Defining parameters
Level: | \( N \) | \(=\) | \( 6003 = 3^{2} \cdot 23 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6003.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(1440\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6003))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 728 | 258 | 470 |
Cusp forms | 713 | 258 | 455 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(23\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(84\) | \(22\) | \(62\) | \(83\) | \(22\) | \(61\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(92\) | \(30\) | \(62\) | \(90\) | \(30\) | \(60\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(98\) | \(30\) | \(68\) | \(96\) | \(30\) | \(66\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(90\) | \(22\) | \(68\) | \(88\) | \(22\) | \(66\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(95\) | \(39\) | \(56\) | \(93\) | \(39\) | \(54\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(87\) | \(38\) | \(49\) | \(85\) | \(38\) | \(47\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(87\) | \(35\) | \(52\) | \(85\) | \(35\) | \(50\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(95\) | \(42\) | \(53\) | \(93\) | \(42\) | \(51\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(348\) | \(117\) | \(231\) | \(341\) | \(117\) | \(224\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(380\) | \(141\) | \(239\) | \(372\) | \(141\) | \(231\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6003))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6003))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6003)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(261))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(667))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2001))\)\(^{\oplus 2}\)