Properties

Label 6003.2.a.u.1.21
Level $6003$
Weight $2$
Character 6003.1
Self dual yes
Analytic conductor $47.934$
Analytic rank $1$
Dimension $22$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6003,2,Mod(1,6003)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6003.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6003, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6003 = 3^{2} \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6003.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,3,0,17,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.9341963334\)
Analytic rank: \(1\)
Dimension: \(22\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.21
Character \(\chi\) \(=\) 6003.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33095 q^{2} +3.43331 q^{4} -2.03702 q^{5} +4.28183 q^{7} +3.34096 q^{8} -4.74817 q^{10} -3.57655 q^{11} -5.73812 q^{13} +9.98070 q^{14} +0.920976 q^{16} +4.13707 q^{17} -8.31788 q^{19} -6.99370 q^{20} -8.33675 q^{22} -1.00000 q^{23} -0.850567 q^{25} -13.3752 q^{26} +14.7008 q^{28} -1.00000 q^{29} +4.54582 q^{31} -4.53517 q^{32} +9.64327 q^{34} -8.72215 q^{35} -9.15659 q^{37} -19.3885 q^{38} -6.80558 q^{40} -3.77238 q^{41} -4.11401 q^{43} -12.2794 q^{44} -2.33095 q^{46} +6.22762 q^{47} +11.3340 q^{49} -1.98263 q^{50} -19.7007 q^{52} +1.32969 q^{53} +7.28549 q^{55} +14.3054 q^{56} -2.33095 q^{58} -12.0838 q^{59} +4.42239 q^{61} +10.5961 q^{62} -12.4132 q^{64} +11.6886 q^{65} -5.73198 q^{67} +14.2038 q^{68} -20.3309 q^{70} +9.12802 q^{71} -11.8581 q^{73} -21.3435 q^{74} -28.5578 q^{76} -15.3142 q^{77} +2.03687 q^{79} -1.87604 q^{80} -8.79321 q^{82} +2.51017 q^{83} -8.42727 q^{85} -9.58952 q^{86} -11.9491 q^{88} +10.0168 q^{89} -24.5696 q^{91} -3.43331 q^{92} +14.5163 q^{94} +16.9436 q^{95} +0.738955 q^{97} +26.4190 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 3 q^{2} + 17 q^{4} - 6 q^{7} + 6 q^{8} - 12 q^{10} - 28 q^{13} + q^{14} + 3 q^{16} + 10 q^{17} - 8 q^{19} - 11 q^{22} - 22 q^{23} - 11 q^{26} - 21 q^{28} - 22 q^{29} - 18 q^{31} - 5 q^{32} - 33 q^{34}+ \cdots + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33095 1.64823 0.824114 0.566425i \(-0.191674\pi\)
0.824114 + 0.566425i \(0.191674\pi\)
\(3\) 0 0
\(4\) 3.43331 1.71665
\(5\) −2.03702 −0.910981 −0.455491 0.890241i \(-0.650536\pi\)
−0.455491 + 0.890241i \(0.650536\pi\)
\(6\) 0 0
\(7\) 4.28183 1.61838 0.809189 0.587548i \(-0.199907\pi\)
0.809189 + 0.587548i \(0.199907\pi\)
\(8\) 3.34096 1.18121
\(9\) 0 0
\(10\) −4.74817 −1.50150
\(11\) −3.57655 −1.07837 −0.539186 0.842187i \(-0.681268\pi\)
−0.539186 + 0.842187i \(0.681268\pi\)
\(12\) 0 0
\(13\) −5.73812 −1.59147 −0.795734 0.605646i \(-0.792915\pi\)
−0.795734 + 0.605646i \(0.792915\pi\)
\(14\) 9.98070 2.66746
\(15\) 0 0
\(16\) 0.920976 0.230244
\(17\) 4.13707 1.00339 0.501693 0.865046i \(-0.332711\pi\)
0.501693 + 0.865046i \(0.332711\pi\)
\(18\) 0 0
\(19\) −8.31788 −1.90825 −0.954126 0.299406i \(-0.903212\pi\)
−0.954126 + 0.299406i \(0.903212\pi\)
\(20\) −6.99370 −1.56384
\(21\) 0 0
\(22\) −8.33675 −1.77740
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −0.850567 −0.170113
\(26\) −13.3752 −2.62310
\(27\) 0 0
\(28\) 14.7008 2.77819
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.54582 0.816454 0.408227 0.912880i \(-0.366147\pi\)
0.408227 + 0.912880i \(0.366147\pi\)
\(32\) −4.53517 −0.801712
\(33\) 0 0
\(34\) 9.64327 1.65381
\(35\) −8.72215 −1.47431
\(36\) 0 0
\(37\) −9.15659 −1.50533 −0.752667 0.658401i \(-0.771233\pi\)
−0.752667 + 0.658401i \(0.771233\pi\)
\(38\) −19.3885 −3.14523
\(39\) 0 0
\(40\) −6.80558 −1.07606
\(41\) −3.77238 −0.589146 −0.294573 0.955629i \(-0.595177\pi\)
−0.294573 + 0.955629i \(0.595177\pi\)
\(42\) 0 0
\(43\) −4.11401 −0.627380 −0.313690 0.949525i \(-0.601565\pi\)
−0.313690 + 0.949525i \(0.601565\pi\)
\(44\) −12.2794 −1.85119
\(45\) 0 0
\(46\) −2.33095 −0.343679
\(47\) 6.22762 0.908392 0.454196 0.890902i \(-0.349927\pi\)
0.454196 + 0.890902i \(0.349927\pi\)
\(48\) 0 0
\(49\) 11.3340 1.61915
\(50\) −1.98263 −0.280386
\(51\) 0 0
\(52\) −19.7007 −2.73200
\(53\) 1.32969 0.182647 0.0913237 0.995821i \(-0.470890\pi\)
0.0913237 + 0.995821i \(0.470890\pi\)
\(54\) 0 0
\(55\) 7.28549 0.982376
\(56\) 14.3054 1.91164
\(57\) 0 0
\(58\) −2.33095 −0.306068
\(59\) −12.0838 −1.57318 −0.786591 0.617475i \(-0.788156\pi\)
−0.786591 + 0.617475i \(0.788156\pi\)
\(60\) 0 0
\(61\) 4.42239 0.566229 0.283115 0.959086i \(-0.408632\pi\)
0.283115 + 0.959086i \(0.408632\pi\)
