.0266006 + 0.999646i \(0.491532\pi\)
\(60\) 37.5907 4.85294
\(61\) 0.897776 0.114948 0.0574742 0.998347i \(-0.481695\pi\)
0.0574742 + 0.998347i \(0.481695\pi\)
\(62\) −1.20313 −0.152798
\(63\) −7.68657 −0.968417
\(64\) −7.62275 −0.952844
\(65\) −19.8560 −2.46284
\(66\) 15.8416 1.94997
\(67\) −1.17207 −0.143191 −0.0715954 0.997434i \(-0.522809\pi\)
−0.0715954 + 0.997434i \(0.522809\pi\)
\(68\) 16.2552 1.97123
\(69\) 7.01671 0.844712
\(70\) −21.3723 −2.55448
\(71\) 7.20994 0.855662 0.427831 0.903859i \(-0.359278\pi\)
0.427831 + 0.903859i \(0.359278\pi\)
\(72\) −16.3849 −1.93098
\(73\) 16.0979 1.88411 0.942057 0.335453i \(-0.108889\pi\)
0.942057 + 0.335453i \(0.108889\pi\)
\(74\) 2.45577 0.285477
\(75\) −22.1552 −2.55826
\(76\) −18.4696 −2.11861
\(77\) −6.01987 −0.686028
\(78\) 32.8644 3.72115
\(79\) 0.577220 0.0649423 0.0324712 0.999473i \(-0.489662\pi\)
0.0324712 + 0.999473i \(0.489662\pi\)
\(80\) −15.5703 −1.74081
\(81\) −8.06230 −0.895811
\(82\) 21.0765 2.32750
\(83\) 15.0091 1.64746 0.823731 0.566980i \(-0.191888\pi\)
0.823731 + 0.566980i \(0.191888\pi\)
\(84\) 23.6429 2.57965
\(85\) −15.0011 −1.62709
\(86\) −1.45531 −0.156930
\(87\) 15.8820 1.70273
\(88\) −12.8322 −1.36791
\(89\) 2.15432 0.228357 0.114179 0.993460i \(-0.463576\pi\)
0.114179 + 0.993460i \(0.463576\pi\)
\(90\) 30.0123 3.16358
\(91\) −12.4886 −1.30916
\(92\) −11.2813 −1.17615
\(93\) −1.22827 −0.127365
\(94\) 24.0107 2.47652
\(95\) 17.0446 1.74874
\(96\) 0.764411 0.0780174
\(97\) 2.02030 0.205131 0.102565 0.994726i \(-0.467295\pi\)
0.102565 + 0.994726i \(0.467295\pi\)
\(98\) 3.74811 0.378617
\(99\) 8.45346 0.849605
\(100\) 35.6205 3.56205
\(101\) 0.381656 0.0379762 0.0189881 0.999820i \(-0.493956\pi\)
0.0189881 + 0.999820i \(0.493956\pi\)
\(102\) 24.8287 2.45841
\(103\) 2.19364 0.216146 0.108073 0.994143i \(-0.465532\pi\)
0.108073 + 0.994143i \(0.465532\pi\)
\(104\) −26.6211 −2.61041
\(105\) −21.8188 −2.12930
\(106\) 19.6336 1.90698
\(107\) 17.8638 1.72696 0.863479 0.504385i \(-0.168281\pi\)
0.863479 + 0.504385i \(0.168281\pi\)
\(108\) −2.88424 −0.277536
\(109\) 5.26295 0.504099 0.252050 0.967714i \(-0.418895\pi\)
0.252050 + 0.967714i \(0.418895\pi\)
\(110\) 23.5047 2.24108
\(111\) 2.50707 0.237961
\(112\) −9.79303 −0.925354
\(113\) −10.3950 −0.977880 −0.488940 0.872317i \(-0.662616\pi\)
−0.488940 + 0.872317i \(0.662616\pi\)
\(114\) −28.2111 −2.64221
\(115\) 10.4109 0.970822
\(116\) −25.5346 −2.37083
\(117\) 17.5372 1.62132
\(118\) −1.00354 −0.0923834
\(119\) −9.43501 −0.864906
\(120\) −46.5098 −4.24574
\(121\) −4.37952 −0.398138
\(122\) −2.20473 −0.199607
\(123\) 21.5168 1.94010
\(124\) 1.97477 0.177340
\(125\) −14.2732 −1.27663
\(126\) 18.8764 1.68165
\(127\) 18.1699 1.61231 0.806157 0.591701i \(-0.201544\pi\)
0.806157 + 0.591701i \(0.201544\pi\)
\(128\) 19.3295 1.70851
\(129\) −1.48571 −0.130810
\(130\) 48.7618 4.27670
\(131\) −18.9556 −1.65615 −0.828077 0.560614i \(-0.810565\pi\)
−0.828077 + 0.560614i \(0.810565\pi\)
\(132\) −26.0018 −2.26316
\(133\) 10.7203 0.929571
\(134\) 2.87833 0.248650
\(135\) 2.66172 0.229084
\(136\) −20.1120 −1.72459
\(137\) −21.1672 −1.80844 −0.904220 0.427068i \(-0.859547\pi\)
−0.904220 + 0.427068i \(0.859547\pi\)
\(138\) −17.2314 −1.46684
\(139\) 13.0259 1.10484 0.552419 0.833566i \(-0.313705\pi\)
0.552419 + 0.833566i \(0.313705\pi\)
\(140\) 35.0797 2.96478
\(141\) 24.5123 2.06431
\(142\) −17.7059 −1.48585
\(143\) 13.7346 1.14854
\(144\) 13.7520 1.14600
\(145\) 23.5646 1.95693
\(146\) −39.5327 −3.27175
\(147\) 3.82641 0.315597
\(148\) −4.03080 −0.331330
\(149\) −3.12849 −0.256296 −0.128148 0.991755i \(-0.540903\pi\)
−0.128148 + 0.991755i \(0.540903\pi\)
\(150\) 54.4080 4.44239
\(151\) −3.08038 −0.250677 −0.125339 0.992114i \(-0.540002\pi\)
−0.125339 + 0.992114i \(0.540002\pi\)
\(152\) 22.8518 1.85353
\(153\) 13.2492 1.07113
\(154\) 14.7834 1.19128
\(155\) −1.82241 −0.146380
\(156\) −53.9422 −4.31884
\(157\) 21.6881 1.73090 0.865450 0.500995i \(-0.167033\pi\)
0.865450 + 0.500995i \(0.167033\pi\)
\(158\) −1.41752 −0.112772
\(159\) 20.0437 1.58957
\(160\) 1.13418 0.0896649
\(161\) 6.54801 0.516055
\(162\) 19.7992 1.55557
\(163\) −1.00000 −0.0783260
\(164\) −34.5941 −2.70134
\(165\) 23.9957 1.86806
\(166\) −36.8589 −2.86080
\(167\) 18.1507 1.40454 0.702270 0.711911i \(-0.252170\pi\)
0.702270 + 0.711911i \(0.252170\pi\)
\(168\) −29.2526 −2.25689
\(169\) 15.4932 1.19178
\(170\) 36.8391 2.82543
\(171\) −15.0541 −1.15122
\(172\) 2.38869 0.182136
