Properties

Label 6003.2.a.v.1.29
Level $6003$
Weight $2$
Character 6003.1
Self dual yes
Analytic conductor $47.934$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6003,2,Mod(1,6003)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6003.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6003, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6003 = 3^{2} \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6003.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-1,0,37,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.9341963334\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.29
Character \(\chi\) \(=\) 6003.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.60906 q^{2} +4.80718 q^{4} -3.69173 q^{5} +1.51238 q^{7} +7.32410 q^{8} -9.63193 q^{10} -4.23707 q^{11} +0.701184 q^{13} +3.94588 q^{14} +9.49464 q^{16} -2.20964 q^{17} +3.51544 q^{19} -17.7468 q^{20} -11.0548 q^{22} +1.00000 q^{23} +8.62884 q^{25} +1.82943 q^{26} +7.27027 q^{28} -1.00000 q^{29} +8.97980 q^{31} +10.1239 q^{32} -5.76508 q^{34} -5.58328 q^{35} +9.90381 q^{37} +9.17198 q^{38} -27.0386 q^{40} +8.88026 q^{41} +11.2652 q^{43} -20.3684 q^{44} +2.60906 q^{46} +9.05117 q^{47} -4.71272 q^{49} +22.5131 q^{50} +3.37072 q^{52} -4.47941 q^{53} +15.6421 q^{55} +11.0768 q^{56} -2.60906 q^{58} +8.07095 q^{59} -0.602421 q^{61} +23.4288 q^{62} +7.42446 q^{64} -2.58858 q^{65} +2.51875 q^{67} -10.6221 q^{68} -14.5671 q^{70} +4.90800 q^{71} -0.365627 q^{73} +25.8396 q^{74} +16.8994 q^{76} -6.40805 q^{77} -1.39084 q^{79} -35.0516 q^{80} +23.1691 q^{82} -0.338109 q^{83} +8.15739 q^{85} +29.3915 q^{86} -31.0327 q^{88} +6.33212 q^{89} +1.06046 q^{91} +4.80718 q^{92} +23.6150 q^{94} -12.9780 q^{95} -5.60675 q^{97} -12.2957 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - q^{2} + 37 q^{4} + 10 q^{7} - 6 q^{8} + 8 q^{10} + 36 q^{13} - 7 q^{14} + 47 q^{16} - 18 q^{17} + 16 q^{19} + 25 q^{22} + 30 q^{23} + 56 q^{25} - 11 q^{26} + 27 q^{28} - 30 q^{29} + 14 q^{31} + 7 q^{32}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60906 1.84488 0.922441 0.386137i \(-0.126191\pi\)
0.922441 + 0.386137i \(0.126191\pi\)
\(3\) 0 0
\(4\) 4.80718 2.40359
\(5\) −3.69173 −1.65099 −0.825495 0.564409i \(-0.809104\pi\)
−0.825495 + 0.564409i \(0.809104\pi\)
\(6\) 0 0
\(7\) 1.51238 0.571625 0.285812 0.958286i \(-0.407737\pi\)
0.285812 + 0.958286i \(0.407737\pi\)
\(8\) 7.32410 2.58946
\(9\) 0 0
\(10\) −9.63193 −3.04588
\(11\) −4.23707 −1.27752 −0.638762 0.769404i \(-0.720553\pi\)
−0.638762 + 0.769404i \(0.720553\pi\)
\(12\) 0 0
\(13\) 0.701184 0.194474 0.0972368 0.995261i \(-0.469000\pi\)
0.0972368 + 0.995261i \(0.469000\pi\)
\(14\) 3.94588 1.05458
\(15\) 0 0
\(16\) 9.49464 2.37366
\(17\) −2.20964 −0.535917 −0.267958 0.963431i \(-0.586349\pi\)
−0.267958 + 0.963431i \(0.586349\pi\)
\(18\) 0 0
\(19\) 3.51544 0.806497 0.403249 0.915091i \(-0.367881\pi\)
0.403249 + 0.915091i \(0.367881\pi\)
\(20\) −17.7468 −3.96831
\(21\) 0 0
\(22\) −11.0548 −2.35688
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 8.62884 1.72577
\(26\) 1.82943 0.358781
\(27\) 0 0
\(28\) 7.27027 1.37395
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 8.97980 1.61282 0.806410 0.591357i \(-0.201408\pi\)
0.806410 + 0.591357i \(0.201408\pi\)
\(32\) 10.1239 1.78966
\(33\) 0 0
\(34\) −5.76508 −0.988703
\(35\) −5.58328 −0.943747
\(36\) 0 0
\(37\) 9.90381 1.62818 0.814088 0.580741i \(-0.197237\pi\)
0.814088 + 0.580741i \(0.197237\pi\)
\(38\) 9.17198 1.48789
\(39\) 0 0
\(40\) −27.0386 −4.27517
\(41\) 8.88026 1.38686 0.693431 0.720523i \(-0.256098\pi\)
0.693431 + 0.720523i \(0.256098\pi\)
\(42\) 0 0
\(43\) 11.2652 1.71792 0.858961 0.512041i \(-0.171110\pi\)
0.858961 + 0.512041i \(0.171110\pi\)
\(44\) −20.3684 −3.07065
\(45\) 0 0
\(46\) 2.60906 0.384685
\(47\) 9.05117 1.32025 0.660125 0.751156i \(-0.270503\pi\)
0.660125 + 0.751156i \(0.270503\pi\)
\(48\) 0 0
\(49\) −4.71272 −0.673245
\(50\) 22.5131 3.18384
\(51\) 0 0
\(52\) 3.37072 0.467435
\(53\) −4.47941 −0.615294 −0.307647 0.951501i \(-0.599542\pi\)
−0.307647 + 0.951501i \(0.599542\pi\)
\(54\) 0 0
\(55\) 15.6421 2.10918
\(56\) 11.0768 1.48020
\(57\) 0 0
\(58\) −2.60906 −0.342586
\(59\) 8.07095 1.05075 0.525374 0.850871i \(-0.323925\pi\)
0.525374 + 0.850871i \(0.323925\pi\)
\(60\) 0 0
\(61\) −0.602421 −0.0771320 −0.0385660 0.999256i \(-0.512279\pi\)
−0.0385660 + 0.999256i \(0.512279\pi\)
\(62\) 23.4288 2.97546
\(63\) 0 0
\(64\) 7.42446 0.928057
\(65\) −2.58858 −0.321074
\(66\) 0 0