\(62\) 10.5961 1.34570
\(63\) 0 0
\(64\) −12.4132 −1.55165
\(65\) 11.6886 1.44980
\(66\) 0 0
\(67\) −5.73198 −0.700273 −0.350136 0.936699i \(-0.613865\pi\)
−0.350136 + 0.936699i \(0.613865\pi\)
\(68\) 14.2038 1.72246
\(69\) 0 0
\(70\) −20.3309 −2.43000
\(71\) 9.12802 1.08330 0.541648 0.840605i \(-0.317801\pi\)
0.541648 + 0.840605i \(0.317801\pi\)
\(72\) 0 0
\(73\) −11.8581 −1.38788 −0.693940 0.720033i \(-0.744127\pi\)
−0.693940 + 0.720033i \(0.744127\pi\)
\(74\) −21.3435 −2.48113
\(75\) 0 0
\(76\) −28.5578 −3.27581
\(77\) −15.3142 −1.74521
\(78\) 0 0
\(79\) 2.03687 0.229166 0.114583 0.993414i \(-0.463447\pi\)
0.114583 + 0.993414i \(0.463447\pi\)
\(80\) −1.87604 −0.209748
\(81\) 0 0
\(82\) −8.79321 −0.971047
\(83\) 2.51017 0.275527 0.137764 0.990465i \(-0.456009\pi\)
0.137764 + 0.990465i \(0.456009\pi\)
\(84\) 0 0
\(85\) −8.42727 −0.914065
\(86\) −9.58952 −1.03406
\(87\) 0 0
\(88\) −11.9491 −1.27378
\(89\) 10.0168 1.06178 0.530889 0.847441i \(-0.321858\pi\)
0.530889 + 0.847441i \(0.321858\pi\)
\(90\) 0 0
\(91\) −24.5696 −2.57560
\(92\) −3.43331 −0.357947
\(93\) 0 0
\(94\) 14.5163 1.49724
\(95\) 16.9436 1.73838
\(96\) 0 0
\(97\) 0.738955 0.0750295 0.0375147 0.999296i \(-0.488056\pi\)
0.0375147 + 0.999296i \(0.488056\pi\)
\(98\) 26.4190 2.66873
\(99\) 0 0
\(100\) −2.92026 −0.292026
\(101\) 14.1605 1.40902 0.704509 0.709695i \(-0.251167\pi\)
0.704509 + 0.709695i \(0.251167\pi\)
\(102\) 0 0
\(103\) −15.3578 −1.51325 −0.756626 0.653848i \(-0.773154\pi\)
−0.756626 + 0.653848i \(0.773154\pi\)
\(104\) −19.1708 −1.87985
\(105\) 0 0
\(106\) 3.09944 0.301044
\(107\) 13.1005 1.26647 0.633237 0.773958i \(-0.281726\pi\)
0.633237 + 0.773958i \(0.281726\pi\)
\(108\) 0 0
\(109\) 17.4120 1.66777 0.833883 0.551941i \(-0.186113\pi\)
0.833883 + 0.551941i \(0.186113\pi\)
\(110\) 16.9821 1.61918
\(111\) 0 0
\(112\) 3.94346 0.372622
\(113\) −13.9526 −1.31255 −0.656276 0.754521i \(-0.727869\pi\)
−0.656276 + 0.754521i \(0.727869\pi\)
\(114\) 0 0
\(115\) 2.03702 0.189953
\(116\) −3.43331 −0.318774
\(117\) 0 0
\(118\) −28.1668 −2.59296
\(119\) 17.7142 1.62386
\(120\) 0 0
\(121\) 1.79173 0.162884
\(122\) 10.3084 0.933275
\(123\) 0 0
\(124\) 15.6072 1.40157
\(125\) 11.9177 1.06595
\(126\) 0 0
\(127\) 9.48833 0.841953 0.420976 0.907072i \(-0.361687\pi\)
0.420976 + 0.907072i \(0.361687\pi\)
\(128\) −19.8641 −1.75576
\(129\) 0 0
\(130\) 27.2456 2.38959
\(131\) 8.07820 0.705795 0.352898 0.935662i \(-0.385196\pi\)
0.352898 + 0.935662i \(0.385196\pi\)
\(132\) 0 0
\(133\) −35.6157 −3.08827
\(134\) −13.3609 −1.15421
\(135\) 0 0
\(136\) 13.8218 1.18521
\(137\) −14.5574 −1.24372 −0.621861 0.783128i \(-0.713623\pi\)
−0.621861 + 0.783128i \(0.713623\pi\)
\(138\) 0 0
\(139\) −16.1942 −1.37358 −0.686788 0.726858i \(-0.740980\pi\)
−0.686788 + 0.726858i \(0.740980\pi\)
\(140\) −29.9458 −2.53088
\(141\) 0 0
\(142\) 21.2769 1.78552
\(143\) 20.5227 1.71619
\(144\) 0 0
\(145\) 2.03702 0.169165
\(146\) −27.6405 −2.28754
\(147\) 0 0
\(148\) −31.4374 −2.58414
\(149\) −8.75292 −0.717067 −0.358533 0.933517i \(-0.616723\pi\)
−0.358533 + 0.933517i \(0.616723\pi\)
\(150\) 0 0
\(151\) 20.0492 1.63158 0.815791 0.578347i \(-0.196302\pi\)
0.815791 + 0.578347i \(0.196302\pi\)
\(152\) −27.7897 −2.25404
\(153\) 0 0
\(154\) −35.6965 −2.87651
\(155\) −9.25991 −0.743774
\(156\) 0 0
\(157\) −9.08819 −0.725316 −0.362658 0.931922i \(-0.618131\pi\)
−0.362658 + 0.931922i \(0.618131\pi\)
\(158\) 4.74783 0.377717
\(159\) 0 0
\(160\) 9.23821 0.730345
\(161\) −4.28183 −0.337455
\(162\) 0 0
\(163\) −11.1959 −0.876933 −0.438467 0.898747i \(-0.644478\pi\)
−0.438467 + 0.898747i \(0.644478\pi\)
\(164\) −12.9517 −1.01136
\(165\) 0 0
\(166\) 5.85107 0.454131
\(167\) −11.7353 −0.908102 −0.454051 0.890976i \(-0.650022\pi\)
−0.454051 + 0.890976i \(0.650022\pi\)
\(168\) 0 0
\(169\) 19.9260 1.53277
\(170\) −19.6435 −1.50659
\(171\) 0 0
\(172\) −14.1246 −1.07699
\(173\) −20.2443 −1.53915 −0.769573 0.638558i \(-0.779531\pi\)
−0.769573 + 0.638558i \(0.779531\pi\)
\(174\) 0 0
\(175\) −3.64198 −0.275308
\(176\) −3.29392 −0.248288
\(177\) 0 0
\(178\) 23.3486 1.75005
\(179\) 8.16709 0.610437 0.305219 0.952282i \(-0.401270\pi\)
0.305219 + 0.952282i \(0.401270\pi\)
\(180\) 0 0
\(181\) 25.1168 1.86692 0.933459 0.358684i \(-0.116774\pi\)
0.933459 + 0.358684i \(0.116774\pi\)
\(182\) −57.2705 −4.24517
\(183\) 0 0
\(184\) −3.34096 −0.246299
\(185\) 18.6521 1.37133
\(186\) 0 0
\(187\) −14.7964 −1.08202
\(188\) 21.3813 1.55939
\(189\) 0 0