\(173\) −14.8938 −1.13236 −0.566178 0.824283i \(-0.691578\pi\)
−0.566178 + 0.824283i \(0.691578\pi\)
\(174\) −39.0024 −2.95677
\(175\) −20.6752 −1.56290
\(176\) 10.7701 0.811826
\(177\) −1.02451 −0.0770066
\(178\) −5.29051 −0.396541
\(179\) −15.2482 −1.13971 −0.569853 0.821747i \(-0.693000\pi\)
−0.569853 + 0.821747i \(0.693000\pi\)
\(180\) −49.2610 −3.67170
\(181\) −22.5531 −1.67636 −0.838180 0.545394i \(-0.816380\pi\)
−0.838180 + 0.545394i \(0.816380\pi\)
\(182\) 30.6691 2.27334
\(183\) −2.25079 −0.166383
\(184\) 13.9579 1.02899
\(185\) 3.71982 0.273487
\(186\) 3.01634 0.221168
\(187\) 10.3764 0.758794
\(188\) −39.4102 −2.87429
\(189\) 1.67411 0.121773
\(190\) −41.8577 −3.03668
\(191\) −6.20408 −0.448912 −0.224456 0.974484i \(-0.572060\pi\)
−0.224456 + 0.974484i \(0.572060\pi\)
\(192\) 19.1108 1.37920
\(193\) 5.11788 0.368393 0.184196 0.982889i \(-0.441032\pi\)
0.184196 + 0.982889i \(0.441032\pi\)
\(194\) −4.96139 −0.356207
\(195\) 49.7805 3.56486
\(196\) −6.15200 −0.439429
\(197\) −2.07974 −0.148175 −0.0740877 0.997252i \(-0.523604\pi\)
−0.0740877 + 0.997252i \(0.523604\pi\)
\(198\) −20.7598 −1.47533
\(199\) 6.02258 0.426930 0.213465 0.976951i \(-0.431525\pi\)
0.213465 + 0.976951i \(0.431525\pi\)
\(200\) −44.0720 −3.11636
\(201\) 2.93846 0.207263
\(202\) −0.937258 −0.0659453
\(203\) 14.8211 1.04024
\(204\) −40.7529 −2.85327
\(205\) 31.9251 2.22974
\(206\) −5.38707 −0.375335
\(207\) −9.19510 −0.639104
\(208\) 22.3432 1.54922
\(209\) −11.7899 −0.815525
\(210\) 53.5820 3.69751
\(211\) −2.87604 −0.197995 −0.0989973 0.995088i \(-0.531564\pi\)
−0.0989973 + 0.995088i \(0.531564\pi\)
\(212\) −32.2258 −2.21328
\(213\) −18.0758 −1.23854
\(214\) −43.8693 −2.99885
\(215\) −2.20440 −0.150339
\(216\) 3.56858 0.242811
\(217\) −1.14622 −0.0778105
\(218\) −12.9246 −0.875364
\(219\) −40.3585 −2.72718
\(220\) −38.5796 −2.60104
\(221\) 21.5264 1.44802
\(222\) −6.15679 −0.413217
\(223\) −3.25540 −0.217998 −0.108999 0.994042i \(-0.534765\pi\)
−0.108999 + 0.994042i \(0.534765\pi\)
\(224\) 0.713350 0.0476627
\(225\) 29.0334 1.93556
\(226\) 25.5277 1.69808
\(227\) 19.9280 1.32267 0.661333 0.750092i \(-0.269991\pi\)
0.661333 + 0.750092i \(0.269991\pi\)
\(228\) 46.3046 3.06660
\(229\) −12.0532 −0.796501 −0.398250 0.917277i \(-0.630382\pi\)
−0.398250 + 0.917277i \(0.630382\pi\)
\(230\) −25.5668 −1.68582
\(231\) 15.0923 0.992998
\(232\) 31.5931 2.07419
\(233\) −6.90856 −0.452595 −0.226297 0.974058i \(-0.572662\pi\)
−0.226297 + 0.974058i \(0.572662\pi\)
\(234\) −43.0673 −2.81540
\(235\) 36.3697 2.37250
\(236\) 1.64717 0.107222
\(237\) −1.44713 −0.0940014
\(238\) 23.1702 1.50190
\(239\) 22.1606 1.43345 0.716723 0.697358i \(-0.245641\pi\)
0.716723 + 0.697358i \(0.245641\pi\)
\(240\) 39.0358 2.51975
\(241\) −1.51312 −0.0974685 −0.0487343 0.998812i \(-0.515519\pi\)
−0.0487343 + 0.998812i \(0.515519\pi\)
\(242\) 10.7551 0.691364
\(243\) 22.3594 1.43436
\(244\) 3.61876 0.231667
\(245\) 5.67737 0.362714
\(246\) −52.8402 −3.36897
\(247\) −24.4589 −1.55628
\(248\) −2.44332 −0.155151
\(249\) −37.6289 −2.38463
\(250\) 35.0517 2.21686
\(251\) 7.79981 0.492320 0.246160 0.969229i \(-0.420831\pi\)
0.246160 + 0.969229i \(0.420831\pi\)
\(252\) −30.9830 −1.95175
\(253\) −7.20130 −0.452742
\(254\) −44.6210 −2.79977
\(255\) 37.6087 2.35515
\(256\) −32.2234 −2.01396
\(257\) −27.5057 −1.71576 −0.857880 0.513849i \(-0.828219\pi\)
−0.857880 + 0.513849i \(0.828219\pi\)
\(258\) 3.64857 0.227150
\(259\) 2.33961 0.145376
\(260\) −80.0358 −4.96361
\(261\) −20.8126 −1.28827
\(262\) 46.5505 2.87590
\(263\) 23.2339 1.43266 0.716332 0.697760i \(-0.245820\pi\)
0.716332 + 0.697760i \(0.245820\pi\)
\(264\) 32.1712 1.98000
\(265\) 29.7395 1.82688
\(266\) −26.3267 −1.61419
\(267\) −5.40103 −0.330538
\(268\) −4.72437 −0.288587
\(269\) 7.08590 0.432035 0.216017 0.976389i \(-0.430693\pi\)
0.216017 + 0.976389i \(0.430693\pi\)
\(270\) −6.53657 −0.397803
\(271\) 10.7026 0.650134 0.325067 0.945691i \(-0.394613\pi\)
0.325067 + 0.945691i \(0.394613\pi\)
\(272\) 16.8801 1.02351
\(273\) 31.3098 1.89495
\(274\) 51.9819 3.14034
\(275\) 22.7380 1.37115
\(276\) 28.2830 1.70243
\(277\) 19.0675 1.14565 0.572827 0.819677i \(-0.305847\pi\)
0.572827 + 0.819677i \(0.305847\pi\)
\(278\) −31.9885 −1.91854
\(279\) 1.60959 0.0963636
\(280\) −43.4030 −2.59383
\(281\) 13.8001 0.823243 0.411622 0.911355i \(-0.364963\pi\)
0.411622 + 0.911355i \(0.364963\pi\)
\(282\) −60.1966 −3.58465
\(283\) −15.6644 −0.931155 −0.465577 0.885007i \(-0.654153\pi\)