\(67\) 2.51875 0.307714 0.153857 0.988093i \(-0.450831\pi\)
0.153857 + 0.988093i \(0.450831\pi\)
\(68\) −10.6221 −1.28812
\(69\) 0 0
\(70\) −14.5671 −1.74110
\(71\) 4.90800 0.582473 0.291236 0.956651i \(-0.405933\pi\)
0.291236 + 0.956651i \(0.405933\pi\)
\(72\) 0 0
\(73\) −0.365627 −0.0427934 −0.0213967 0.999771i \(-0.506811\pi\)
−0.0213967 + 0.999771i \(0.506811\pi\)
\(74\) 25.8396 3.00379
\(75\) 0 0
\(76\) 16.8994 1.93849
\(77\) −6.40805 −0.730265
\(78\) 0 0
\(79\) −1.39084 −0.156482 −0.0782411 0.996934i \(-0.524930\pi\)
−0.0782411 + 0.996934i \(0.524930\pi\)
\(80\) −35.0516 −3.91889
\(81\) 0 0
\(82\) 23.1691 2.55860
\(83\) −0.338109 −0.0371122 −0.0185561 0.999828i \(-0.505907\pi\)
−0.0185561 + 0.999828i \(0.505907\pi\)
\(84\) 0 0
\(85\) 8.15739 0.884793
\(86\) 29.3915 3.16936
\(87\) 0 0
\(88\) −31.0327 −3.30810
\(89\) 6.33212 0.671203 0.335602 0.942004i \(-0.391060\pi\)
0.335602 + 0.942004i \(0.391060\pi\)
\(90\) 0 0
\(91\) 1.06046 0.111166
\(92\) 4.80718 0.501183
\(93\) 0 0
\(94\) 23.6150 2.43570
\(95\) −12.9780 −1.33152
\(96\) 0 0
\(97\) −5.60675 −0.569279 −0.284639 0.958635i \(-0.591874\pi\)
−0.284639 + 0.958635i \(0.591874\pi\)
\(98\) −12.2957 −1.24206
\(99\) 0 0
\(100\) 41.4804 4.14804
\(101\) −8.51165 −0.846941 −0.423470 0.905910i \(-0.639188\pi\)
−0.423470 + 0.905910i \(0.639188\pi\)
\(102\) 0 0
\(103\) −8.33916 −0.821682 −0.410841 0.911707i \(-0.634765\pi\)
−0.410841 + 0.911707i \(0.634765\pi\)
\(104\) 5.13555 0.503582
\(105\) 0 0
\(106\) −11.6870 −1.13515
\(107\) −6.51887 −0.630203 −0.315102 0.949058i \(-0.602039\pi\)
−0.315102 + 0.949058i \(0.602039\pi\)
\(108\) 0 0
\(109\) −9.47639 −0.907673 −0.453837 0.891085i \(-0.649945\pi\)
−0.453837 + 0.891085i \(0.649945\pi\)
\(110\) 40.8111 3.89119
\(111\) 0 0
\(112\) 14.3595 1.35684
\(113\) −18.4646 −1.73700 −0.868502 0.495685i \(-0.834917\pi\)
−0.868502 + 0.495685i \(0.834917\pi\)
\(114\) 0 0
\(115\) −3.69173 −0.344255
\(116\) −4.80718 −0.446336
\(117\) 0 0
\(118\) 21.0576 1.93851
\(119\) −3.34181 −0.306343
\(120\) 0 0
\(121\) 6.95275 0.632068
\(122\) −1.57175 −0.142300
\(123\) 0 0
\(124\) 43.1675 3.87656
\(125\) −13.3967 −1.19824
\(126\) 0 0
\(127\) −4.96044 −0.440168 −0.220084 0.975481i \(-0.570633\pi\)
−0.220084 + 0.975481i \(0.570633\pi\)
\(128\) −0.876879 −0.0775059
\(129\) 0 0
\(130\) −6.75376 −0.592344
\(131\) 13.2817 1.16043 0.580213 0.814464i \(-0.302969\pi\)
0.580213 + 0.814464i \(0.302969\pi\)
\(132\) 0 0
\(133\) 5.31667 0.461014
\(134\) 6.57156 0.567696
\(135\) 0 0
\(136\) −16.1836 −1.38773
\(137\) 5.53897 0.473226 0.236613 0.971604i \(-0.423963\pi\)
0.236613 + 0.971604i \(0.423963\pi\)
\(138\) 0 0
\(139\) −0.0482918 −0.00409606 −0.00204803 0.999998i \(-0.500652\pi\)
−0.00204803 + 0.999998i \(0.500652\pi\)
\(140\) −26.8399 −2.26838
\(141\) 0 0
\(142\) 12.8053 1.07459
\(143\) −2.97097 −0.248445
\(144\) 0 0
\(145\) 3.69173 0.306581
\(146\) −0.953941 −0.0789487
\(147\) 0 0
\(148\) 47.6094 3.91347
\(149\) −6.09994 −0.499726 −0.249863 0.968281i \(-0.580386\pi\)
−0.249863 + 0.968281i \(0.580386\pi\)
\(150\) 0 0
\(151\) −5.40099 −0.439526 −0.219763 0.975553i \(-0.570528\pi\)
−0.219763 + 0.975553i \(0.570528\pi\)
\(152\) 25.7474 2.08839
\(153\) 0 0
\(154\) −16.7190 −1.34725
\(155\) −33.1510 −2.66275
\(156\) 0 0
\(157\) 13.8301 1.10376 0.551882 0.833922i \(-0.313910\pi\)
0.551882 + 0.833922i \(0.313910\pi\)
\(158\) −3.62879 −0.288691
\(159\) 0 0
\(160\) −37.3745 −2.95472
\(161\) 1.51238 0.119192
\(162\) 0 0
\(163\) 11.4078 0.893527 0.446764 0.894652i \(-0.352577\pi\)
0.446764 + 0.894652i \(0.352577\pi\)
\(164\) 42.6890 3.33345
\(165\) 0 0
\(166\) −0.882145 −0.0684677
\(167\) −14.7788 −1.14362 −0.571808 0.820387i \(-0.693758\pi\)
−0.571808 + 0.820387i \(0.693758\pi\)
\(168\) 0 0
\(169\) −12.5083 −0.962180
\(170\) 21.2831 1.63234
\(171\) 0 0
\(172\) 54.1537 4.12918
\(173\) 19.9280 1.51510 0.757549 0.652779i \(-0.226397\pi\)
0.757549 + 0.652779i \(0.226397\pi\)
\(174\) 0 0
\(175\) 13.0501 0.986492
\(176\) −40.2294 −3.03241
\(177\) 0 0
\(178\) 16.5209 1.23829
\(179\) 7.90810 0.591079 0.295540 0.955331i \(-0.404501\pi\)
0.295540 + 0.955331i \(0.404501\pi\)
\(180\) 0 0
\(181\) −19.7661 −1.46920 −0.734602 0.678498i \(-0.762631\pi\)
−0.734602 + 0.678498i \(0.762631\pi\)
\(182\) 2.76679 0.205088
\(183\) 0 0
\(184\) 7.32410 0.539940
\(185\) −36.5622 −2.68810
\(186\) 0 0
\(187\) 9.36240 0.684646
\(188\) 43.5106 3.17334
\(189\) 0 0
\(190\) −33.8605 −2.45650
\(191\) −13.2004 −0.955148 −0.477574 0.878592i \(-0.658484\pi\)