\(190\) 39.4947 2.86525
\(191\) 24.6470 1.78340 0.891699 0.452629i \(-0.149514\pi\)
0.891699 + 0.452629i \(0.149514\pi\)
\(192\) 0 0
\(193\) 1.35264 0.0973648 0.0486824 0.998814i \(-0.484498\pi\)
0.0486824 + 0.998814i \(0.484498\pi\)
\(194\) 1.72246 0.123666
\(195\) 0 0
\(196\) 38.9132 2.77952
\(197\) 6.03899 0.430260 0.215130 0.976585i \(-0.430982\pi\)
0.215130 + 0.976585i \(0.430982\pi\)
\(198\) 0 0
\(199\) −21.5865 −1.53023 −0.765114 0.643895i \(-0.777317\pi\)
−0.765114 + 0.643895i \(0.777317\pi\)
\(200\) −2.84171 −0.200939
\(201\) 0 0
\(202\) 33.0072 2.32238
\(203\) −4.28183 −0.300525
\(204\) 0 0
\(205\) 7.68439 0.536701
\(206\) −35.7983 −2.49418
\(207\) 0 0
\(208\) −5.28467 −0.366426
\(209\) 29.7493 2.05780
\(210\) 0 0
\(211\) −16.2713 −1.12016 −0.560081 0.828438i \(-0.689230\pi\)
−0.560081 + 0.828438i \(0.689230\pi\)
\(212\) 4.56524 0.313542
\(213\) 0 0
\(214\) 30.5366 2.08744
\(215\) 8.38029 0.571531
\(216\) 0 0
\(217\) 19.4644 1.32133
\(218\) 40.5864 2.74886
\(219\) 0 0
\(220\) 25.0133 1.68640
\(221\) −23.7390 −1.59686
\(222\) 0 0
\(223\) −10.7544 −0.720165 −0.360083 0.932920i \(-0.617252\pi\)
−0.360083 + 0.932920i \(0.617252\pi\)
\(224\) −19.4188 −1.29747
\(225\) 0 0
\(226\) −32.5228 −2.16338
\(227\) −8.21789 −0.545441 −0.272720 0.962093i \(-0.587923\pi\)
−0.272720 + 0.962093i \(0.587923\pi\)
\(228\) 0 0
\(229\) −28.0859 −1.85597 −0.927984 0.372620i \(-0.878460\pi\)
−0.927984 + 0.372620i \(0.878460\pi\)
\(230\) 4.74817 0.313085
\(231\) 0 0
\(232\) −3.34096 −0.219345
\(233\) −3.17124 −0.207755 −0.103878 0.994590i \(-0.533125\pi\)
−0.103878 + 0.994590i \(0.533125\pi\)
\(234\) 0 0
\(235\) −12.6858 −0.827528
\(236\) −41.4875 −2.70061
\(237\) 0 0
\(238\) 41.2908 2.67649
\(239\) 17.8380 1.15384 0.576921 0.816800i \(-0.304254\pi\)
0.576921 + 0.816800i \(0.304254\pi\)
\(240\) 0 0
\(241\) −23.9855 −1.54504 −0.772522 0.634988i \(-0.781005\pi\)
−0.772522 + 0.634988i \(0.781005\pi\)
\(242\) 4.17642 0.268470
\(243\) 0 0
\(244\) 15.1834 0.972019
\(245\) −23.0876 −1.47501
\(246\) 0 0
\(247\) 47.7290 3.03692
\(248\) 15.1874 0.964401
\(249\) 0 0
\(250\) 27.7795 1.75693
\(251\) 10.0692 0.635564 0.317782 0.948164i \(-0.397062\pi\)
0.317782 + 0.948164i \(0.397062\pi\)
\(252\) 0 0
\(253\) 3.57655 0.224856
\(254\) 22.1168 1.38773
\(255\) 0 0
\(256\) −21.4758 −1.34224
\(257\) 7.58949 0.473419 0.236710 0.971580i \(-0.423931\pi\)
0.236710 + 0.971580i \(0.423931\pi\)
\(258\) 0 0
\(259\) −39.2069 −2.43620
\(260\) 40.1307 2.48880
\(261\) 0 0
\(262\) 18.8298 1.16331
\(263\) −12.8724 −0.793746 −0.396873 0.917874i \(-0.629905\pi\)
−0.396873 + 0.917874i \(0.629905\pi\)
\(264\) 0 0
\(265\) −2.70861 −0.166388
\(266\) −83.0183 −5.09018
\(267\) 0 0
\(268\) −19.6796 −1.20213
\(269\) 16.0869 0.980835 0.490417 0.871488i \(-0.336844\pi\)
0.490417 + 0.871488i \(0.336844\pi\)
\(270\) 0 0
\(271\) −5.79337 −0.351922 −0.175961 0.984397i \(-0.556303\pi\)
−0.175961 + 0.984397i \(0.556303\pi\)
\(272\) 3.81014 0.231023
\(273\) 0 0
\(274\) −33.9325 −2.04993
\(275\) 3.04210 0.183445
\(276\) 0 0
\(277\) 4.05254 0.243494 0.121747 0.992561i \(-0.461150\pi\)
0.121747 + 0.992561i \(0.461150\pi\)
\(278\) −37.7478 −2.26396
\(279\) 0 0
\(280\) −29.1403 −1.74147
\(281\) −30.6926 −1.83096 −0.915482 0.402359i \(-0.868190\pi\)
−0.915482 + 0.402359i \(0.868190\pi\)
\(282\) 0 0
\(283\) 25.6797 1.52650 0.763250 0.646103i \(-0.223602\pi\)
0.763250 + 0.646103i \(0.223602\pi\)
\(284\) 31.3393 1.85964
\(285\) 0 0
\(286\) 47.8372 2.82868
\(287\) −16.1527 −0.953462
\(288\) 0 0
\(289\) 0.115308 0.00678284
\(290\) 4.74817 0.278822
\(291\) 0 0
\(292\) −40.7123 −2.38251
\(293\) 16.9783 0.991886 0.495943 0.868355i \(-0.334823\pi\)
0.495943 + 0.868355i \(0.334823\pi\)
\(294\) 0 0
\(295\) 24.6150 1.43314
\(296\) −30.5918 −1.77811
\(297\) 0 0
\(298\) −20.4026 −1.18189
\(299\) 5.73812 0.331844
\(300\) 0 0
\(301\) −17.6155 −1.01534
\(302\) 46.7336 2.68922
\(303\) 0 0
\(304\) −7.66056 −0.439363
\(305\) −9.00848 −0.515824
\(306\) 0 0
\(307\) 5.04995 0.288216 0.144108 0.989562i \(-0.453969\pi\)
0.144108 + 0.989562i \(0.453969\pi\)
\(308\) −52.5783 −2.99592
\(309\) 0 0
\(310\) −21.5843 −1.22591
\(311\) −11.5885 −0.657124 −0.328562 0.944482i \(-0.606564\pi\)
−0.328562 + 0.944482i \(0.606564\pi\)
\(312\) 0 0
\(313\) −17.4835 −0.988226 −0.494113 0.869398i \(-0.664507\pi\)
−0.494113 + 0.869398i \(0.664507\pi\)
\(314\) −21.1841 −1.19549
\(315\) 0 0
\(316\) 6.99320 0.393398
\(317\) 17.8893 1.00476 0.502382 0.864646i \(-0.332457\pi\)