−0.465577 + 0.885007i \(0.654153\pi\)
\(284\) 29.0618 1.72450
\(285\) −42.7321 −2.53123
\(286\) −33.7290 −1.99443
\(287\) 20.0795 1.18525
\(288\) −1.00173 −0.0590274
\(289\) −0.737026 −0.0433544
\(290\) −57.8691 −3.39819
\(291\) −5.06504 −0.296918
\(292\) 64.8874 3.79725
\(293\) −20.0490 −1.17128 −0.585639 0.810572i \(-0.699156\pi\)
−0.585639 + 0.810572i \(0.699156\pi\)
\(294\) −9.39679 −0.548032
\(295\) −1.52009 −0.0885031
\(296\) 4.98718 0.289874
\(297\) −1.84113 −0.106833
\(298\) 7.68284 0.445055
\(299\) −14.9395 −0.863976
\(300\) −89.3031 −5.15592
\(301\) −1.38647 −0.0799148
\(302\) 7.56469 0.435299
\(303\) −0.956839 −0.0549689
\(304\) −19.1796 −1.10003
\(305\) −3.33957 −0.191223
\(306\) −32.5370 −1.86002
\(307\) −15.2943 −0.872893 −0.436447 0.899730i \(-0.643763\pi\)
−0.436447 + 0.899730i \(0.643763\pi\)
\(308\) −24.2649 −1.38262
\(309\) −5.49961 −0.312862
\(310\) 4.47543 0.254187
\(311\) 19.2053 1.08903 0.544516 0.838750i \(-0.316713\pi\)
0.544516 + 0.838750i \(0.316713\pi\)
\(312\) 66.7410 3.77846
\(313\) −16.3505 −0.924186 −0.462093 0.886831i \(-0.652901\pi\)
−0.462093 + 0.886831i \(0.652901\pi\)
\(314\) −53.2610 −3.00569
\(315\) 28.5927 1.61101
\(316\) 2.32666 0.130885
\(317\) 13.7975 0.774944 0.387472 0.921882i \(-0.373348\pi\)
0.387472 + 0.921882i \(0.373348\pi\)
\(318\) −49.2228 −2.76028
\(319\) −16.2998 −0.912613
\(320\) 28.3553 1.58511
\(321\) −44.7858 −2.49970
\(322\) −16.0804 −0.896125
\(323\) −18.4785 −1.02817
\(324\) −32.4975 −1.80542
\(325\) 47.1714 2.61660
\(326\) 2.45577 0.136012
\(327\) −13.1946 −0.729663
\(328\) 42.8021 2.36335
\(329\) 22.8749 1.26114
\(330\) −58.9279 −3.24388
\(331\) 22.2294 1.22184 0.610920 0.791693i \(-0.290800\pi\)
0.610920 + 0.791693i \(0.290800\pi\)
\(332\) 60.4987 3.32030
\(333\) −3.28541 −0.180040
\(334\) −44.5738 −2.43897
\(335\) 4.35988 0.238206
\(336\) 24.5518 1.33941
\(337\) 26.6404 1.45119 0.725596 0.688121i \(-0.241564\pi\)
0.725596 + 0.688121i \(0.241564\pi\)
\(338\) −38.0477 −2.06952
\(339\) 26.0610 1.41544
\(340\) −60.4663 −3.27925
\(341\) 1.26058 0.0682642
\(342\) 36.9695 1.99908
\(343\) 19.9481 1.07709
\(344\) −2.95545 −0.159347
\(345\) −26.1009 −1.40522
\(346\) 36.5757 1.96632
\(347\) −12.3230 −0.661533 −0.330766 0.943713i \(-0.607307\pi\)
−0.330766 + 0.943713i \(0.607307\pi\)
\(348\) 64.0171 3.43167
\(349\) 20.9214 1.11990 0.559948 0.828528i \(-0.310821\pi\)
0.559948 + 0.828528i \(0.310821\pi\)
\(350\) 50.7736 2.71396
\(351\) −3.81954 −0.203872
\(352\) −0.784522 −0.0418151
\(353\) −7.84095 −0.417332 −0.208666 0.977987i \(-0.566912\pi\)
−0.208666 + 0.977987i \(0.566912\pi\)
\(354\) 2.51595 0.133721
\(355\) −26.8197 −1.42344
\(356\) 8.68363 0.460232
\(357\) 23.6543 1.25192
\(358\) 37.4461 1.97909
\(359\) 9.51169 0.502008 0.251004 0.967986i \(-0.419239\pi\)
0.251004 + 0.967986i \(0.419239\pi\)
\(360\) 60.9491 3.21230
\(361\) 1.99574 0.105039
\(362\) 55.3852 2.91098
\(363\) 10.9798 0.576289
\(364\) −50.3390 −2.63848
\(365\) −59.8812 −3.13433
\(366\) 5.52742 0.288923
\(367\) 18.6461 0.973316 0.486658 0.873593i \(-0.338216\pi\)
0.486658 + 0.873593i \(0.338216\pi\)
\(368\) −11.7150 −0.610685
\(369\) −28.1968 −1.46787
\(370\) −9.13502 −0.474907
\(371\) 18.7049 0.971108
\(372\) −4.95089 −0.256692
\(373\) 31.9281 1.65317 0.826586 0.562810i \(-0.190280\pi\)
0.826586 + 0.562810i \(0.190280\pi\)
\(374\) −25.4819 −1.31764
\(375\) 35.7839 1.84787
\(376\) 48.7610 2.51466
\(377\) −33.8149 −1.74156
\(378\) −4.11122 −0.211458
\(379\) 23.2132 1.19238 0.596191 0.802842i \(-0.296680\pi\)
0.596191 + 0.802842i \(0.296680\pi\)
\(380\) 68.7035 3.52442
\(381\) −45.5532 −2.33376
\(382\) 15.2358 0.779531
\(383\) −6.54297 −0.334330 −0.167165 0.985929i \(-0.553461\pi\)
−0.167165 + 0.985929i \(0.553461\pi\)
\(384\) −48.4605 −2.47299
\(385\) 22.3928 1.14125
\(386\) −12.5683 −0.639711
\(387\) 1.94696 0.0989698
\(388\) 8.14344 0.413420
\(389\) 33.2338 1.68502 0.842511 0.538679i \(-0.181077\pi\)
0.842511 + 0.538679i \(0.181077\pi\)
\(390\) −122.249 −6.19034
\(391\) −11.2867 −0.570792
\(392\) 7.61167 0.384448
\(393\) 47.5230 2.39722
\(394\) 5.10736 0.257305
\(395\) −2.14716 −0.108035
\(396\) 34.0742 1.71229
\(397\) 23.9110 1.20006 0.600028 0.799979i \(-0.295156\pi\)
0.600028 + 0.799979i \(0.295156\pi\)
\(398\) −14.7901 −0.741359
\(399\) −26.8766 −1.34552
\(400\) 36.9899 1.84949
\(401\) 16.8344 0.840669 0.420334 0.907369i \(-0.361913\pi\)
0.420334 + 0.907369i \(0.361913\pi\)
\(402\) −7.21617 −0.359910
