Properties

Label 600.3.u.h.193.2
Level $600$
Weight $3$
Character 600.193
Analytic conductor $16.349$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(193,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-4,0,0,0,32,0,4,0,0,0,-52,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 269x^{4} - 1116x^{3} + 2312x^{2} + 680x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.2
Root \(2.36263 - 2.36263i\) of defining polynomial
Character \(\chi\) \(=\) 600.193
Dual form 600.3.u.h.457.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 1.22474i) q^{3} +(8.78825 - 8.78825i) q^{7} +3.00000i q^{9} +13.7482 q^{11} +(4.88927 + 4.88927i) q^{13} +(-5.99029 + 5.99029i) q^{17} +25.5765i q^{19} -21.5267 q^{21} +(-18.4257 - 18.4257i) q^{23} +(3.67423 - 3.67423i) q^{27} -37.2222i q^{29} +31.6955 q^{31} +(-16.8380 - 16.8380i) q^{33} +(32.5046 - 32.5046i) q^{37} -11.9762i q^{39} +36.7295 q^{41} +(24.5780 + 24.5780i) q^{43} +(-20.4063 + 20.4063i) q^{47} -105.467i q^{49} +14.6732 q^{51} +(-33.5559 - 33.5559i) q^{53} +(31.3247 - 31.3247i) q^{57} +7.54615i q^{59} +43.6183 q^{61} +(26.3648 + 26.3648i) q^{63} +(60.1739 - 60.1739i) q^{67} +45.1336i q^{69} -18.1632 q^{71} +(-68.8218 - 68.8218i) q^{73} +(120.823 - 120.823i) q^{77} -22.2628i q^{79} -9.00000 q^{81} +(0.00221809 + 0.00221809i) q^{83} +(-45.5877 + 45.5877i) q^{87} +77.1943i q^{89} +85.9363 q^{91} +(-38.8189 - 38.8189i) q^{93} +(-29.4309 + 29.4309i) q^{97} +41.2446i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} + 32 q^{11} + 4 q^{13} - 52 q^{17} - 24 q^{21} + 40 q^{23} + 96 q^{31} - 60 q^{33} + 60 q^{37} - 152 q^{41} + 88 q^{43} + 16 q^{47} - 168 q^{51} - 108 q^{53} + 24 q^{57} + 264 q^{61} - 12 q^{63}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 1.22474i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 8.78825 8.78825i 1.25546 1.25546i 0.302229 0.953235i \(-0.402269\pi\)
0.953235 0.302229i \(-0.0977309\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 13.7482 1.24984 0.624918 0.780691i \(-0.285133\pi\)
0.624918 + 0.780691i \(0.285133\pi\)
\(12\) 0 0
\(13\) 4.88927 + 4.88927i 0.376098 + 0.376098i 0.869692 0.493594i \(-0.164317\pi\)
−0.493594 + 0.869692i \(0.664317\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.99029 + 5.99029i −0.352370 + 0.352370i −0.860991 0.508621i \(-0.830156\pi\)
0.508621 + 0.860991i \(0.330156\pi\)
\(18\) 0 0
\(19\) 25.5765i 1.34613i 0.739583 + 0.673066i \(0.235023\pi\)
−0.739583 + 0.673066i \(0.764977\pi\)
\(20\) 0 0
\(21\) −21.5267 −1.02508
\(22\) 0 0
\(23\) −18.4257 18.4257i −0.801118 0.801118i 0.182152 0.983270i \(-0.441694\pi\)
−0.983270 + 0.182152i \(0.941694\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 0 0
\(29\) 37.2222i 1.28352i −0.766904 0.641762i \(-0.778204\pi\)
0.766904 0.641762i \(-0.221796\pi\)
\(30\) 0 0
\(31\) 31.6955 1.02243 0.511217 0.859452i \(-0.329195\pi\)
0.511217 + 0.859452i \(0.329195\pi\)
\(32\) 0 0
\(33\) −16.8380 16.8380i −0.510243 0.510243i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 32.5046 32.5046i 0.878503 0.878503i −0.114877 0.993380i \(-0.536647\pi\)
0.993380 + 0.114877i \(0.0366474\pi\)
\(38\) 0 0
\(39\) 11.9762i 0.307083i
\(40\) 0 0
\(41\) 36.7295 0.895842 0.447921 0.894073i \(-0.352165\pi\)
0.447921 + 0.894073i \(0.352165\pi\)
\(42\) 0 0
\(43\) 24.5780 + 24.5780i 0.571581 + 0.571581i 0.932570 0.360989i \(-0.117561\pi\)