0.502382 + 0.864646i \(0.332457\pi\)
\(318\) 0 0
\(319\) 3.57655 0.200248
\(320\) 25.2858 1.41352
\(321\) 0 0
\(322\) −9.98070 −0.556203
\(323\) −34.4116 −1.91471
\(324\) 0 0
\(325\) 4.88066 0.270730
\(326\) −26.0971 −1.44539
\(327\) 0 0
\(328\) −12.6034 −0.695904
\(329\) 26.6656 1.47012
\(330\) 0 0
\(331\) −4.66032 −0.256154 −0.128077 0.991764i \(-0.540880\pi\)
−0.128077 + 0.991764i \(0.540880\pi\)
\(332\) 8.61819 0.472985
\(333\) 0 0
\(334\) −27.3543 −1.49676
\(335\) 11.6761 0.637935
\(336\) 0 0
\(337\) −7.31254 −0.398339 −0.199170 0.979965i \(-0.563824\pi\)
−0.199170 + 0.979965i \(0.563824\pi\)
\(338\) 46.4464 2.52635
\(339\) 0 0
\(340\) −28.9334 −1.56913
\(341\) −16.2584 −0.880440
\(342\) 0 0
\(343\) 18.5576 1.00202
\(344\) −13.7447 −0.741065
\(345\) 0 0
\(346\) −47.1884 −2.53686
\(347\) −27.3907 −1.47041 −0.735204 0.677846i \(-0.762914\pi\)
−0.735204 + 0.677846i \(0.762914\pi\)
\(348\) 0 0
\(349\) 20.2650 1.08476 0.542379 0.840134i \(-0.317524\pi\)
0.542379 + 0.840134i \(0.317524\pi\)
\(350\) −8.48926 −0.453770
\(351\) 0 0
\(352\) 16.2203 0.864543
\(353\) 9.51815 0.506600 0.253300 0.967388i \(-0.418484\pi\)
0.253300 + 0.967388i \(0.418484\pi\)
\(354\) 0 0
\(355\) −18.5939 −0.986863
\(356\) 34.3907 1.82271
\(357\) 0 0
\(358\) 19.0370 1.00614
\(359\) 8.98273 0.474090 0.237045 0.971499i \(-0.423821\pi\)
0.237045 + 0.971499i \(0.423821\pi\)
\(360\) 0 0
\(361\) 50.1871 2.64142
\(362\) 58.5459 3.07711
\(363\) 0 0
\(364\) −84.3550 −4.42141
\(365\) 24.1550 1.26433
\(366\) 0 0
\(367\) −25.2777 −1.31949 −0.659744 0.751491i \(-0.729335\pi\)
−0.659744 + 0.751491i \(0.729335\pi\)
\(368\) −0.920976 −0.0480092
\(369\) 0 0
\(370\) 43.4771 2.26027
\(371\) 5.69352 0.295593
\(372\) 0 0
\(373\) 2.48700 0.128772 0.0643859 0.997925i \(-0.479491\pi\)
0.0643859 + 0.997925i \(0.479491\pi\)
\(374\) −34.4897 −1.78342
\(375\) 0 0
\(376\) 20.8062 1.07300
\(377\) 5.73812 0.295528
\(378\) 0 0
\(379\) 32.0311 1.64533 0.822664 0.568528i \(-0.192487\pi\)
0.822664 + 0.568528i \(0.192487\pi\)
\(380\) 58.1727 2.98420
\(381\) 0 0
\(382\) 57.4509 2.93944
\(383\) −0.611138 −0.0312277 −0.0156139 0.999878i \(-0.504970\pi\)
−0.0156139 + 0.999878i \(0.504970\pi\)
\(384\) 0 0
\(385\) 31.1952 1.58986
\(386\) 3.15292 0.160479
\(387\) 0 0
\(388\) 2.53706 0.128800
\(389\) 20.0636 1.01727 0.508633 0.860984i \(-0.330151\pi\)
0.508633 + 0.860984i \(0.330151\pi\)
\(390\) 0 0
\(391\) −4.13707 −0.209220
\(392\) 37.8665 1.91255
\(393\) 0 0
\(394\) 14.0765 0.709166
\(395\) −4.14914 −0.208766
\(396\) 0 0
\(397\) 0.630252 0.0316314 0.0158157 0.999875i \(-0.494965\pi\)
0.0158157 + 0.999875i \(0.494965\pi\)
\(398\) −50.3170 −2.52216
\(399\) 0 0
\(400\) −0.783352 −0.0391676
\(401\) −23.2037 −1.15874 −0.579368 0.815066i \(-0.696701\pi\)
−0.579368 + 0.815066i \(0.696701\pi\)
\(402\) 0 0
\(403\) −26.0845 −1.29936
\(404\) 48.6172 2.41879
\(405\) 0 0
\(406\) −9.98070 −0.495334
\(407\) 32.7490 1.62331
\(408\) 0 0
\(409\) 13.6159 0.673265 0.336632 0.941636i \(-0.390712\pi\)
0.336632 + 0.941636i \(0.390712\pi\)
\(410\) 17.9119 0.884606
\(411\) 0 0
\(412\) −52.7281 −2.59773
\(413\) −51.7409 −2.54600
\(414\) 0 0
\(415\) −5.11326 −0.251000
\(416\) 26.0233 1.27590
\(417\) 0 0
\(418\) 69.3440 3.39173
\(419\) −29.5393 −1.44309 −0.721543 0.692369i \(-0.756567\pi\)
−0.721543 + 0.692369i \(0.756567\pi\)
\(420\) 0 0
\(421\) 10.1117 0.492816 0.246408 0.969166i \(-0.420750\pi\)
0.246408 + 0.969166i \(0.420750\pi\)
\(422\) −37.9275 −1.84628
\(423\) 0 0
\(424\) 4.44245 0.215744
\(425\) −3.51885 −0.170689
\(426\) 0 0
\(427\) 18.9359 0.916374
\(428\) 44.9780 2.17410
\(429\) 0 0
\(430\) 19.5340 0.942013
\(431\) −0.288442 −0.0138937 −0.00694687 0.999976i \(-0.502211\pi\)
−0.00694687 + 0.999976i \(0.502211\pi\)
\(432\) 0 0
\(433\) −12.5475 −0.602993 −0.301496 0.953467i \(-0.597486\pi\)
−0.301496 + 0.953467i \(0.597486\pi\)
\(434\) 45.3705 2.17785
\(435\) 0 0
\(436\) 59.7807 2.86298
\(437\) 8.31788 0.397898
\(438\) 0 0
\(439\) 5.33735 0.254738 0.127369 0.991855i \(-0.459347\pi\)
0.127369 + 0.991855i \(0.459347\pi\)
\(440\) 24.3405 1.16039
\(441\) 0 0
\(442\) −55.3342 −2.63198
\(443\) 22.8067 1.08358 0.541790 0.840514i \(-0.317747\pi\)
0.541790 + 0.840514i \(0.317747\pi\)
\(444\) 0 0
\(445\) −20.4044 −0.967260
\(446\) −25.0678 −1.18700
\(447\) 0 0
\(448\) −53.1511 −2.51115
\(449\) 23.8512 1.12561 0.562805 0.826590i \(-0.309722\pi\)
0.562805 + 0.826590i \(0.309722\pi\)
\(450\) 0 0
\(451\) 13.4921 0.635319
\(452\) −47.9036 −2.25320