\(403\) 2.61515 0.130270
\(404\) 1.53838 0.0765372
\(405\) 29.9903 1.49023
\(406\) −36.3972 −1.80636
\(407\) −2.57303 −0.127540
\(408\) 50.4222 2.49627
\(409\) −6.64296 −0.328473 −0.164237 0.986421i \(-0.552516\pi\)
−0.164237 + 0.986421i \(0.552516\pi\)
\(410\) −78.4006 −3.87193
\(411\) 53.0678 2.61764
\(412\) 8.84212 0.435620
\(413\) −0.956071 −0.0470452
\(414\) 22.5810 1.10980
\(415\) −55.8312 −2.74064
\(416\) −1.62754 −0.0797966
\(417\) −32.6568 −1.59921
\(418\) 28.9533 1.41615
\(419\) 18.3741 0.897634 0.448817 0.893624i \(-0.351846\pi\)
0.448817 + 0.893624i \(0.351846\pi\)
\(420\) −87.9474 −4.29139
\(421\) −3.57601 −0.174284 −0.0871421 0.996196i \(-0.527773\pi\)
−0.0871421 + 0.996196i \(0.527773\pi\)
\(422\) 7.06289 0.343816
\(423\) −32.1224 −1.56184
\(424\) 39.8719 1.93635
\(425\) 35.6376 1.72868
\(426\) 44.3901 2.15071
\(427\) −2.10044 −0.101648
\(428\) 72.0054 3.48051
\(429\) −34.4336 −1.66247
\(430\) 5.41349 0.261062
\(431\) −15.4973 −0.746480 −0.373240 0.927735i \(-0.621753\pi\)
−0.373240 + 0.927735i \(0.621753\pi\)
\(432\) −2.99512 −0.144103
\(433\) −14.1594 −0.680457 −0.340228 0.940343i \(-0.610504\pi\)
−0.340228 + 0.940343i \(0.610504\pi\)
\(434\) 2.81485 0.135117
\(435\) −59.0781 −2.83258
\(436\) 21.2139 1.01596
\(437\) 12.8243 0.613467
\(438\) 99.1113 4.73572
\(439\) −28.7646 −1.37286 −0.686430 0.727196i \(-0.740823\pi\)
−0.686430 + 0.727196i \(0.740823\pi\)
\(440\) 47.7333 2.27560
\(441\) −5.01435 −0.238779
\(442\) −52.8638 −2.51447
\(443\) −28.9522 −1.37556 −0.687780 0.725919i \(-0.741415\pi\)
−0.687780 + 0.725919i \(0.741415\pi\)
\(444\) 10.1055 0.479586
\(445\) −8.01368 −0.379885
\(446\) 7.99452 0.378552
\(447\) 7.84334 0.370977
\(448\) 17.8342 0.842588
\(449\) −17.5740 −0.829369 −0.414684 0.909965i \(-0.636108\pi\)
−0.414684 + 0.909965i \(0.636108\pi\)
\(450\) −71.2993 −3.36108
\(451\) −22.0828 −1.03984
\(452\) −41.9002 −1.97082
\(453\) 7.72273 0.362845
\(454\) −48.9385 −2.29680
\(455\) 46.4553 2.17786
\(456\) −57.2912 −2.68290
\(457\) −28.3952 −1.32827 −0.664137 0.747611i \(-0.731201\pi\)
−0.664137 + 0.747611i \(0.731201\pi\)
\(458\) 29.6000 1.38312
\(459\) −2.88563 −0.134690
\(460\) 41.9643 1.95660
\(461\) −23.4349 −1.09147 −0.545737 0.837957i \(-0.683750\pi\)
−0.545737 + 0.837957i \(0.683750\pi\)
\(462\) −37.0631 −1.72433
\(463\) −13.6729 −0.635432 −0.317716 0.948186i \(-0.602916\pi\)
−0.317716 + 0.948186i \(0.602916\pi\)
\(464\) −26.5162 −1.23099
\(465\) 4.56893 0.211879
\(466\) 16.9658 0.785927
\(467\) −29.5387 −1.36689 −0.683445 0.730002i \(-0.739519\pi\)
−0.683445 + 0.730002i \(0.739519\pi\)
\(468\) 70.6890 3.26760
\(469\) 2.74217 0.126622
\(470\) −89.3155 −4.11982
\(471\) −54.3737 −2.50541
\(472\) −2.03799 −0.0938063
\(473\) 1.52480 0.0701104
\(474\) 3.55382 0.163233
\(475\) −40.4924 −1.85792
\(476\) −38.0307 −1.74313
\(477\) −26.2665 −1.20266
\(478\) −54.4212 −2.48917
\(479\) 16.9628 0.775051 0.387525 0.921859i \(-0.373330\pi\)
0.387525 + 0.921859i \(0.373330\pi\)
\(480\) −2.84347 −0.129786
\(481\) −5.33790 −0.243387
\(482\) 3.71587 0.169253
\(483\) −16.4163 −0.746969
\(484\) −17.6530 −0.802408
\(485\) −7.51516 −0.341246
\(486\) −54.9096 −2.49075
\(487\) 33.4512 1.51582 0.757909 0.652360i \(-0.226221\pi\)
0.757909 + 0.652360i \(0.226221\pi\)
\(488\) −4.47737 −0.202681
\(489\) 2.50707 0.113374
\(490\) −13.9423 −0.629849
\(491\) −18.9378 −0.854651 −0.427325 0.904098i \(-0.640544\pi\)
−0.427325 + 0.904098i \(0.640544\pi\)
\(492\) 86.7298 3.91008
\(493\) −25.5468 −1.15057
\(494\) 60.0653 2.70247
\(495\) −31.4454 −1.41336
\(496\) 2.05069 0.0920786
\(497\) −16.8684 −0.756652
\(498\) 92.4079 4.14090
\(499\) 10.6784 0.478030 0.239015 0.971016i \(-0.423176\pi\)
0.239015 + 0.971016i \(0.423176\pi\)
\(500\) −57.5324 −2.57293
\(501\) −45.5050 −2.03301
\(502\) −19.1545 −0.854909
\(503\) −19.1256 −0.852768 −0.426384 0.904542i \(-0.640213\pi\)
−0.426384 + 0.904542i \(0.640213\pi\)
\(504\) 38.3343 1.70755
\(505\) −1.41969 −0.0631754
\(506\) 17.6847 0.786183
\(507\) −38.8426 −1.72506
\(508\) 73.2391 3.24946
\(509\) 40.0760 1.77634 0.888170 0.459516i \(-0.151977\pi\)
0.888170 + 0.459516i \(0.151977\pi\)
\(510\) −92.3584 −4.08970
\(511\) −37.6627 −1.66610
\(512\) 40.4741 1.78872
\(513\) 3.27873 0.144760
\(514\) 67.5477 2.97940
\(515\) −8.15994 −0.359570
\(516\) −5.98862 −0.263634
\(517\) −25.1572 −1.10641
\(518\) −5.74553 −0.252444
\(519\) 37.3399 1.63904
\(520\) 99.0257 4.34256
\(521\) −16.6678 −0.730232 −0.365116 0.930962i \(-0.618971\pi\)