−0.477574 + 0.878592i \(0.658484\pi\)
\(192\) 0 0
\(193\) 9.57445 0.689184 0.344592 0.938753i \(-0.388017\pi\)
0.344592 + 0.938753i \(0.388017\pi\)
\(194\) −14.6283 −1.05025
\(195\) 0 0
\(196\) −22.6549 −1.61821
\(197\) 9.61490 0.685033 0.342517 0.939512i \(-0.388721\pi\)
0.342517 + 0.939512i \(0.388721\pi\)
\(198\) 0 0
\(199\) 11.3326 0.803350 0.401675 0.915782i \(-0.368428\pi\)
0.401675 + 0.915782i \(0.368428\pi\)
\(200\) 63.1985 4.46881
\(201\) 0 0
\(202\) −22.2074 −1.56251
\(203\) −1.51238 −0.106148
\(204\) 0 0
\(205\) −32.7835 −2.28970
\(206\) −21.7573 −1.51591
\(207\) 0 0
\(208\) 6.65749 0.461614
\(209\) −14.8952 −1.03032
\(210\) 0 0
\(211\) −11.4631 −0.789154 −0.394577 0.918863i \(-0.629109\pi\)
−0.394577 + 0.918863i \(0.629109\pi\)
\(212\) −21.5333 −1.47892
\(213\) 0 0
\(214\) −17.0081 −1.16265
\(215\) −41.5879 −2.83627
\(216\) 0 0
\(217\) 13.5808 0.921928
\(218\) −24.7244 −1.67455
\(219\) 0 0
\(220\) 75.1944 5.06961
\(221\) −1.54937 −0.104222
\(222\) 0 0
\(223\) 2.09705 0.140429 0.0702144 0.997532i \(-0.477632\pi\)
0.0702144 + 0.997532i \(0.477632\pi\)
\(224\) 15.3111 1.02302
\(225\) 0 0
\(226\) −48.1752 −3.20457
\(227\) 25.0947 1.66560 0.832798 0.553578i \(-0.186738\pi\)
0.832798 + 0.553578i \(0.186738\pi\)
\(228\) 0 0
\(229\) 20.0430 1.32448 0.662238 0.749293i \(-0.269607\pi\)
0.662238 + 0.749293i \(0.269607\pi\)
\(230\) −9.63193 −0.635110
\(231\) 0 0
\(232\) −7.32410 −0.480851
\(233\) −24.8577 −1.62848 −0.814240 0.580528i \(-0.802846\pi\)
−0.814240 + 0.580528i \(0.802846\pi\)
\(234\) 0 0
\(235\) −33.4144 −2.17972
\(236\) 38.7985 2.52557
\(237\) 0 0
\(238\) −8.71898 −0.565167
\(239\) 21.2735 1.37607 0.688036 0.725677i \(-0.258473\pi\)
0.688036 + 0.725677i \(0.258473\pi\)
\(240\) 0 0
\(241\) −11.6991 −0.753604 −0.376802 0.926294i \(-0.622976\pi\)
−0.376802 + 0.926294i \(0.622976\pi\)
\(242\) 18.1401 1.16609
\(243\) 0 0
\(244\) −2.89595 −0.185394
\(245\) 17.3981 1.11152
\(246\) 0 0
\(247\) 2.46497 0.156842
\(248\) 65.7690 4.17633
\(249\) 0 0
\(250\) −34.9527 −2.21061
\(251\) 23.8704 1.50669 0.753345 0.657626i \(-0.228439\pi\)
0.753345 + 0.657626i \(0.228439\pi\)
\(252\) 0 0
\(253\) −4.23707 −0.266382
\(254\) −12.9421 −0.812059
\(255\) 0 0
\(256\) −17.1367 −1.07105
\(257\) −14.5546 −0.907889 −0.453945 0.891030i \(-0.649984\pi\)
−0.453945 + 0.891030i \(0.649984\pi\)
\(258\) 0 0
\(259\) 14.9783 0.930706
\(260\) −12.4438 −0.771730
\(261\) 0 0
\(262\) 34.6527 2.14085
\(263\) 4.94078 0.304662 0.152331 0.988330i \(-0.451322\pi\)
0.152331 + 0.988330i \(0.451322\pi\)
\(264\) 0 0
\(265\) 16.5368 1.01584
\(266\) 13.8715 0.850516
\(267\) 0 0
\(268\) 12.1081 0.739619
\(269\) 20.1580 1.22906 0.614528 0.788895i \(-0.289346\pi\)
0.614528 + 0.788895i \(0.289346\pi\)
\(270\) 0 0
\(271\) −12.7651 −0.775424 −0.387712 0.921781i \(-0.626734\pi\)
−0.387712 + 0.921781i \(0.626734\pi\)
\(272\) −20.9797 −1.27208
\(273\) 0 0
\(274\) 14.4515 0.873046
\(275\) −36.5610 −2.20471
\(276\) 0 0
\(277\) −15.9763 −0.959925 −0.479963 0.877289i \(-0.659350\pi\)
−0.479963 + 0.877289i \(0.659350\pi\)
\(278\) −0.125996 −0.00755675
\(279\) 0 0
\(280\) −40.8925 −2.44380
\(281\) 16.3239 0.973803 0.486901 0.873457i \(-0.338127\pi\)
0.486901 + 0.873457i \(0.338127\pi\)
\(282\) 0 0
\(283\) 21.4250 1.27358 0.636791 0.771036i \(-0.280261\pi\)
0.636791 + 0.771036i \(0.280261\pi\)
\(284\) 23.5937 1.40003
\(285\) 0 0
\(286\) −7.75142 −0.458351
\(287\) 13.4303 0.792765
\(288\) 0 0
\(289\) −12.1175 −0.712793
\(290\) 9.63193 0.565606
\(291\) 0 0
\(292\) −1.75763 −0.102858
\(293\) 30.6416 1.79010 0.895051 0.445963i \(-0.147139\pi\)
0.895051 + 0.445963i \(0.147139\pi\)
\(294\) 0 0
\(295\) −29.7957 −1.73478
\(296\) 72.5365 4.21610
\(297\) 0 0
\(298\) −15.9151 −0.921936
\(299\) 0.701184 0.0405505
\(300\) 0 0
\(301\) 17.0372 0.982007
\(302\) −14.0915 −0.810874
\(303\) 0 0
\(304\) 33.3778 1.91435
\(305\) 2.22397 0.127344
\(306\) 0 0
\(307\) −14.8878 −0.849692 −0.424846 0.905266i \(-0.639672\pi\)
−0.424846 + 0.905266i \(0.639672\pi\)
\(308\) −30.8046 −1.75526
\(309\) 0 0
\(310\) −86.4928 −4.91246
\(311\) −5.96196 −0.338072 −0.169036 0.985610i \(-0.554065\pi\)
−0.169036 + 0.985610i \(0.554065\pi\)
\(312\) 0 0
\(313\) 3.19906 0.180822 0.0904108 0.995905i \(-0.471182\pi\)
0.0904108 + 0.995905i \(0.471182\pi\)
\(314\) 36.0836 2.03632
\(315\) 0 0
\(316\) −6.68604 −0.376119
\(317\) 13.7326 0.771302 0.385651 0.922645i \(-0.373977\pi\)
0.385651 + 0.922645i \(0.373977\pi\)
\(318\) 0 0