\(453\) 0 0
\(454\) −19.1555 −0.899010
\(455\) 50.0487 2.34632
\(456\) 0 0
\(457\) 22.1886 1.03794 0.518969 0.854793i \(-0.326316\pi\)
0.518969 + 0.854793i \(0.326316\pi\)
\(458\) −65.4667 −3.05906
\(459\) 0 0
\(460\) 6.99370 0.326083
\(461\) −18.8126 −0.876192 −0.438096 0.898928i \(-0.644347\pi\)
−0.438096 + 0.898928i \(0.644347\pi\)
\(462\) 0 0
\(463\) −5.42370 −0.252061 −0.126030 0.992026i \(-0.540224\pi\)
−0.126030 + 0.992026i \(0.540224\pi\)
\(464\) −0.920976 −0.0427552
\(465\) 0 0
\(466\) −7.39200 −0.342428
\(467\) −16.8183 −0.778257 −0.389129 0.921183i \(-0.627224\pi\)
−0.389129 + 0.921183i \(0.627224\pi\)
\(468\) 0 0
\(469\) −24.5434 −1.13331
\(470\) −29.5698 −1.36395
\(471\) 0 0
\(472\) −40.3716 −1.85825
\(473\) 14.7140 0.676548
\(474\) 0 0
\(475\) 7.07491 0.324619
\(476\) 60.8183 2.78760
\(477\) 0 0
\(478\) 41.5793 1.90179
\(479\) −32.8574 −1.50129 −0.750647 0.660704i \(-0.770258\pi\)
−0.750647 + 0.660704i \(0.770258\pi\)
\(480\) 0 0
\(481\) 52.5416 2.39569
\(482\) −55.9090 −2.54658
\(483\) 0 0
\(484\) 6.15155 0.279616
\(485\) −1.50526 −0.0683504
\(486\) 0 0
\(487\) 2.35263 0.106608 0.0533039 0.998578i \(-0.483025\pi\)
0.0533039 + 0.998578i \(0.483025\pi\)
\(488\) 14.7750 0.668834
\(489\) 0 0
\(490\) −53.8160 −2.43116
\(491\) −14.0933 −0.636023 −0.318011 0.948087i \(-0.603015\pi\)
−0.318011 + 0.948087i \(0.603015\pi\)
\(492\) 0 0
\(493\) −4.13707 −0.186324
\(494\) 111.254 5.00554
\(495\) 0 0
\(496\) 4.18659 0.187984
\(497\) 39.0846 1.75318
\(498\) 0 0
\(499\) −7.21406 −0.322946 −0.161473 0.986877i \(-0.551624\pi\)
−0.161473 + 0.986877i \(0.551624\pi\)
\(500\) 40.9171 1.82987
\(501\) 0 0
\(502\) 23.4708 1.04755
\(503\) −35.3702 −1.57708 −0.788541 0.614983i \(-0.789163\pi\)
−0.788541 + 0.614983i \(0.789163\pi\)
\(504\) 0 0
\(505\) −28.8451 −1.28359
\(506\) 8.33675 0.370614
\(507\) 0 0
\(508\) 32.5763 1.44534
\(509\) 7.23766 0.320803 0.160402 0.987052i \(-0.448721\pi\)
0.160402 + 0.987052i \(0.448721\pi\)
\(510\) 0 0
\(511\) −50.7741 −2.24612
\(512\) −10.3307 −0.456555
\(513\) 0 0
\(514\) 17.6907 0.780303
\(515\) 31.2841 1.37854
\(516\) 0 0
\(517\) −22.2734 −0.979584
\(518\) −91.3892 −4.01541
\(519\) 0 0
\(520\) 39.0512 1.71251
\(521\) −41.0518 −1.79851 −0.899256 0.437422i \(-0.855892\pi\)
−0.899256 + 0.437422i \(0.855892\pi\)
\(522\) 0 0
\(523\) −29.1248 −1.27354 −0.636770 0.771054i \(-0.719730\pi\)
−0.636770 + 0.771054i \(0.719730\pi\)
\(524\) 27.7349 1.21161
\(525\) 0 0
\(526\) −30.0048 −1.30827
\(527\) 18.8064 0.819218
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −6.31361 −0.274246
\(531\) 0 0
\(532\) −122.280 −5.30149
\(533\) 21.6464 0.937608
\(534\) 0 0
\(535\) −26.6859 −1.15373
\(536\) −19.1503 −0.827167
\(537\) 0 0
\(538\) 37.4976 1.61664
\(539\) −40.5368 −1.74604
\(540\) 0 0
\(541\) 26.1303 1.12343 0.561715 0.827331i \(-0.310142\pi\)
0.561715 + 0.827331i \(0.310142\pi\)
\(542\) −13.5040 −0.580048
\(543\) 0 0
\(544\) −18.7623 −0.804427
\(545\) −35.4685 −1.51930
\(546\) 0 0
\(547\) −25.3917 −1.08567 −0.542835 0.839839i \(-0.682649\pi\)
−0.542835 + 0.839839i \(0.682649\pi\)
\(548\) −49.9799 −2.13504
\(549\) 0 0
\(550\) 7.09097 0.302360
\(551\) 8.31788 0.354353
\(552\) 0 0
\(553\) 8.72153 0.370877
\(554\) 9.44626 0.401333
\(555\) 0 0
\(556\) −55.5997 −2.35795
\(557\) 29.2515 1.23943 0.619714 0.784828i \(-0.287249\pi\)
0.619714 + 0.784828i \(0.287249\pi\)
\(558\) 0 0
\(559\) 23.6067 0.998455
\(560\) −8.03289 −0.339451
\(561\) 0 0
\(562\) −71.5427 −3.01784
\(563\) 28.7525 1.21177 0.605886 0.795551i \(-0.292819\pi\)
0.605886 + 0.795551i \(0.292819\pi\)
\(564\) 0 0
\(565\) 28.4217 1.19571
\(566\) 59.8580 2.51602
\(567\) 0 0
\(568\) 30.4963 1.27960
\(569\) 13.9221 0.583647 0.291823 0.956472i \(-0.405738\pi\)
0.291823 + 0.956472i \(0.405738\pi\)
\(570\) 0 0
\(571\) 7.66013 0.320566 0.160283 0.987071i \(-0.448759\pi\)
0.160283 + 0.987071i \(0.448759\pi\)
\(572\) 70.4606 2.94611
\(573\) 0 0
\(574\) −37.6510 −1.57152
\(575\) 0.850567 0.0354711
\(576\) 0 0
\(577\) −28.4816 −1.18570 −0.592851 0.805312i \(-0.701998\pi\)
−0.592851 + 0.805312i \(0.701998\pi\)
\(578\) 0.268777 0.0111797
\(579\) 0 0
\(580\) 6.99370 0.290397
\(581\) 10.7481 0.445907
\(582\) 0 0
\(583\) −4.75572 −0.196962
\(584\) −39.6172 −1.63937
\(585\) 0 0
\(586\) 39.5756 1.63485
\(587\) 28.0018 1.15576 0.577879 0.816122i \(-0.303880\pi\)
0.577879 + 0.816122i \(0.303880\pi\)
\(588\) 0 0
\(589\) −37.8116 −1.55800
\(590\) 57.3761 2.36214
\(591\) 0 0
\(592\) −8.43300 −0.346594