−0.365116 + 0.930962i \(0.618971\pi\)
\(522\) 51.1110 2.23707
\(523\) 28.1816 1.23230 0.616148 0.787631i \(-0.288692\pi\)
0.616148 + 0.787631i \(0.288692\pi\)
\(524\) −76.4061 −3.33782
\(525\) 51.8343 2.26224
\(526\) −57.0571 −2.48781
\(527\) 1.97572 0.0860637
\(528\) −27.0014 −1.17508
\(529\) −15.1669 −0.659431
\(530\) −73.0334 −3.17237
\(531\) 1.34257 0.0582627
\(532\) 43.2115 1.87346
\(533\) −45.8121 −1.98434
\(534\) 13.2637 0.573976
\(535\) −66.4501 −2.87289
\(536\) 5.84531 0.252479
\(537\) 38.2284 1.64968
\(538\) −17.4013 −0.750225
\(539\) −3.92708 −0.169151
\(540\) 10.7289 0.461697
\(541\) 24.7632 1.06465 0.532326 0.846539i \(-0.321318\pi\)
0.532326 + 0.846539i \(0.321318\pi\)
\(542\) −26.2830 −1.12895
\(543\) 56.5423 2.42646
\(544\) −1.22959 −0.0527182
\(545\) −19.5772 −0.838597
\(546\) −76.8896 −3.29057
\(547\) 8.42333 0.360155 0.180078 0.983652i \(-0.442365\pi\)
0.180078 + 0.983652i \(0.442365\pi\)
\(548\) −85.3209 −3.64473
\(549\) 2.94957 0.125884
\(550\) −55.8393 −2.38100
\(551\) 29.0271 1.23659
\(552\) −34.9936 −1.48943
\(553\) −1.35047 −0.0574277
\(554\) −46.8253 −1.98942
\(555\) −9.32586 −0.395861
\(556\) 52.5046 2.22669
\(557\) 27.1535 1.15053 0.575266 0.817967i \(-0.304899\pi\)
0.575266 + 0.817967i \(0.304899\pi\)
\(558\) −3.95278 −0.167335
\(559\) 3.16329 0.133793
\(560\) 36.4283 1.53938
\(561\) −26.0143 −1.09832
\(562\) −33.8898 −1.42955
\(563\) −18.5218 −0.780602 −0.390301 0.920687i \(-0.627629\pi\)
−0.390301 + 0.920687i \(0.627629\pi\)
\(564\) 98.8043 4.16041
\(565\) 38.6676 1.62676
\(566\) 38.4683 1.61694
\(567\) 18.8626 0.792155
\(568\) −35.9573 −1.50873
\(569\) 15.8630 0.665012 0.332506 0.943101i \(-0.392106\pi\)
0.332506 + 0.943101i \(0.392106\pi\)
\(570\) 104.940 4.39546
\(571\) −26.4240 −1.10581 −0.552904 0.833245i \(-0.686481\pi\)
−0.552904 + 0.833245i \(0.686481\pi\)
\(572\) 55.3614 2.31478
\(573\) 15.5541 0.649781
\(574\) −49.3106 −2.05818
\(575\) −24.7329 −1.03143
\(576\) −25.0439 −1.04350
\(577\) −5.19037 −0.216078 −0.108039 0.994147i \(-0.534457\pi\)
−0.108039 + 0.994147i \(0.534457\pi\)
\(578\) 1.80996 0.0752846
\(579\) −12.8309 −0.533233
\(580\) 94.9841 3.94400
\(581\) −35.1154 −1.45683
\(582\) 12.4386 0.515595
\(583\) −20.5711 −0.851966
\(584\) −80.2830 −3.32214
\(585\) −65.2353 −2.69715
\(586\) 49.2358 2.03391
\(587\) −15.8568 −0.654480 −0.327240 0.944941i \(-0.606119\pi\)
−0.327240 + 0.944941i \(0.606119\pi\)
\(588\) 15.4235 0.636055
\(589\) −2.24487 −0.0924982
\(590\) 3.73299 0.153685
\(591\) 5.21406 0.214478
\(592\) −4.18576 −0.172034
\(593\) −38.1900 −1.56828 −0.784138 0.620587i \(-0.786895\pi\)
−0.784138 + 0.620587i \(0.786895\pi\)
\(594\) 4.52139 0.185515
\(595\) 35.0966 1.43882
\(596\) −12.6103 −0.516539
\(597\) −15.0991 −0.617963
\(598\) 36.6880 1.50029
\(599\) −3.92586 −0.160406 −0.0802031 0.996779i \(-0.525557\pi\)
−0.0802031 + 0.996779i \(0.525557\pi\)
\(600\) 110.492 4.51081
\(601\) 8.65019 0.352849 0.176424 0.984314i \(-0.443547\pi\)
0.176424 + 0.984314i \(0.443547\pi\)
\(602\) 3.40485 0.138771
\(603\) −3.85072 −0.156814
\(604\) −12.4164 −0.505216
\(605\) 16.2910 0.662325
\(606\) 2.34977 0.0954531
\(607\) −1.58272 −0.0642405 −0.0321202 0.999484i \(-0.510226\pi\)
−0.0321202 + 0.999484i \(0.510226\pi\)
\(608\) 1.39709 0.0566597
\(609\) −37.1575 −1.50570
\(610\) 8.20121 0.332057
\(611\) −52.1901 −2.11139
\(612\) 53.4049 2.15877
\(613\) 2.10730 0.0851132 0.0425566 0.999094i \(-0.486450\pi\)
0.0425566 + 0.999094i \(0.486450\pi\)
\(614\) 37.5593 1.51577
\(615\) −80.0385 −3.22746
\(616\) 30.0222 1.20963
\(617\) −2.71845 −0.109441 −0.0547203 0.998502i \(-0.517427\pi\)
−0.0547203 + 0.998502i \(0.517427\pi\)
\(618\) 13.5058 0.543282
\(619\) −5.20074 −0.209035 −0.104518 0.994523i \(-0.533330\pi\)
−0.104518 + 0.994523i \(0.533330\pi\)
\(620\) −7.34579 −0.295014
\(621\) 2.00266 0.0803639
\(622\) −47.1638 −1.89110
\(623\) −5.04026 −0.201934
\(624\) −56.0160 −2.24243
\(625\) 8.90840 0.356336
\(626\) 40.1531 1.60484
\(627\) 29.5582 1.18044
\(628\) 87.4205 3.48846
\(629\) −4.03274 −0.160796
\(630\) −70.2170 −2.79751
\(631\) 29.4327 1.17170 0.585849 0.810421i \(-0.300761\pi\)
0.585849 + 0.810421i \(0.300761\pi\)
\(632\) −2.87870 −0.114509
\(633\) 7.21044 0.286589
\(634\) −33.8834 −1.34568
\(635\) −67.5886 −2.68217
\(636\) 80.7924 3.20363
\(637\) −8.14696 −0.322794
\(638\) 40.0285 1.58474
\(639\) 23.6876 0.937068
\(640\) −71.9024 −2.84219
\(641\) −14.8865 −0.587980 −0.293990 0.955808i \(-0.594983\pi\)