−0.360989 + 0.932570i \(0.617561\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −20.4063 + 20.4063i −0.434177 + 0.434177i −0.890046 0.455870i \(-0.849328\pi\)
0.455870 + 0.890046i \(0.349328\pi\)
\(48\) 0 0
\(49\) 105.467i 2.15238i
\(50\) 0 0
\(51\) 14.6732 0.287709
\(52\) 0 0
\(53\) −33.5559 33.5559i −0.633129 0.633129i 0.315722 0.948852i \(-0.397753\pi\)
−0.948852 + 0.315722i \(0.897753\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 31.3247 31.3247i 0.549556 0.549556i
\(58\) 0 0
\(59\) 7.54615i 0.127901i 0.997953 + 0.0639504i \(0.0203699\pi\)
−0.997953 + 0.0639504i \(0.979630\pi\)
\(60\) 0 0
\(61\) 43.6183 0.715054 0.357527 0.933903i \(-0.383620\pi\)
0.357527 + 0.933903i \(0.383620\pi\)
\(62\) 0 0
\(63\) 26.3648 + 26.3648i 0.418488 + 0.418488i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 60.1739 60.1739i 0.898118 0.898118i −0.0971517 0.995270i \(-0.530973\pi\)
0.995270 + 0.0971517i \(0.0309732\pi\)
\(68\) 0 0
\(69\) 45.1336i 0.654110i
\(70\) 0 0
\(71\) −18.1632 −0.255820 −0.127910 0.991786i \(-0.540827\pi\)
−0.127910 + 0.991786i \(0.540827\pi\)
\(72\) 0 0
\(73\) −68.8218 68.8218i −0.942764 0.942764i 0.0556839 0.998448i \(-0.482266\pi\)
−0.998448 + 0.0556839i \(0.982266\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 120.823 120.823i 1.56912 1.56912i
\(78\) 0 0
\(79\) 22.2628i 0.281807i −0.990023 0.140904i \(-0.954999\pi\)
0.990023 0.140904i \(-0.0450007\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 0.00221809 + 0.00221809i 2.67240e−5 + 2.67240e-5i 0.707120 0.707093i \(-0.249994\pi\)
−0.707093 + 0.707120i \(0.749994\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −45.5877 + 45.5877i −0.523996 + 0.523996i
\(88\) 0 0
\(89\) 77.1943i 0.867352i 0.901069 + 0.433676i \(0.142784\pi\)
−0.901069 + 0.433676i \(0.857216\pi\)
\(90\) 0 0
\(91\) 85.9363 0.944355
\(92\) 0 0
\(93\) −38.8189 38.8189i −0.417407 0.417407i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −29.4309 + 29.4309i −0.303411 + 0.303411i −0.842347 0.538936i \(-0.818827\pi\)
0.538936 + 0.842347i \(0.318827\pi\)
\(98\) 0 0
\(99\) 41.2446i 0.416612i
\(100\) 0 0
\(101\) −178.867 −1.77096 −0.885479 0.464679i \(-0.846170\pi\)
−0.885479 + 0.464679i \(0.846170\pi\)
\(102\) 0 0
\(103\) −41.0972 41.0972i −0.399002 0.399002i 0.478879 0.877881i \(-0.341043\pi\)
−0.877881 + 0.478879i \(0.841043\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 36.8104 36.8104i 0.344022 0.344022i −0.513855 0.857877i \(-0.671783\pi\)
0.857877 + 0.513855i \(0.171783\pi\)
\(108\) 0 0
\(109\) 85.4905i 0.784316i −0.919898 0.392158i \(-0.871729\pi\)
0.919898 0.392158i \(-0.128271\pi\)
\(110\) 0 0
\(111\) −79.6197 −0.717295
\(112\) 0 0
\(113\) 15.6917 + 15.6917i 0.138864 + 0.138864i 0.773122 0.634258i \(-0.218694\pi\)
−0.634258 + 0.773122i \(0.718694\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −14.6678 + 14.6678i −0.125366 + 0.125366i
\(118\) 0 0
\(119\) 105.288i 0.884777i
\(120\) 0 0
\(121\) 68.0127 0.562088
\(122\) 0 0
\(123\) −44.9843 44.9843i −0.365726 0.365726i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −127.554 + 127.554i −1.00436 + 1.00436i −0.00436887 + 0.999990i \(0.501391\pi\)
−0.999990 + 0.00436887i \(0.998609\pi\)
\(128\) 0 0
\(129\) 60.2035i 0.466694i
\(130\) 0 0
\(131\) 123.810 0.945117 0.472559 0.881299i \(-0.343330\pi\)
0.472559 + 0.881299i \(0.343330\pi\)
\(132\) 0 0