\(593\) 37.7603 1.55063 0.775315 0.631575i \(-0.217591\pi\)
0.775315 + 0.631575i \(0.217591\pi\)
\(594\) 0 0
\(595\) −36.0841 −1.47930
\(596\) −30.0514 −1.23095
\(597\) 0 0
\(598\) 13.3752 0.546954
\(599\) −15.7412 −0.643168 −0.321584 0.946881i \(-0.604215\pi\)
−0.321584 + 0.946881i \(0.604215\pi\)
\(600\) 0 0
\(601\) −17.6070 −0.718204 −0.359102 0.933298i \(-0.616917\pi\)
−0.359102 + 0.933298i \(0.616917\pi\)
\(602\) −41.0607 −1.67351
\(603\) 0 0
\(604\) 68.8351 2.80086
\(605\) −3.64978 −0.148385
\(606\) 0 0
\(607\) 33.3243 1.35259 0.676297 0.736629i \(-0.263584\pi\)
0.676297 + 0.736629i \(0.263584\pi\)
\(608\) 37.7230 1.52987
\(609\) 0 0
\(610\) −20.9983 −0.850196
\(611\) −35.7348 −1.44568
\(612\) 0 0
\(613\) −19.6103 −0.792053 −0.396027 0.918239i \(-0.629611\pi\)
−0.396027 + 0.918239i \(0.629611\pi\)
\(614\) 11.7712 0.475046
\(615\) 0 0
\(616\) −51.1640 −2.06146
\(617\) 1.16373 0.0468500 0.0234250 0.999726i \(-0.492543\pi\)
0.0234250 + 0.999726i \(0.492543\pi\)
\(618\) 0 0
\(619\) −21.1267 −0.849154 −0.424577 0.905392i \(-0.639577\pi\)
−0.424577 + 0.905392i \(0.639577\pi\)
\(620\) −31.7921 −1.27680
\(621\) 0 0
\(622\) −27.0122 −1.08309
\(623\) 42.8902 1.71836
\(624\) 0 0
\(625\) −20.0237 −0.800948
\(626\) −40.7531 −1.62882
\(627\) 0 0
\(628\) −31.2025 −1.24512
\(629\) −37.8814 −1.51043
\(630\) 0 0
\(631\) 22.5717 0.898565 0.449282 0.893390i \(-0.351680\pi\)
0.449282 + 0.893390i \(0.351680\pi\)
\(632\) 6.80510 0.270692
\(633\) 0 0
\(634\) 41.6990 1.65608
\(635\) −19.3279 −0.767003
\(636\) 0 0
\(637\) −65.0361 −2.57682
\(638\) 8.33675 0.330055
\(639\) 0 0
\(640\) 40.4635 1.59946
\(641\) −1.63884 −0.0647303 −0.0323651 0.999476i \(-0.510304\pi\)
−0.0323651 + 0.999476i \(0.510304\pi\)
\(642\) 0 0
\(643\) −17.0563 −0.672634 −0.336317 0.941749i \(-0.609181\pi\)
−0.336317 + 0.941749i \(0.609181\pi\)
\(644\) −14.7008 −0.579293
\(645\) 0 0
\(646\) −80.2115 −3.15588
\(647\) −42.8199 −1.68342 −0.841712 0.539926i \(-0.818452\pi\)
−0.841712 + 0.539926i \(0.818452\pi\)
\(648\) 0 0
\(649\) 43.2185 1.69647
\(650\) 11.3765 0.446225
\(651\) 0 0
\(652\) −38.4391 −1.50539
\(653\) 13.5203 0.529091 0.264545 0.964373i \(-0.414778\pi\)
0.264545 + 0.964373i \(0.414778\pi\)
\(654\) 0 0
\(655\) −16.4554 −0.642966
\(656\) −3.47427 −0.135647
\(657\) 0 0
\(658\) 62.1561 2.42310
\(659\) 3.50630 0.136586 0.0682929 0.997665i \(-0.478245\pi\)
0.0682929 + 0.997665i \(0.478245\pi\)
\(660\) 0 0
\(661\) −24.3043 −0.945328 −0.472664 0.881243i \(-0.656708\pi\)
−0.472664 + 0.881243i \(0.656708\pi\)
\(662\) −10.8629 −0.422200
\(663\) 0 0
\(664\) 8.38638 0.325455
\(665\) 72.5498 2.81336
\(666\) 0 0
\(667\) 1.00000 0.0387202
\(668\) −40.2907 −1.55890
\(669\) 0 0
\(670\) 27.2164 1.05146
\(671\) −15.8169 −0.610606
\(672\) 0 0
\(673\) −8.49381 −0.327412 −0.163706 0.986509i \(-0.552345\pi\)
−0.163706 + 0.986509i \(0.552345\pi\)
\(674\) −17.0451 −0.656553
\(675\) 0 0
\(676\) 68.4120 2.63123
\(677\) 6.22294 0.239167 0.119584 0.992824i \(-0.461844\pi\)
0.119584 + 0.992824i \(0.461844\pi\)
\(678\) 0 0
\(679\) 3.16408 0.121426
\(680\) −28.1551 −1.07970
\(681\) 0 0
\(682\) −37.8974 −1.45117
\(683\) 24.5440 0.939152 0.469576 0.882892i \(-0.344407\pi\)
0.469576 + 0.882892i \(0.344407\pi\)
\(684\) 0 0
\(685\) 29.6536 1.13301
\(686\) 43.2568 1.65155
\(687\) 0 0
\(688\) −3.78890 −0.144450
\(689\) −7.62994 −0.290678
\(690\) 0 0
\(691\) −13.7582 −0.523386 −0.261693 0.965151i \(-0.584281\pi\)
−0.261693 + 0.965151i \(0.584281\pi\)
\(692\) −69.5049 −2.64218
\(693\) 0 0
\(694\) −63.8462 −2.42357
\(695\) 32.9879 1.25130
\(696\) 0 0
\(697\) −15.6066 −0.591141
\(698\) 47.2365 1.78793
\(699\) 0 0
\(700\) −12.5040 −0.472608
\(701\) −38.9004 −1.46925 −0.734625 0.678474i \(-0.762642\pi\)
−0.734625 + 0.678474i \(0.762642\pi\)
\(702\) 0 0
\(703\) 76.1634 2.87256
\(704\) 44.3964 1.67325
\(705\) 0 0
\(706\) 22.1863 0.834991
\(707\) 60.6326 2.28032
\(708\) 0 0
\(709\) 49.1600 1.84624 0.923121 0.384510i \(-0.125629\pi\)
0.923121 + 0.384510i \(0.125629\pi\)
\(710\) −43.3414 −1.62657
\(711\) 0 0
\(712\) 33.4657 1.25418
\(713\) −4.54582 −0.170242
\(714\) 0 0
\(715\) −41.8050 −1.56342
\(716\) 28.0401 1.04791
\(717\) 0 0
\(718\) 20.9382 0.781408
\(719\) 26.3301 0.981947 0.490973 0.871175i \(-0.336641\pi\)
0.490973 + 0.871175i \(0.336641\pi\)
\(720\) 0 0
\(721\) −65.7596 −2.44901
\(722\) 116.983 4.35367
\(723\) 0 0
\(724\) 86.2337 3.20485
\(725\) 0.850567 0.0315893
\(726\) 0 0
\(727\) 30.5986 1.13484 0.567420 0.823428i \(-0.307942\pi\)