−0.293990 + 0.955808i \(0.594983\pi\)
\(642\) 109.984 4.34071
\(643\) −50.6849 −1.99882 −0.999409 0.0343769i \(-0.989055\pi\)
−0.999409 + 0.0343769i \(0.989055\pi\)
\(644\) 26.3937 1.04006
\(645\) 5.52659 0.217609
\(646\) 45.3788 1.78541
\(647\) −19.4552 −0.764864 −0.382432 0.923984i \(-0.624913\pi\)
−0.382432 + 0.923984i \(0.624913\pi\)
\(648\) 40.2082 1.57953
\(649\) 1.05146 0.0412734
\(650\) −115.842 −4.54370
\(651\) 2.87366 0.112627
\(652\) −4.03080 −0.157858
\(653\) 42.8763 1.67788 0.838939 0.544226i \(-0.183176\pi\)
0.838939 + 0.544226i \(0.183176\pi\)
\(654\) 32.4029 1.26705
\(655\) 70.5113 2.75510
\(656\) −35.9240 −1.40260
\(657\) 52.8882 2.06336
\(658\) −56.1756 −2.18995
\(659\) 40.4900 1.57727 0.788634 0.614863i \(-0.210789\pi\)
0.788634 + 0.614863i \(0.210789\pi\)
\(660\) 96.7220 3.76490
\(661\) −42.7844 −1.66412 −0.832060 0.554685i \(-0.812839\pi\)
−0.832060 + 0.554685i \(0.812839\pi\)
\(662\) −54.5903 −2.12171
\(663\) −53.9681 −2.09595
\(664\) −74.8531 −2.90486
\(665\) −39.8777 −1.54639
\(666\) 8.06822 0.312637
\(667\) 17.7298 0.686500
\(668\) 73.1617 2.83071
\(669\) 8.16154 0.315543
\(670\) −10.7069 −0.413642
\(671\) 2.31000 0.0891767
\(672\) −1.78842 −0.0689898
\(673\) 38.7429 1.49343 0.746714 0.665146i \(-0.231631\pi\)
0.746714 + 0.665146i \(0.231631\pi\)
\(674\) −65.4226 −2.51998
\(675\) −6.32337 −0.243386
\(676\) 62.4500 2.40192
\(677\) 22.1962 0.853069 0.426535 0.904471i \(-0.359734\pi\)
0.426535 + 0.904471i \(0.359734\pi\)
\(678\) −63.9999 −2.45790
\(679\) −4.72671 −0.181394
\(680\) 74.8130 2.86895
\(681\) −49.9609 −1.91451
\(682\) −3.09569 −0.118540
\(683\) −22.7313 −0.869789 −0.434894 0.900481i \(-0.643214\pi\)
−0.434894 + 0.900481i \(0.643214\pi\)
\(684\) −60.6802 −2.32017
\(685\) 78.7383 3.00844
\(686\) −48.9878 −1.87036
\(687\) 30.2184 1.15290
\(688\) 2.48052 0.0945689
\(689\) −42.6759 −1.62582
\(690\) 64.0978 2.44016
\(691\) 0.341495 0.0129911 0.00649554 0.999979i \(-0.497932\pi\)
0.00649554 + 0.999979i \(0.497932\pi\)
\(692\) −60.0340 −2.28215
\(693\) −19.7778 −0.751295
\(694\) 30.2624 1.14875
\(695\) −48.4538 −1.83796
\(696\) −79.2062 −3.00230
\(697\) −34.6107 −1.31097
\(698\) −51.3781 −1.94469
\(699\) 17.3203 0.655112
\(700\) −83.3378 −3.14987
\(701\) −12.3627 −0.466933 −0.233466 0.972365i \(-0.575007\pi\)
−0.233466 + 0.972365i \(0.575007\pi\)
\(702\) 9.37990 0.354022
\(703\) 4.58211 0.172818
\(704\) −19.6136 −0.739214
\(705\) −91.1814 −3.43409
\(706\) 19.2556 0.724693
\(707\) −0.892924 −0.0335819
\(708\) −4.12958 −0.155199
\(709\) 18.2554 0.685594 0.342797 0.939409i \(-0.388626\pi\)
0.342797 + 0.939409i \(0.388626\pi\)
\(710\) 65.8629 2.47179
\(711\) 1.89641 0.0711208
\(712\) −10.7440 −0.402648
\(713\) −1.37117 −0.0513508
\(714\) −58.0894 −2.17394
\(715\) −51.0902 −1.91066
\(716\) −61.4625 −2.29696
\(717\) −55.5581 −2.07486
\(718\) −23.3585 −0.871732
\(719\) 23.1732 0.864216 0.432108 0.901822i \(-0.357770\pi\)
0.432108 + 0.901822i \(0.357770\pi\)
\(720\) −51.1548 −1.90643
\(721\) −5.13225 −0.191135
\(722\) −4.90109 −0.182400
\(723\) 3.79350 0.141082
\(724\) −90.9071 −3.37854
\(725\) −55.9816 −2.07910
\(726\) −26.9638 −1.00072
\(727\) −13.2524 −0.491505 −0.245752 0.969333i \(-0.579035\pi\)
−0.245752 + 0.969333i \(0.579035\pi\)
\(728\) 62.2828 2.30836
\(729\) −31.8698 −1.18036
\(730\) 147.054 5.44273
\(731\) 2.38984 0.0883913
\(732\) −9.07249 −0.335329
\(733\) 43.6771 1.61325 0.806625 0.591063i \(-0.201291\pi\)
0.806625 + 0.591063i \(0.201291\pi\)
\(734\) −45.7904 −1.69015
\(735\) −14.2336 −0.525013
\(736\) 0.853349 0.0314549
\(737\) −3.01576 −0.111087
\(738\) 69.2448 2.54894
\(739\) 36.8826 1.35675 0.678375 0.734716i \(-0.262684\pi\)
0.678375 + 0.734716i \(0.262684\pi\)
\(740\) 14.9939 0.551185
\(741\) 61.3201 2.25265
\(742\) −45.9348 −1.68632
\(743\) −16.4334 −0.602884 −0.301442 0.953484i \(-0.597468\pi\)
−0.301442 + 0.953484i \(0.597468\pi\)
\(744\) 6.12558 0.224575
\(745\) 11.6374 0.426362
\(746\) −78.4080 −2.87072
\(747\) 49.3111 1.80420
\(748\) 41.8250 1.52927
\(749\) −41.7942 −1.52713
\(750\) −87.8771 −3.20882
\(751\) −16.6189 −0.606431 −0.303216 0.952922i \(-0.598060\pi\)
−0.303216 + 0.952922i \(0.598060\pi\)
\(752\) −40.9253 −1.49239
\(753\) −19.5547 −0.712612
\(754\) 83.0416 3.02419
\(755\) 11.4584 0.417016
\(756\) 6.74799 0.245422
\(757\) −10.3199 −0.375081 −0.187541 0.982257i \(-0.560052\pi\)
−0.187541 + 0.982257i \(0.560052\pi\)
\(758\) −57.0063 −2.07056