\(319\) 4.23707 0.237230
\(320\) −27.4091 −1.53221
\(321\) 0 0
\(322\) 3.94588 0.219895
\(323\) −7.76786 −0.432215
\(324\) 0 0
\(325\) 6.05041 0.335616
\(326\) 29.7636 1.64845
\(327\) 0 0
\(328\) 65.0399 3.59123
\(329\) 13.6888 0.754687
\(330\) 0 0
\(331\) 26.8049 1.47333 0.736665 0.676258i \(-0.236400\pi\)
0.736665 + 0.676258i \(0.236400\pi\)
\(332\) −1.62535 −0.0892026
\(333\) 0 0
\(334\) −38.5587 −2.10984
\(335\) −9.29852 −0.508033
\(336\) 0 0
\(337\) −20.3252 −1.10719 −0.553593 0.832787i \(-0.686744\pi\)
−0.553593 + 0.832787i \(0.686744\pi\)
\(338\) −32.6350 −1.77511
\(339\) 0 0
\(340\) 39.2141 2.12668
\(341\) −38.0480 −2.06042
\(342\) 0 0
\(343\) −17.7140 −0.956468
\(344\) 82.5072 4.44849
\(345\) 0 0
\(346\) 51.9933 2.79518
\(347\) 9.89884 0.531398 0.265699 0.964056i \(-0.414397\pi\)
0.265699 + 0.964056i \(0.414397\pi\)
\(348\) 0 0
\(349\) 2.78360 0.149003 0.0745015 0.997221i \(-0.476263\pi\)
0.0745015 + 0.997221i \(0.476263\pi\)
\(350\) 34.0484 1.81996
\(351\) 0 0
\(352\) −42.8955 −2.28634
\(353\) −21.6010 −1.14970 −0.574852 0.818257i \(-0.694940\pi\)
−0.574852 + 0.818257i \(0.694940\pi\)
\(354\) 0 0
\(355\) −18.1190 −0.961657
\(356\) 30.4397 1.61330
\(357\) 0 0
\(358\) 20.6327 1.09047
\(359\) 21.1444 1.11596 0.557980 0.829855i \(-0.311577\pi\)
0.557980 + 0.829855i \(0.311577\pi\)
\(360\) 0 0
\(361\) −6.64169 −0.349563
\(362\) −51.5710 −2.71051
\(363\) 0 0
\(364\) 5.09780 0.267197
\(365\) 1.34979 0.0706514
\(366\) 0 0
\(367\) −36.4666 −1.90354 −0.951771 0.306809i \(-0.900739\pi\)
−0.951771 + 0.306809i \(0.900739\pi\)
\(368\) 9.49464 0.494942
\(369\) 0 0
\(370\) −95.3928 −4.95924
\(371\) −6.77456 −0.351717
\(372\) 0 0
\(373\) −37.1573 −1.92393 −0.961966 0.273168i \(-0.911929\pi\)
−0.961966 + 0.273168i \(0.911929\pi\)
\(374\) 24.4270 1.26309
\(375\) 0 0
\(376\) 66.2917 3.41873
\(377\) −0.701184 −0.0361128
\(378\) 0 0
\(379\) −16.1181 −0.827934 −0.413967 0.910292i \(-0.635857\pi\)
−0.413967 + 0.910292i \(0.635857\pi\)
\(380\) −62.3878 −3.20043
\(381\) 0 0
\(382\) −34.4406 −1.76214
\(383\) −4.94872 −0.252868 −0.126434 0.991975i \(-0.540353\pi\)
−0.126434 + 0.991975i \(0.540353\pi\)
\(384\) 0 0
\(385\) 23.6567 1.20566
\(386\) 24.9803 1.27146
\(387\) 0 0
\(388\) −26.9527 −1.36831
\(389\) −30.5289 −1.54788 −0.773939 0.633261i \(-0.781716\pi\)
−0.773939 + 0.633261i \(0.781716\pi\)
\(390\) 0 0
\(391\) −2.20964 −0.111746
\(392\) −34.5164 −1.74334
\(393\) 0 0
\(394\) 25.0858 1.26381
\(395\) 5.13461 0.258350
\(396\) 0 0
\(397\) 19.6614 0.986777 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(398\) 29.5675 1.48209
\(399\) 0 0
\(400\) 81.9277 4.09639
\(401\) 2.20598 0.110161 0.0550807 0.998482i \(-0.482458\pi\)
0.0550807 + 0.998482i \(0.482458\pi\)
\(402\) 0 0
\(403\) 6.29650 0.313651
\(404\) −40.9171 −2.03570
\(405\) 0 0
\(406\) −3.94588 −0.195831
\(407\) −41.9631 −2.08004
\(408\) 0 0
\(409\) 22.8667 1.13068 0.565342 0.824857i \(-0.308744\pi\)
0.565342 + 0.824857i \(0.308744\pi\)
\(410\) −85.5340 −4.22422
\(411\) 0 0
\(412\) −40.0879 −1.97499
\(413\) 12.2063 0.600634
\(414\) 0 0
\(415\) 1.24820 0.0612719
\(416\) 7.09869 0.348042
\(417\) 0 0
\(418\) −38.8623 −1.90082
\(419\) −29.4988 −1.44111 −0.720556 0.693397i \(-0.756113\pi\)
−0.720556 + 0.693397i \(0.756113\pi\)
\(420\) 0 0
\(421\) 13.4004 0.653096 0.326548 0.945181i \(-0.394114\pi\)
0.326548 + 0.945181i \(0.394114\pi\)
\(422\) −29.9080 −1.45590
\(423\) 0 0
\(424\) −32.8077 −1.59328
\(425\) −19.0666 −0.924868
\(426\) 0 0
\(427\) −0.911087 −0.0440906
\(428\) −31.3374 −1.51475
\(429\) 0 0
\(430\) −108.505 −5.23259
\(431\) 17.1152 0.824411 0.412206 0.911091i \(-0.364758\pi\)
0.412206 + 0.911091i \(0.364758\pi\)
\(432\) 0 0
\(433\) 12.5925 0.605159 0.302579 0.953124i \(-0.402152\pi\)
0.302579 + 0.953124i \(0.402152\pi\)
\(434\) 35.4332 1.70085
\(435\) 0 0
\(436\) −45.5547 −2.18168
\(437\) 3.51544 0.168166
\(438\) 0 0
\(439\) −23.2289 −1.10866 −0.554328 0.832298i \(-0.687025\pi\)
−0.554328 + 0.832298i \(0.687025\pi\)
\(440\) 114.564 5.46164
\(441\) 0 0
\(442\) −4.04238 −0.192277
\(443\) 37.1009 1.76272 0.881359 0.472447i \(-0.156629\pi\)
0.881359 + 0.472447i \(0.156629\pi\)
\(444\) 0 0
\(445\) −23.3764 −1.10815
\(446\) 5.47133 0.259075
\(447\) 0 0
\(448\) 11.2286 0.530501
\(449\) −14.6343 −0.690635 −0.345318 0.938486i \(-0.612229\pi\)
−0.345318 + 0.938486i \(0.612229\pi\)
\(450\) 0 0
\(451\) −37.6262 −1.77175
\(452\) −88.7628 −4.17505
\(453\) 0 0
\(454\) 65.4736 3.07283
\(455\) −3.91491 −0.183534