0.567420 + 0.823428i \(0.307942\pi\)
\(728\) −82.0861 −3.04231
\(729\) 0 0
\(730\) 56.3041 2.08391
\(731\) −17.0199 −0.629504
\(732\) 0 0
\(733\) −47.0714 −1.73862 −0.869311 0.494266i \(-0.835437\pi\)
−0.869311 + 0.494266i \(0.835437\pi\)
\(734\) −58.9210 −2.17482
\(735\) 0 0
\(736\) 4.53517 0.167169
\(737\) 20.5007 0.755154
\(738\) 0 0
\(739\) −35.4173 −1.30285 −0.651424 0.758714i \(-0.725828\pi\)
−0.651424 + 0.758714i \(0.725828\pi\)
\(740\) 64.0384 2.35410
\(741\) 0 0
\(742\) 13.2713 0.487204
\(743\) 11.1959 0.410738 0.205369 0.978685i \(-0.434161\pi\)
0.205369 + 0.978685i \(0.434161\pi\)
\(744\) 0 0
\(745\) 17.8298 0.653234
\(746\) 5.79706 0.212245
\(747\) 0 0
\(748\) −50.8007 −1.85746
\(749\) 56.0941 2.04963
\(750\) 0 0
\(751\) −19.4942 −0.711352 −0.355676 0.934609i \(-0.615749\pi\)
−0.355676 + 0.934609i \(0.615749\pi\)
\(752\) 5.73549 0.209152
\(753\) 0 0
\(754\) 13.3752 0.487097
\(755\) −40.8406 −1.48634
\(756\) 0 0
\(757\) 34.4467 1.25199 0.625993 0.779829i \(-0.284694\pi\)
0.625993 + 0.779829i \(0.284694\pi\)
\(758\) 74.6628 2.71187
\(759\) 0 0
\(760\) 56.6080 2.05339
\(761\) 26.7158 0.968447 0.484223 0.874944i \(-0.339102\pi\)
0.484223 + 0.874944i \(0.339102\pi\)
\(762\) 0 0
\(763\) 74.5551 2.69908
\(764\) 84.6208 3.06147
\(765\) 0 0
\(766\) −1.42453 −0.0514704
\(767\) 69.3385 2.50367
\(768\) 0 0
\(769\) 23.6647 0.853372 0.426686 0.904400i \(-0.359681\pi\)
0.426686 + 0.904400i \(0.359681\pi\)
\(770\) 72.7144 2.62044
\(771\) 0 0
\(772\) 4.64401 0.167142
\(773\) 49.9240 1.79564 0.897822 0.440359i \(-0.145149\pi\)
0.897822 + 0.440359i \(0.145149\pi\)
\(774\) 0 0
\(775\) −3.86653 −0.138890
\(776\) 2.46882 0.0886253
\(777\) 0 0
\(778\) 46.7672 1.67668
\(779\) 31.3782 1.12424
\(780\) 0 0
\(781\) −32.6468 −1.16820
\(782\) −9.64327 −0.344843
\(783\) 0 0
\(784\) 10.4384 0.372799
\(785\) 18.5128 0.660749
\(786\) 0 0
\(787\) −7.48300 −0.266740 −0.133370 0.991066i \(-0.542580\pi\)
−0.133370 + 0.991066i \(0.542580\pi\)
\(788\) 20.7337 0.738607
\(789\) 0 0
\(790\) −9.67141 −0.344093
\(791\) −59.7427 −2.12421
\(792\) 0 0
\(793\) −25.3762 −0.901136
\(794\) 1.46908 0.0521358
\(795\) 0 0
\(796\) −74.1131 −2.62687
\(797\) −36.0709 −1.27770 −0.638849 0.769332i \(-0.720589\pi\)
−0.638849 + 0.769332i \(0.720589\pi\)
\(798\) 0 0
\(799\) 25.7641 0.911468
\(800\) 3.85747 0.136382
\(801\) 0 0
\(802\) −54.0865 −1.90986
\(803\) 42.4110 1.49665
\(804\) 0 0
\(805\) 8.72215 0.307415
\(806\) −60.8015 −2.14164
\(807\) 0 0
\(808\) 47.3095 1.66434
\(809\) 15.9545 0.560929 0.280465 0.959864i \(-0.409511\pi\)
0.280465 + 0.959864i \(0.409511\pi\)
\(810\) 0 0
\(811\) 36.2089 1.27147 0.635733 0.771909i \(-0.280698\pi\)
0.635733 + 0.771909i \(0.280698\pi\)
\(812\) −14.7008 −0.515898
\(813\) 0 0
\(814\) 76.3362 2.67558
\(815\) 22.8063 0.798870
\(816\) 0 0
\(817\) 34.2198 1.19720
\(818\) 31.7380 1.10969
\(819\) 0 0
\(820\) 26.3829 0.921330
\(821\) −5.97804 −0.208635 −0.104317 0.994544i \(-0.533266\pi\)
−0.104317 + 0.994544i \(0.533266\pi\)
\(822\) 0 0
\(823\) 21.2654 0.741264 0.370632 0.928780i \(-0.379141\pi\)
0.370632 + 0.928780i \(0.379141\pi\)
\(824\) −51.3098 −1.78746
\(825\) 0 0
\(826\) −120.605 −4.19639
\(827\) −35.3932 −1.23074 −0.615371 0.788237i \(-0.710994\pi\)
−0.615371 + 0.788237i \(0.710994\pi\)
\(828\) 0 0
\(829\) 10.3204 0.358444 0.179222 0.983809i \(-0.442642\pi\)
0.179222 + 0.983809i \(0.442642\pi\)
\(830\) −11.9187 −0.413705
\(831\) 0 0
\(832\) 71.2283 2.46940
\(833\) 46.8897 1.62463
\(834\) 0 0
\(835\) 23.9049 0.827264
\(836\) 102.139 3.53253
\(837\) 0 0
\(838\) −68.8544 −2.37853
\(839\) 23.4456 0.809433 0.404717 0.914442i \(-0.367370\pi\)
0.404717 + 0.914442i \(0.367370\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 23.5699 0.812272
\(843\) 0 0
\(844\) −55.8643 −1.92293
\(845\) −40.5896 −1.39632
\(846\) 0 0
\(847\) 7.67187 0.263608
\(848\) 1.22462 0.0420535
\(849\) 0 0
\(850\) −8.20225 −0.281335
\(851\) 9.15659 0.313884
\(852\) 0 0
\(853\) 23.9444 0.819842 0.409921 0.912121i \(-0.365556\pi\)
0.409921 + 0.912121i \(0.365556\pi\)
\(854\) 44.1386 1.51039
\(855\) 0 0
\(856\) 43.7682 1.49597
\(857\) −13.0836 −0.446927 −0.223464 0.974712i \(-0.571736\pi\)
−0.223464 + 0.974712i \(0.571736\pi\)
\(858\) 0 0
\(859\) 41.8025 1.42628 0.713141 0.701020i \(-0.247272\pi\)
0.713141 + 0.701020i \(0.247272\pi\)
\(860\) 28.7721 0.981121
\(861\) 0 0
\(862\) −0.672342 −0.0229000
\(863\) 10.4612 0.356105 0.178052 0.984021i \(-0.443020\pi\)