\(759\) 18.0542 0.655326
\(760\) −85.0047 −3.08344
\(761\) −47.4336 −1.71947 −0.859734 0.510742i \(-0.829371\pi\)
−0.859734 + 0.510742i \(0.829371\pi\)
\(762\) 111.868 4.05255
\(763\) −12.3132 −0.445769
\(764\) −25.0074 −0.904737
\(765\) −49.2847 −1.78189
\(766\) 16.0680 0.580561
\(767\) 2.18131 0.0787627
\(768\) 80.7863 2.91512
\(769\) −31.8052 −1.14693 −0.573463 0.819232i \(-0.694400\pi\)
−0.573463 + 0.819232i \(0.694400\pi\)
\(770\) −54.9917 −1.98176
\(771\) 68.9589 2.48349
\(772\) 20.6291 0.742459
\(773\) 38.2928 1.37730 0.688648 0.725096i \(-0.258205\pi\)
0.688648 + 0.725096i \(0.258205\pi\)
\(774\) −4.78130 −0.171860
\(775\) 4.32946 0.155519
\(776\) −10.0756 −0.361693
\(777\) −5.86556 −0.210426
\(778\) −81.6146 −2.92603
\(779\) 39.3256 1.40899
\(780\) 200.655 7.18462
\(781\) 18.5514 0.663821
\(782\) 27.7175 0.991176
\(783\) 4.53291 0.161993
\(784\) −6.38851 −0.228161
\(785\) −80.6759 −2.87945
\(786\) −116.705 −4.16274
\(787\) 2.51440 0.0896287 0.0448144 0.998995i \(-0.485730\pi\)
0.0448144 + 0.998995i \(0.485730\pi\)
\(788\) −8.38302 −0.298633
\(789\) −58.2491 −2.07372
\(790\) 5.27292 0.187602
\(791\) 24.3202 0.864727
\(792\) −42.1590 −1.49805
\(793\) 4.79224 0.170178
\(794\) −58.7198 −2.08389
\(795\) −74.5591 −2.64434
\(796\) 24.2758 0.860434
\(797\) 11.8116 0.418389 0.209194 0.977874i \(-0.432916\pi\)
0.209194 + 0.977874i \(0.432916\pi\)
\(798\) 66.0028 2.33648
\(799\) −39.4292 −1.39490
\(800\) −2.69444 −0.0952628
\(801\) 7.07783 0.250083
\(802\) −41.3414 −1.45981
\(803\) 41.4203 1.46169
\(804\) 11.8443 0.417718
\(805\) −24.3574 −0.858486
\(806\) −6.42219 −0.226212
\(807\) −17.7649 −0.625353
\(808\) −1.90339 −0.0669609
\(809\) 13.9959 0.492069 0.246034 0.969261i \(-0.420872\pi\)
0.246034 + 0.969261i \(0.420872\pi\)
\(810\) −73.6493 −2.58777
\(811\) 35.7196 1.25429 0.627143 0.778904i \(-0.284224\pi\)
0.627143 + 0.778904i \(0.284224\pi\)
\(812\) 59.7408 2.09649
\(813\) −26.8321 −0.941042
\(814\) 6.31877 0.221473
\(815\) 3.71982 0.130300
\(816\) −42.3196 −1.48148
\(817\) −2.71540 −0.0949998
\(818\) 16.3136 0.570391
\(819\) −41.0302 −1.43371
\(820\) 128.684 4.49383
\(821\) 6.97985 0.243599 0.121799 0.992555i \(-0.461134\pi\)
0.121799 + 0.992555i \(0.461134\pi\)
\(822\) −130.322 −4.54551
\(823\) 33.1183 1.15443 0.577215 0.816592i \(-0.304140\pi\)
0.577215 + 0.816592i \(0.304140\pi\)
\(824\) −10.9401 −0.381115
\(825\) −57.0059 −1.98469
\(826\) 2.34789 0.0816935
\(827\) 9.09095 0.316123 0.158062 0.987429i \(-0.449476\pi\)
0.158062 + 0.987429i \(0.449476\pi\)
\(828\) −37.0636 −1.28805
\(829\) −40.7321 −1.41468 −0.707342 0.706872i \(-0.750106\pi\)
−0.707342 + 0.706872i \(0.750106\pi\)
\(830\) 137.108 4.75910
\(831\) −47.8035 −1.65829
\(832\) −40.6895 −1.41066
\(833\) −6.15496 −0.213257
\(834\) 80.1975 2.77701
\(835\) −67.5172 −2.33653
\(836\) −47.5228 −1.64361
\(837\) −0.350562 −0.0121172
\(838\) −45.1226 −1.55873
\(839\) −26.0218 −0.898371 −0.449186 0.893438i \(-0.648286\pi\)
−0.449186 + 0.893438i \(0.648286\pi\)
\(840\) 108.814 3.75446
\(841\) 11.1305 0.383810
\(842\) 8.78186 0.302643
\(843\) −34.5978 −1.19161
\(844\) −11.5927 −0.399039
\(845\) −57.6319 −1.98260
\(846\) 78.8851 2.71213
\(847\) 10.2463 0.352069
\(848\) −33.4647 −1.14918
\(849\) 39.2719 1.34781
\(850\) −87.5176 −3.00183
\(851\) 2.79877 0.0959404
\(852\) −72.8601 −2.49615
\(853\) −31.3585 −1.07369 −0.536847 0.843680i \(-0.680385\pi\)
−0.536847 + 0.843680i \(0.680385\pi\)
\(854\) 5.15820 0.176510
\(855\) 55.9987 1.91511
\(856\) −89.0899 −3.04503
\(857\) −26.8250 −0.916326 −0.458163 0.888868i \(-0.651492\pi\)
−0.458163 + 0.888868i \(0.651492\pi\)
\(858\) 84.5609 2.88686
\(859\) −20.2078 −0.689482 −0.344741 0.938698i \(-0.612033\pi\)
−0.344741 + 0.938698i \(0.612033\pi\)
\(860\) −8.88549 −0.302993
\(861\) −50.3407 −1.71561
\(862\) 38.0578 1.29626
\(863\) 33.6918 1.14688 0.573441 0.819247i \(-0.305608\pi\)
0.573441 + 0.819247i \(0.305608\pi\)
\(864\) 0.218173 0.00742239
\(865\) 55.4023 1.88373
\(866\) 34.7722 1.18161
\(867\) 1.84778 0.0627538
\(868\) −4.62018 −0.156819
\(869\) 1.48520 0.0503821
\(870\) 145.082 4.91874
\(871\) −6.25638 −0.211989
\(872\) −26.2473 −0.888846
\(873\) 6.63752 0.224646
\(874\) −31.4934 −1.06528
\(875\) 33.3936 1.12891
\(876\) −162.677 −5.49636
\(877\) −0.734215 −0.0247927 −0.0123963 0.999923i \(-0.503946\pi\)
−0.0123963 + 0.999923i \(0.503946\pi\)
\(878\) 70.6393 2.38396
\(879\) 50.2644 1.69538
\(880\) −40.0628 −1.35052
\(881\) 23.9350 0.806392 0.403196 0.915114i \(-0.367899\pi\)