\(456\) 0 0
\(457\) −11.8792 −0.555686 −0.277843 0.960626i \(-0.589620\pi\)
−0.277843 + 0.960626i \(0.589620\pi\)
\(458\) 52.2933 2.44350
\(459\) 0 0
\(460\) −17.7468 −0.827449
\(461\) 33.7228 1.57063 0.785314 0.619097i \(-0.212501\pi\)
0.785314 + 0.619097i \(0.212501\pi\)
\(462\) 0 0
\(463\) 23.9819 1.11453 0.557267 0.830333i \(-0.311850\pi\)
0.557267 + 0.830333i \(0.311850\pi\)
\(464\) −9.49464 −0.440778
\(465\) 0 0
\(466\) −64.8551 −3.00436
\(467\) 7.83355 0.362494 0.181247 0.983438i \(-0.441987\pi\)
0.181247 + 0.983438i \(0.441987\pi\)
\(468\) 0 0
\(469\) 3.80930 0.175897
\(470\) −87.1802 −4.02132
\(471\) 0 0
\(472\) 59.1125 2.72087
\(473\) −47.7313 −2.19469
\(474\) 0 0
\(475\) 30.3342 1.39183
\(476\) −16.0647 −0.736324
\(477\) 0 0
\(478\) 55.5039 2.53869
\(479\) −37.0307 −1.69197 −0.845987 0.533203i \(-0.820988\pi\)
−0.845987 + 0.533203i \(0.820988\pi\)
\(480\) 0 0
\(481\) 6.94440 0.316637
\(482\) −30.5236 −1.39031
\(483\) 0 0
\(484\) 33.4231 1.51923
\(485\) 20.6986 0.939874
\(486\) 0 0
\(487\) −4.59789 −0.208350 −0.104175 0.994559i \(-0.533220\pi\)
−0.104175 + 0.994559i \(0.533220\pi\)
\(488\) −4.41219 −0.199730
\(489\) 0 0
\(490\) 45.3925 2.05063
\(491\) 15.4946 0.699263 0.349631 0.936887i \(-0.386307\pi\)
0.349631 + 0.936887i \(0.386307\pi\)
\(492\) 0 0
\(493\) 2.20964 0.0995172
\(494\) 6.43125 0.289356
\(495\) 0 0
\(496\) 85.2600 3.82829
\(497\) 7.42275 0.332956
\(498\) 0 0
\(499\) −20.3943 −0.912973 −0.456486 0.889730i \(-0.650892\pi\)
−0.456486 + 0.889730i \(0.650892\pi\)
\(500\) −64.4003 −2.88007
\(501\) 0 0
\(502\) 62.2794 2.77966
\(503\) −7.23057 −0.322395 −0.161198 0.986922i \(-0.551536\pi\)
−0.161198 + 0.986922i \(0.551536\pi\)
\(504\) 0 0
\(505\) 31.4227 1.39829
\(506\) −11.0548 −0.491444
\(507\) 0 0
\(508\) −23.8458 −1.05798
\(509\) 1.82765 0.0810092 0.0405046 0.999179i \(-0.487103\pi\)
0.0405046 + 0.999179i \(0.487103\pi\)
\(510\) 0 0
\(511\) −0.552965 −0.0244617
\(512\) −42.9570 −1.89845
\(513\) 0 0
\(514\) −37.9737 −1.67495
\(515\) 30.7859 1.35659
\(516\) 0 0
\(517\) −38.3504 −1.68665
\(518\) 39.0793 1.71704
\(519\) 0 0
\(520\) −18.9590 −0.831408
\(521\) −40.4816 −1.77353 −0.886766 0.462219i \(-0.847053\pi\)
−0.886766 + 0.462219i \(0.847053\pi\)
\(522\) 0 0
\(523\) 19.5288 0.853935 0.426968 0.904267i \(-0.359582\pi\)
0.426968 + 0.904267i \(0.359582\pi\)
\(524\) 63.8475 2.78919
\(525\) 0 0
\(526\) 12.8908 0.562065
\(527\) −19.8421 −0.864337
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 43.1453 1.87411
\(531\) 0 0
\(532\) 25.5582 1.10809
\(533\) 6.22670 0.269708
\(534\) 0 0
\(535\) 24.0659 1.04046
\(536\) 18.4476 0.796813
\(537\) 0 0
\(538\) 52.5934 2.26746
\(539\) 19.9681 0.860087
\(540\) 0 0
\(541\) 40.4363 1.73849 0.869247 0.494378i \(-0.164604\pi\)
0.869247 + 0.494378i \(0.164604\pi\)
\(542\) −33.3049 −1.43057
\(543\) 0 0
\(544\) −22.3701 −0.959110
\(545\) 34.9842 1.49856
\(546\) 0 0
\(547\) −45.5761 −1.94869 −0.974346 0.225054i \(-0.927744\pi\)
−0.974346 + 0.225054i \(0.927744\pi\)
\(548\) 26.6268 1.13744
\(549\) 0 0
\(550\) −95.3897 −4.06743
\(551\) −3.51544 −0.149763
\(552\) 0 0
\(553\) −2.10348 −0.0894491
\(554\) −41.6832 −1.77095
\(555\) 0 0
\(556\) −0.232148 −0.00984525
\(557\) −16.8910 −0.715693 −0.357847 0.933780i \(-0.616489\pi\)
−0.357847 + 0.933780i \(0.616489\pi\)
\(558\) 0 0
\(559\) 7.89896 0.334090
\(560\) −53.0113 −2.24013
\(561\) 0 0
\(562\) 42.5900 1.79655
\(563\) 23.9174 1.00800 0.503998 0.863705i \(-0.331862\pi\)
0.503998 + 0.863705i \(0.331862\pi\)
\(564\) 0 0
\(565\) 68.1663 2.86778
\(566\) 55.8990 2.34961
\(567\) 0 0
\(568\) 35.9467 1.50829
\(569\) −2.67119 −0.111982 −0.0559912 0.998431i \(-0.517832\pi\)
−0.0559912 + 0.998431i \(0.517832\pi\)
\(570\) 0 0
\(571\) 17.8008 0.744942 0.372471 0.928044i \(-0.378511\pi\)
0.372471 + 0.928044i \(0.378511\pi\)
\(572\) −14.2820 −0.597159
\(573\) 0 0
\(574\) 35.0404 1.46256
\(575\) 8.62884 0.359848
\(576\) 0 0
\(577\) 43.4020 1.80685 0.903424 0.428747i \(-0.141045\pi\)
0.903424 + 0.428747i \(0.141045\pi\)
\(578\) −31.6152 −1.31502
\(579\) 0 0
\(580\) 17.7468 0.736896
\(581\) −0.511348 −0.0212143
\(582\) 0 0
\(583\) 18.9796 0.786053
\(584\) −2.67789 −0.110812
\(585\) 0 0
\(586\) 79.9458 3.30253
\(587\) −3.22180 −0.132978 −0.0664889 0.997787i \(-0.521180\pi\)
−0.0664889 + 0.997787i \(0.521180\pi\)
\(588\) 0 0
\(589\) 31.5679 1.30073
\(590\) −77.7388 −3.20046
\(591\) 0 0
\(592\) 94.0331 3.86474
\(593\) −15.5297 −0.637728 −0.318864 0.947800i \(-0.603301\pi\)