0.178052 + 0.984021i \(0.443020\pi\)
\(864\) 0 0
\(865\) 41.2380 1.40213
\(866\) −29.2474 −0.993869
\(867\) 0 0
\(868\) 66.8273 2.26827
\(869\) −7.28498 −0.247126
\(870\) 0 0
\(871\) 32.8908 1.11446
\(872\) 58.1727 1.96998
\(873\) 0 0
\(874\) 19.3885 0.655826
\(875\) 51.0295 1.72511
\(876\) 0 0
\(877\) 28.4848 0.961862 0.480931 0.876758i \(-0.340299\pi\)
0.480931 + 0.876758i \(0.340299\pi\)
\(878\) 12.4411 0.419866
\(879\) 0 0
\(880\) 6.70976 0.226186
\(881\) −38.9665 −1.31281 −0.656407 0.754407i \(-0.727925\pi\)
−0.656407 + 0.754407i \(0.727925\pi\)
\(882\) 0 0
\(883\) 10.6192 0.357365 0.178683 0.983907i \(-0.442816\pi\)
0.178683 + 0.983907i \(0.442816\pi\)
\(884\) −81.5031 −2.74125
\(885\) 0 0
\(886\) 53.1612 1.78599
\(887\) −0.468182 −0.0157200 −0.00786000 0.999969i \(-0.502502\pi\)
−0.00786000 + 0.999969i \(0.502502\pi\)
\(888\) 0 0
\(889\) 40.6274 1.36260
\(890\) −47.5615 −1.59426
\(891\) 0 0
\(892\) −36.9230 −1.23627
\(893\) −51.8006 −1.73344
\(894\) 0 0
\(895\) −16.6365 −0.556097
\(896\) −85.0547 −2.84148
\(897\) 0 0
\(898\) 55.5959 1.85526
\(899\) −4.54582 −0.151612
\(900\) 0 0
\(901\) 5.50103 0.183266
\(902\) 31.4494 1.04715
\(903\) 0 0
\(904\) −46.6151 −1.55040
\(905\) −51.1633 −1.70073
\(906\) 0 0
\(907\) 11.6922 0.388233 0.194117 0.980978i \(-0.437816\pi\)
0.194117 + 0.980978i \(0.437816\pi\)
\(908\) −28.2145 −0.936332
\(909\) 0 0
\(910\) 116.661 3.86727
\(911\) −29.7390 −0.985298 −0.492649 0.870228i \(-0.663971\pi\)
−0.492649 + 0.870228i \(0.663971\pi\)
\(912\) 0 0
\(913\) −8.97776 −0.297121
\(914\) 51.7203 1.71076
\(915\) 0 0
\(916\) −96.4275 −3.18605
\(917\) 34.5894 1.14224
\(918\) 0 0
\(919\) −16.8566 −0.556048 −0.278024 0.960574i \(-0.589679\pi\)
−0.278024 + 0.960574i \(0.589679\pi\)
\(920\) 6.80558 0.224373
\(921\) 0 0
\(922\) −43.8512 −1.44416
\(923\) −52.3776 −1.72403
\(924\) 0 0
\(925\) 7.78830 0.256078
\(926\) −12.6423 −0.415453
\(927\) 0 0
\(928\) 4.53517 0.148874
\(929\) 24.0401 0.788730 0.394365 0.918954i \(-0.370965\pi\)
0.394365 + 0.918954i \(0.370965\pi\)
\(930\) 0 0
\(931\) −94.2752 −3.08974
\(932\) −10.8878 −0.356643
\(933\) 0 0
\(934\) −39.2025 −1.28275
\(935\) 30.1406 0.985702
\(936\) 0 0
\(937\) 5.39247 0.176164 0.0880821 0.996113i \(-0.471926\pi\)
0.0880821 + 0.996113i \(0.471926\pi\)
\(938\) −57.2092 −1.86795
\(939\) 0 0
\(940\) −43.5541 −1.42058
\(941\) −8.82008 −0.287527 −0.143763 0.989612i \(-0.545920\pi\)
−0.143763 + 0.989612i \(0.545920\pi\)
\(942\) 0 0
\(943\) 3.77238 0.122846
\(944\) −11.1289 −0.362215
\(945\) 0 0
\(946\) 34.2974 1.11511
\(947\) 9.44632 0.306964 0.153482 0.988151i \(-0.450951\pi\)
0.153482 + 0.988151i \(0.450951\pi\)
\(948\) 0 0
\(949\) 68.0429 2.20877
\(950\) 16.4912 0.535046
\(951\) 0 0
\(952\) 59.1824 1.91811
\(953\) −52.6988 −1.70708 −0.853541 0.521025i \(-0.825550\pi\)
−0.853541 + 0.521025i \(0.825550\pi\)
\(954\) 0 0
\(955\) −50.2064 −1.62464
\(956\) 61.2432 1.98075
\(957\) 0 0
\(958\) −76.5888 −2.47447
\(959\) −62.3322 −2.01281
\(960\) 0 0
\(961\) −10.3355 −0.333403
\(962\) 122.472 3.94864
\(963\) 0 0
\(964\) −82.3497 −2.65230
\(965\) −2.75534 −0.0886975
\(966\) 0 0
\(967\) −37.7635 −1.21439 −0.607197 0.794552i \(-0.707706\pi\)
−0.607197 + 0.794552i \(0.707706\pi\)
\(968\) 5.98608 0.192400
\(969\) 0 0
\(970\) −3.50868 −0.112657
\(971\) 10.8940 0.349605 0.174803 0.984604i \(-0.444071\pi\)
0.174803 + 0.984604i \(0.444071\pi\)
\(972\) 0 0
\(973\) −69.3408 −2.22297
\(974\) 5.48385 0.175714
\(975\) 0 0
\(976\) 4.07292 0.130371
\(977\) 57.4977 1.83951 0.919756 0.392489i \(-0.128386\pi\)
0.919756 + 0.392489i \(0.128386\pi\)
\(978\) 0 0
\(979\) −35.8256 −1.14499
\(980\) −79.2669 −2.53209
\(981\) 0 0
\(982\) −32.8508 −1.04831
\(983\) −48.8762 −1.55891 −0.779454 0.626459i \(-0.784504\pi\)
−0.779454 + 0.626459i \(0.784504\pi\)
\(984\) 0 0
\(985\) −12.3015 −0.391959
\(986\) −9.64327 −0.307104
\(987\) 0 0
\(988\) 163.868 5.21334
\(989\) 4.11401 0.130818
\(990\) 0 0
\(991\) 39.1297 1.24300 0.621498 0.783416i \(-0.286524\pi\)
0.621498 + 0.783416i \(0.286524\pi\)
\(992\) −20.6161 −0.654561
\(993\) 0 0
\(994\) 91.1040 2.88964
\(995\) 43.9721 1.39401
\(996\) 0 0
\(997\) 2.04245 0.0646851 0.0323425 0.999477i \(-0.489703\pi\)
0.0323425 + 0.999477i \(0.489703\pi\)
\(998\) −16.8156 −0.532288
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6003.2.a.u.1.21 yes 22
3.2 odd 2 6003.2.a.t.1.2 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6003.2.a.t.1.2 22 3.2 odd 2
6003.2.a.u.1.21 yes 22 1.1 even 1 trivial