0.403196 + 0.915114i \(0.367899\pi\)
\(882\) 12.3141 0.414637
\(883\) 32.5452 1.09523 0.547616 0.836730i \(-0.315535\pi\)
0.547616 + 0.836730i \(0.315535\pi\)
\(884\) 86.7685 2.91834
\(885\) 3.81098 0.128105
\(886\) 71.0999 2.38865
\(887\) −34.1782 −1.14759 −0.573796 0.818998i \(-0.694530\pi\)
−0.573796 + 0.818998i \(0.694530\pi\)
\(888\) −12.5032 −0.419581
\(889\) −42.5103 −1.42575
\(890\) 19.6797 0.659667
\(891\) −20.7445 −0.694968
\(892\) −13.1219 −0.439353
\(893\) 44.8005 1.49919
\(894\) −19.2614 −0.644199
\(895\) 56.7206 1.89596
\(896\) −45.2235 −1.51081
\(897\) 37.4545 1.25057
\(898\) 43.1577 1.44019
\(899\) −3.10358 −0.103510
\(900\) 117.028 3.90093
\(901\) −32.2413 −1.07411
\(902\) 54.2303 1.80567
\(903\) 3.47598 0.115673
\(904\) 51.8418 1.72423
\(905\) 83.8935 2.78871
\(906\) −18.9652 −0.630078
\(907\) −17.9826 −0.597104 −0.298552 0.954393i \(-0.596504\pi\)
−0.298552 + 0.954393i \(0.596504\pi\)
\(908\) 80.3258 2.66570
\(909\) 1.25390 0.0415891
\(910\) −114.083 −3.78183
\(911\) −0.862655 −0.0285811 −0.0142905 0.999898i \(-0.504549\pi\)
−0.0142905 + 0.999898i \(0.504549\pi\)
\(912\) 48.0847 1.59224
\(913\) 38.6189 1.27810
\(914\) 69.7322 2.30654
\(915\) 8.37254 0.276788
\(916\) −48.5842 −1.60527
\(917\) 44.3485 1.46452
\(918\) 7.08643 0.233887
\(919\) 54.1637 1.78670 0.893348 0.449366i \(-0.148350\pi\)
0.893348 + 0.449366i \(0.148350\pi\)
\(920\) −51.9211 −1.71179
\(921\) 38.3440 1.26348
\(922\) 57.5508 1.89533
\(923\) 38.4860 1.26678
\(924\) 60.8339 2.00129
\(925\) −8.83707 −0.290561
\(926\) 33.5774 1.10342
\(927\) 7.20701 0.236709
\(928\) 1.93151 0.0634050
\(929\) 11.9307 0.391434 0.195717 0.980660i \(-0.437297\pi\)
0.195717 + 0.980660i \(0.437297\pi\)
\(930\) −11.2202 −0.367926
\(931\) 6.99344 0.229201
\(932\) −27.8470 −0.912160
\(933\) −48.1491 −1.57633
\(934\) 72.5403 2.37359
\(935\) −38.5982 −1.26230
\(936\) −87.4613 −2.85876
\(937\) −32.4701 −1.06075 −0.530376 0.847763i \(-0.677949\pi\)
−0.530376 + 0.847763i \(0.677949\pi\)
\(938\) −6.73415 −0.219878
\(939\) 40.9919 1.33772
\(940\) 146.599 4.78153
\(941\) 8.77454 0.286042 0.143021 0.989720i \(-0.454318\pi\)
0.143021 + 0.989720i \(0.454318\pi\)
\(942\) 133.529 4.35062
\(943\) 24.0202 0.782205
\(944\) 1.71050 0.0556719
\(945\) −6.22737 −0.202576
\(946\) −3.74456 −0.121746
\(947\) 21.7988 0.708367 0.354184 0.935176i \(-0.384759\pi\)
0.354184 + 0.935176i \(0.384759\pi\)
\(948\) −5.83311 −0.189450
\(949\) 85.9289 2.78937
\(950\) 99.4400 3.22626
\(951\) −34.5913 −1.12170
\(952\) 47.0541 1.52503
\(953\) 29.8250 0.966125 0.483063 0.875586i \(-0.339524\pi\)
0.483063 + 0.875586i \(0.339524\pi\)
\(954\) 64.5044 2.08841
\(955\) 23.0781 0.746789
\(956\) 89.3248 2.88897
\(957\) 40.8648 1.32097
\(958\) −41.6567 −1.34587
\(959\) 49.5230 1.59918
\(960\) −71.0887 −2.29438
\(961\) −30.7600 −0.992257
\(962\) 13.1087 0.422640
\(963\) 58.6899 1.89126
\(964\) −6.09908 −0.196438
\(965\) −19.0376 −0.612841
\(966\) 40.3147 1.29710
\(967\) 14.9793 0.481701 0.240850 0.970562i \(-0.422574\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(968\) 21.8415 0.702011
\(969\) 46.3268 1.48823
\(970\) 18.4555 0.592570
\(971\) −39.9646 −1.28252 −0.641262 0.767322i \(-0.721589\pi\)
−0.641262 + 0.767322i \(0.721589\pi\)
\(972\) 90.1264 2.89081
\(973\) −30.4754 −0.976995
\(974\) −82.1484 −2.63220
\(975\) −118.262 −3.78742
\(976\) 3.75788 0.120287
\(977\) −13.8803 −0.444069 −0.222034 0.975039i \(-0.571270\pi\)
−0.222034 + 0.975039i \(0.571270\pi\)
\(978\) −6.15679 −0.196872
\(979\) 5.54313 0.177159
\(980\) 22.8843 0.731014
\(981\) 17.2910 0.552058
\(982\) 46.5069 1.48409
\(983\) 0.0570295 0.00181896 0.000909479 1.00000i \(-0.499711\pi\)
0.000909479 1.00000i \(0.499711\pi\)
\(984\) −107.308 −3.42085
\(985\) 7.73626 0.246498
\(986\) 62.7372 1.99796
\(987\) −57.3491 −1.82544
\(988\) −98.5888 −3.13653
\(989\) −1.65857 −0.0527396
\(990\) 77.2226 2.45429
\(991\) −0.787089 −0.0250027 −0.0125014 0.999922i \(-0.503979\pi\)
−0.0125014 + 0.999922i \(0.503979\pi\)
\(992\) −0.149378 −0.00474274
\(993\) −55.7308 −1.76856
\(994\) 41.4249 1.31392
\(995\) −22.4029 −0.710220
\(996\) −151.675 −4.80600
\(997\) 41.3899 1.31083 0.655416 0.755268i \(-0.272493\pi\)
0.655416 + 0.755268i \(0.272493\pi\)
\(998\) −26.2236 −0.830094
\(999\) 0.715550 0.0226390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6031.2.a.c.1.10 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6031.2.a.c.1.10 110 1.1 even 1 trivial