−0.318864 + 0.947800i \(0.603301\pi\)
\(594\) 0 0
\(595\) 12.3370 0.505770
\(596\) −29.3235 −1.20114
\(597\) 0 0
\(598\) 1.82943 0.0748110
\(599\) −0.373746 −0.0152709 −0.00763543 0.999971i \(-0.502430\pi\)
−0.00763543 + 0.999971i \(0.502430\pi\)
\(600\) 0 0
\(601\) −46.0054 −1.87660 −0.938300 0.345823i \(-0.887600\pi\)
−0.938300 + 0.345823i \(0.887600\pi\)
\(602\) 44.4510 1.81169
\(603\) 0 0
\(604\) −25.9635 −1.05644
\(605\) −25.6676 −1.04354
\(606\) 0 0
\(607\) 24.7346 1.00395 0.501973 0.864883i \(-0.332608\pi\)
0.501973 + 0.864883i \(0.332608\pi\)
\(608\) 35.5898 1.44336
\(609\) 0 0
\(610\) 5.80247 0.234935
\(611\) 6.34654 0.256754
\(612\) 0 0
\(613\) 13.2311 0.534398 0.267199 0.963641i \(-0.413902\pi\)
0.267199 + 0.963641i \(0.413902\pi\)
\(614\) −38.8432 −1.56758
\(615\) 0 0
\(616\) −46.9332 −1.89099
\(617\) −14.7372 −0.593296 −0.296648 0.954987i \(-0.595869\pi\)
−0.296648 + 0.954987i \(0.595869\pi\)
\(618\) 0 0
\(619\) 29.8824 1.20107 0.600537 0.799597i \(-0.294953\pi\)
0.600537 + 0.799597i \(0.294953\pi\)
\(620\) −159.363 −6.40016
\(621\) 0 0
\(622\) −15.5551 −0.623702
\(623\) 9.57655 0.383676
\(624\) 0 0
\(625\) 6.31270 0.252508
\(626\) 8.34653 0.333595
\(627\) 0 0
\(628\) 66.4839 2.65300
\(629\) −21.8839 −0.872567
\(630\) 0 0
\(631\) 15.2973 0.608977 0.304488 0.952516i \(-0.401515\pi\)
0.304488 + 0.952516i \(0.401515\pi\)
\(632\) −10.1867 −0.405204
\(633\) 0 0
\(634\) 35.8293 1.42296
\(635\) 18.3126 0.726713
\(636\) 0 0
\(637\) −3.30448 −0.130928
\(638\) 11.0548 0.437662
\(639\) 0 0
\(640\) 3.23720 0.127961
\(641\) 6.11919 0.241694 0.120847 0.992671i \(-0.461439\pi\)
0.120847 + 0.992671i \(0.461439\pi\)
\(642\) 0 0
\(643\) −3.52335 −0.138947 −0.0694736 0.997584i \(-0.522132\pi\)
−0.0694736 + 0.997584i \(0.522132\pi\)
\(644\) 7.27027 0.286489
\(645\) 0 0
\(646\) −20.2668 −0.797386
\(647\) −27.5242 −1.08209 −0.541043 0.840995i \(-0.681970\pi\)
−0.541043 + 0.840995i \(0.681970\pi\)
\(648\) 0 0
\(649\) −34.1972 −1.34236
\(650\) 15.7859 0.619173
\(651\) 0 0
\(652\) 54.8393 2.14767
\(653\) −19.7095 −0.771291 −0.385645 0.922647i \(-0.626021\pi\)
−0.385645 + 0.922647i \(0.626021\pi\)
\(654\) 0 0
\(655\) −49.0324 −1.91585
\(656\) 84.3148 3.29194
\(657\) 0 0
\(658\) 35.7148 1.39231
\(659\) −21.0981 −0.821865 −0.410933 0.911666i \(-0.634797\pi\)
−0.410933 + 0.911666i \(0.634797\pi\)
\(660\) 0 0
\(661\) 18.4792 0.718756 0.359378 0.933192i \(-0.382989\pi\)
0.359378 + 0.933192i \(0.382989\pi\)
\(662\) 69.9355 2.71812
\(663\) 0 0
\(664\) −2.47634 −0.0961007
\(665\) −19.6277 −0.761129
\(666\) 0 0
\(667\) −1.00000 −0.0387202
\(668\) −71.0443 −2.74879
\(669\) 0 0
\(670\) −24.2604 −0.937261
\(671\) 2.55250 0.0985380
\(672\) 0 0
\(673\) −32.0228 −1.23439 −0.617194 0.786811i \(-0.711731\pi\)
−0.617194 + 0.786811i \(0.711731\pi\)
\(674\) −53.0297 −2.04263
\(675\) 0 0
\(676\) −60.1299 −2.31269
\(677\) −34.0940 −1.31034 −0.655170 0.755482i \(-0.727403\pi\)
−0.655170 + 0.755482i \(0.727403\pi\)
\(678\) 0 0
\(679\) −8.47952 −0.325414
\(680\) 59.7455 2.29114
\(681\) 0 0
\(682\) −99.2695 −3.80123
\(683\) 7.03001 0.268996 0.134498 0.990914i \(-0.457058\pi\)
0.134498 + 0.990914i \(0.457058\pi\)
\(684\) 0 0
\(685\) −20.4484 −0.781291
\(686\) −46.2170 −1.76457
\(687\) 0 0
\(688\) 106.959 4.07776
\(689\) −3.14089 −0.119658
\(690\) 0 0
\(691\) 6.46982 0.246124 0.123062 0.992399i \(-0.460729\pi\)
0.123062 + 0.992399i \(0.460729\pi\)
\(692\) 95.7975 3.64168
\(693\) 0 0
\(694\) 25.8266 0.980366
\(695\) 0.178280 0.00676255
\(696\) 0 0
\(697\) −19.6222 −0.743243
\(698\) 7.26259 0.274893
\(699\) 0 0
\(700\) 62.7340 2.37112
\(701\) 23.7050 0.895327 0.447664 0.894202i \(-0.352256\pi\)
0.447664 + 0.894202i \(0.352256\pi\)
\(702\) 0 0
\(703\) 34.8163 1.31312
\(704\) −31.4579 −1.18562
\(705\) 0 0
\(706\) −56.3582 −2.12107
\(707\) −12.8728 −0.484132
\(708\) 0 0
\(709\) −40.1025 −1.50608 −0.753041 0.657974i \(-0.771414\pi\)
−0.753041 + 0.657974i \(0.771414\pi\)
\(710\) −47.2735 −1.77414
\(711\) 0 0
\(712\) 46.3771 1.73805
\(713\) 8.97980 0.336296
\(714\) 0 0
\(715\) 10.9680 0.410180
\(716\) 38.0157 1.42071
\(717\) 0 0
\(718\) 55.1670 2.05881
\(719\) 9.63733 0.359412 0.179706 0.983720i \(-0.442485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(720\) 0 0
\(721\) −12.6120 −0.469694
\(722\) −17.3285 −0.644902
\(723\) 0 0
\(724\) −95.0194 −3.53137
\(725\) −8.62884 −0.320467
\(726\) 0 0
\(727\) −2.76929 −0.102707 −0.0513537 0.998681i \(-0.516354\pi\)
−0.0513537 + 0.998681i \(0.516354\pi\)
\(728\) 7.76688 0.287860
\(729\) 0 0
\(730\) 3.52169 0.130344
\(731\) −24.8920 −0.920663
\(732\) 0 0
\(733\) −16.2252 −0.599290 −0.299645 0.954051i \(-0.596868\pi\)
−0.299645 + 0.954051i \(0.596868\pi\)
\(734\) −95.1435 −3.51181
\(735\) 0 0
\(736\) 10.1239 0.373170
\(737\) −10.6721 −0.393112
\(738\) 0 0
\(739\) −49.7801 −1.83119 −0.915595 0.402101i \(-0.868280\pi\)
−0.915595 + 0.402101i \(0.868280\pi\)
\(740\) −175.761 −6.46110
\(741\) 0 0
\(742\) −17.6752 −0.648877
\(743\) 14.2271 0.521943 0.260972 0.965346i \(-0.415957\pi\)
0.260972 + 0.965346i \(0.415957\pi\)
\(744\) 0 0
\(745\) 22.5193 0.825043
\(746\) −96.9456 −3.54943
\(747\) 0 0
\(748\) 45.0068 1.64561
\(749\) −9.85900 −0.360240
\(750\) 0 0
\(751\) −25.0590 −0.914415 −0.457208 0.889360i \(-0.651150\pi\)
−0.457208 + 0.889360i \(0.651150\pi\)
\(752\) 85.9376 3.13382
\(753\) 0 0
\(754\) −1.82943 −0.0666239
\(755\) 19.9390 0.725653
\(756\) 0 0
\(757\) −3.05502 −0.111036 −0.0555182 0.998458i \(-0.517681\pi\)
−0.0555182 + 0.998458i \(0.517681\pi\)
\(758\) −42.0532 −1.52744
\(759\) 0 0
\(760\) −95.0525 −3.44792
\(761\) −2.61322 −0.0947292 −0.0473646 0.998878i \(-0.515082\pi\)
−0.0473646 + 0.998878i \(0.515082\pi\)
\(762\) 0 0
\(763\) −14.3319 −0.518849
\(764\) −63.4567 −2.29578
\(765\) 0 0
\(766\) −12.9115 −0.466511
\(767\) 5.65923 0.204343
\(768\) 0 0
\(769\) 22.1751 0.799656 0.399828 0.916590i \(-0.369070\pi\)
0.399828 + 0.916590i \(0.369070\pi\)
\(770\) 61.7218 2.22430
\(771\) 0 0
\(772\) 46.0261 1.65652
\(773\) 11.3168 0.407038 0.203519 0.979071i \(-0.434762\pi\)
0.203519 + 0.979071i \(0.434762\pi\)
\(774\) 0 0
\(775\) 77.4853 2.78335
\(776\) −41.0644 −1.47413
\(777\) 0 0
\(778\) −79.6517 −2.85565
\(779\) 31.2180 1.11850
\(780\) 0 0
\(781\) −20.7955 −0.744123
\(782\) −5.76508 −0.206159
\(783\) 0 0
\(784\) −44.7455 −1.59805
\(785\) −51.0570 −1.82230
\(786\) 0 0
\(787\) 37.1389 1.32386 0.661929 0.749567i \(-0.269738\pi\)
0.661929 + 0.749567i \(0.269738\pi\)
\(788\) 46.2206 1.64654
\(789\) 0 0
\(790\) 13.3965 0.476626
\(791\) −27.9255 −0.992915
\(792\) 0 0
\(793\) −0.422408 −0.0150001
\(794\) 51.2977 1.82049
\(795\) 0 0
\(796\) 54.4781 1.93093
\(797\) −43.9748 −1.55767 −0.778834 0.627230i \(-0.784188\pi\)
−0.778834 + 0.627230i \(0.784188\pi\)
\(798\) 0 0
\(799\) −19.9998 −0.707543
\(800\) 87.3572 3.08854
\(801\) 0 0
\(802\) 5.75553 0.203235
\(803\) 1.54918 0.0546695
\(804\) 0 0
\(805\) −5.58328 −0.196785
\(806\) 16.4279 0.578649
\(807\) 0 0
\(808\) −62.3402 −2.19312
\(809\) 41.4248 1.45642 0.728209 0.685355i \(-0.240353\pi\)
0.728209 + 0.685355i \(0.240353\pi\)
\(810\) 0 0
\(811\) −10.3238 −0.362517 −0.181259 0.983435i \(-0.558017\pi\)
−0.181259 + 0.983435i \(0.558017\pi\)
\(812\) −7.27027 −0.255137
\(813\) 0 0
\(814\) −109.484 −3.83742
\(815\) −42.1144 −1.47520
\(816\) 0 0
\(817\) 39.6020 1.38550
\(818\) 59.6604 2.08598
\(819\) 0 0
\(820\) −157.596 −5.50350
\(821\) −51.6597 −1.80294 −0.901468 0.432847i \(-0.857509\pi\)
−0.901468 + 0.432847i \(0.857509\pi\)
\(822\) 0 0
\(823\) −40.6980 −1.41864 −0.709321 0.704885i \(-0.750999\pi\)
−0.709321 + 0.704885i \(0.750999\pi\)
\(824\) −61.0769 −2.12771
\(825\) 0 0
\(826\) 31.8470 1.10810
\(827\) 50.8508 1.76825 0.884127 0.467246i \(-0.154754\pi\)
0.884127 + 0.467246i \(0.154754\pi\)
\(828\) 0 0
\(829\) 2.48767 0.0864002 0.0432001 0.999066i \(-0.486245\pi\)
0.0432001 + 0.999066i \(0.486245\pi\)
\(830\) 3.25664 0.113040
\(831\) 0 0
\(832\) 5.20592 0.180483
\(833\) 10.4134 0.360803
\(834\) 0 0
\(835\) 54.5592 1.88810
\(836\) −71.6037 −2.47647
\(837\) 0 0
\(838\) −76.9642 −2.65868
\(839\) −24.0680 −0.830920 −0.415460 0.909611i \(-0.636379\pi\)
−0.415460 + 0.909611i \(0.636379\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 34.9625 1.20489
\(843\) 0 0
\(844\) −55.1053 −1.89680
\(845\) 46.1774 1.58855
\(846\) 0 0
\(847\) 10.5152 0.361306
\(848\) −42.5304 −1.46050
\(849\) 0 0
\(850\) −49.7460 −1.70627
\(851\) 9.90381 0.339498
\(852\) 0 0
\(853\) −29.3789 −1.00591 −0.502957 0.864311i \(-0.667755\pi\)
−0.502957 + 0.864311i \(0.667755\pi\)
\(854\) −2.37708 −0.0813420
\(855\) 0 0
\(856\) −47.7449 −1.63189
\(857\) −36.0521 −1.23152 −0.615759 0.787935i \(-0.711150\pi\)
−0.615759 + 0.787935i \(0.711150\pi\)
\(858\) 0 0
\(859\) 1.20772 0.0412069 0.0206034 0.999788i \(-0.493441\pi\)
0.0206034 + 0.999788i \(0.493441\pi\)
\(860\) −199.921 −6.81724
\(861\) 0 0
\(862\) 44.6546 1.52094
\(863\) 32.7886 1.11614 0.558068 0.829795i \(-0.311543\pi\)
0.558068 + 0.829795i \(0.311543\pi\)
\(864\) 0 0
\(865\) −73.5687 −2.50141
\(866\) 32.8547 1.11645
\(867\) 0 0
\(868\) 65.2856 2.21594
\(869\) 5.89310 0.199910
\(870\) 0 0
\(871\) 1.76611 0.0598422
\(872\) −69.4060 −2.35038
\(873\) 0 0
\(874\) 9.17198 0.310247
\(875\) −20.2608 −0.684942
\(876\) 0 0
\(877\) −21.3463 −0.720814 −0.360407 0.932795i \(-0.617362\pi\)
−0.360407 + 0.932795i \(0.617362\pi\)
\(878\) −60.6056 −2.04534
\(879\) 0 0
\(880\) 148.516 5.00648
\(881\) 9.84842 0.331802 0.165901 0.986142i \(-0.446947\pi\)
0.165901 + 0.986142i \(0.446947\pi\)
\(882\) 0 0
\(883\) 34.9158 1.17501 0.587505 0.809221i \(-0.300110\pi\)
0.587505 + 0.809221i \(0.300110\pi\)
\(884\) −7.44808 −0.250506
\(885\) 0 0
\(886\) 96.7984 3.25201
\(887\) 0.630213 0.0211605 0.0105802 0.999944i \(-0.496632\pi\)
0.0105802 + 0.999944i \(0.496632\pi\)
\(888\) 0 0
\(889\) −7.50206 −0.251611
\(890\) −60.9905 −2.04441
\(891\) 0 0
\(892\) 10.0809 0.337534
\(893\) 31.8188 1.06478
\(894\) 0 0
\(895\) −29.1945 −0.975866
\(896\) −1.32617 −0.0443043
\(897\) 0 0
\(898\) −38.1817 −1.27414
\(899\) −8.97980 −0.299493
\(900\) 0 0
\(901\) 9.89788 0.329746
\(902\) −98.1691 −3.26867
\(903\) 0 0
\(904\) −135.237 −4.49791
\(905\) 72.9711 2.42564
\(906\) 0 0
\(907\) 38.0210 1.26247 0.631233 0.775594i \(-0.282549\pi\)
0.631233 + 0.775594i \(0.282549\pi\)
\(908\) 120.635 4.00341
\(909\) 0 0
\(910\) −10.2142 −0.338598
\(911\) 28.6837 0.950334 0.475167 0.879896i \(-0.342388\pi\)
0.475167 + 0.879896i \(0.342388\pi\)
\(912\) 0 0
\(913\) 1.43259 0.0474118
\(914\) −30.9936 −1.02518
\(915\) 0 0
\(916\) 96.3502 3.18350
\(917\) 20.0869 0.663329
\(918\) 0 0
\(919\) −39.2719 −1.29546 −0.647730 0.761870i \(-0.724281\pi\)
−0.647730 + 0.761870i \(0.724281\pi\)
\(920\) −27.0386 −0.891436
\(921\) 0 0
\(922\) 87.9848 2.89763
\(923\) 3.44141 0.113276
\(924\) 0 0
\(925\) 85.4584 2.80986
\(926\) 62.5702 2.05619
\(927\) 0 0
\(928\) −10.1239 −0.332332
\(929\) −4.31768 −0.141658 −0.0708292 0.997488i \(-0.522565\pi\)
−0.0708292 + 0.997488i \(0.522565\pi\)
\(930\) 0 0
\(931\) −16.5673 −0.542970
\(932\) −119.495 −3.91420
\(933\) 0 0
\(934\) 20.4382 0.668758
\(935\) −34.5634 −1.13034
\(936\) 0 0
\(937\) −52.6718 −1.72071 −0.860357 0.509692i \(-0.829759\pi\)
−0.860357 + 0.509692i \(0.829759\pi\)
\(938\) 9.93867 0.324509
\(939\) 0 0
\(940\) −160.629 −5.23915
\(941\) −42.8842 −1.39799 −0.698993 0.715129i \(-0.746368\pi\)
−0.698993 + 0.715129i \(0.746368\pi\)
\(942\) 0 0
\(943\) 8.88026 0.289181
\(944\) 76.6308 2.49412
\(945\) 0 0
\(946\) −124.534 −4.04894
\(947\) 2.44951 0.0795985 0.0397992 0.999208i \(-0.487328\pi\)
0.0397992 + 0.999208i \(0.487328\pi\)
\(948\) 0 0
\(949\) −0.256372 −0.00832218
\(950\) 79.1436 2.56776
\(951\) 0 0
\(952\) −24.4758 −0.793264
\(953\) −56.1592 −1.81917 −0.909587 0.415514i \(-0.863602\pi\)
−0.909587 + 0.415514i \(0.863602\pi\)
\(954\) 0 0
\(955\) 48.7323 1.57694
\(956\) 102.266 3.30751
\(957\) 0 0
\(958\) −96.6151 −3.12149
\(959\) 8.37701 0.270508
\(960\) 0 0
\(961\) 49.6368 1.60119
\(962\) 18.1183 0.584159
\(963\) 0 0
\(964\) −56.2396 −1.81136
\(965\) −35.3463 −1.13784
\(966\) 0 0
\(967\) 4.76873 0.153352 0.0766759 0.997056i \(-0.475569\pi\)
0.0766759 + 0.997056i \(0.475569\pi\)
\(968\) 50.9226 1.63672
\(969\) 0 0
\(970\) 54.0038 1.73396
\(971\) −3.50955 −0.112627 −0.0563135 0.998413i \(-0.517935\pi\)
−0.0563135 + 0.998413i \(0.517935\pi\)
\(972\) 0 0
\(973\) −0.0730355 −0.00234141
\(974\) −11.9962 −0.384382
\(975\) 0 0
\(976\) −5.71977 −0.183085
\(977\) −9.87694 −0.315991 −0.157996 0.987440i \(-0.550503\pi\)
−0.157996 + 0.987440i \(0.550503\pi\)
\(978\) 0 0
\(979\) −26.8296 −0.857478
\(980\) 83.6356 2.67164
\(981\) 0 0
\(982\) 40.4264 1.29006
\(983\) −33.0274 −1.05341 −0.526705 0.850048i \(-0.676573\pi\)
−0.526705 + 0.850048i \(0.676573\pi\)
\(984\) 0 0
\(985\) −35.4956 −1.13098
\(986\) 5.76508 0.183598
\(987\) 0 0
\(988\) 11.8496 0.376985
\(989\) 11.2652 0.358211
\(990\) 0 0
\(991\) 44.4376 1.41161 0.705803 0.708408i \(-0.250586\pi\)
0.705803 + 0.708408i \(0.250586\pi\)
\(992\) 90.9103 2.88640
\(993\) 0 0
\(994\) 19.3664 0.614264
\(995\) −41.8370 −1.32632
\(996\) 0 0
\(997\) 29.6782 0.939919 0.469960 0.882688i \(-0.344268\pi\)
0.469960 + 0.882688i \(0.344268\pi\)
\(998\) −53.2098 −1.68433
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6003.2.a.v.1.29 30
3.2 odd 2 6003.2.a.w.1.2 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6003.2.a.v.1.29 30 1.1 even 1 trivial
6003.2.a.w.1.2 yes 30 3.2 odd 2