\(133\) 224.773 + 224.773i 1.69002 + 1.69002i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −173.145 + 173.145i −1.26383 + 1.26383i −0.314609 + 0.949221i \(0.601873\pi\)
−0.949221 + 0.314609i \(0.898127\pi\)
\(138\) 0 0
\(139\) 1.06696i 0.00767601i 0.999993 + 0.00383800i \(0.00122168\pi\)
−0.999993 + 0.00383800i \(0.998778\pi\)
\(140\) 0 0
\(141\) 49.9850 0.354504
\(142\) 0 0
\(143\) 67.2186 + 67.2186i 0.470060 + 0.470060i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −129.170 + 129.170i −0.878707 + 0.878707i
\(148\) 0 0
\(149\) 65.2505i 0.437923i −0.975734 0.218961i \(-0.929733\pi\)
0.975734 0.218961i \(-0.0702669\pi\)
\(150\) 0 0
\(151\) 157.183 1.04095 0.520473 0.853878i \(-0.325756\pi\)
0.520473 + 0.853878i \(0.325756\pi\)
\(152\) 0 0
\(153\) −17.9709 17.9709i −0.117457 0.117457i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 121.763 121.763i 0.775561 0.775561i −0.203512 0.979073i \(-0.565235\pi\)
0.979073 + 0.203512i \(0.0652355\pi\)
\(158\) 0 0
\(159\) 82.1947i 0.516948i
\(160\) 0 0
\(161\) −323.860 −2.01155
\(162\) 0 0
\(163\) 196.095 + 196.095i 1.20304 + 1.20304i 0.973238 + 0.229801i \(0.0738074\pi\)
0.229801 + 0.973238i \(0.426193\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 26.4088 26.4088i 0.158136 0.158136i −0.623604 0.781740i \(-0.714332\pi\)
0.781740 + 0.623604i \(0.214332\pi\)
\(168\) 0 0
\(169\) 121.190i 0.717101i
\(170\) 0 0
\(171\) −76.7295 −0.448711
\(172\) 0 0
\(173\) 8.69052 + 8.69052i 0.0502342 + 0.0502342i 0.731778 0.681543i \(-0.238691\pi\)
−0.681543 + 0.731778i \(0.738691\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.24211 9.24211i 0.0522153 0.0522153i
\(178\) 0 0
\(179\) 9.67002i 0.0540225i 0.999635 + 0.0270112i \(0.00859899\pi\)
−0.999635 + 0.0270112i \(0.991401\pi\)
\(180\) 0 0
\(181\) 249.048 1.37595 0.687977 0.725733i \(-0.258499\pi\)
0.687977 + 0.725733i \(0.258499\pi\)
\(182\) 0 0
\(183\) −53.4213 53.4213i −0.291920 0.291920i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −82.3557 + 82.3557i −0.440405 + 0.440405i
\(188\) 0 0
\(189\) 64.5802i 0.341694i
\(190\) 0 0
\(191\) −162.349 −0.849996 −0.424998 0.905194i \(-0.639725\pi\)
−0.424998 + 0.905194i \(0.639725\pi\)
\(192\) 0 0
\(193\) 8.11418 + 8.11418i 0.0420424 + 0.0420424i 0.727815 0.685773i \(-0.240536\pi\)
−0.685773 + 0.727815i \(0.740536\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −229.057 + 229.057i −1.16272 + 1.16272i −0.178847 + 0.983877i \(0.557237\pi\)
−0.983877 + 0.178847i \(0.942763\pi\)
\(198\) 0 0
\(199\) 296.892i 1.49192i 0.665992 + 0.745959i \(0.268008\pi\)
−0.665992 + 0.745959i \(0.731992\pi\)
\(200\) 0 0
\(201\) −147.395 −0.733310
\(202\) 0 0
\(203\) −327.118 327.118i −1.61142 1.61142i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 55.2771 55.2771i 0.267039 0.267039i
\(208\) 0 0
\(209\) 351.631i 1.68244i
\(210\) 0 0
\(211\) −273.424 −1.29585 −0.647923 0.761706i \(-0.724362\pi\)
−0.647923 + 0.761706i \(0.724362\pi\)
\(212\) 0 0
\(213\) 22.2453 + 22.2453i 0.104438 + 0.104438i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 278.548 278.548i 1.28363 1.28363i
\(218\) 0 0
\(219\) 168.578i 0.769764i
\(220\) 0 0
\(221\) −58.5764 −0.265051
\(222\) 0 0
\(223\) 232.809 + 232.809i 1.04399 + 1.04399i 0.998987 + 0.0450002i \(0.0143289\pi\)
0.0450002 + 0.998987i \(0.485671\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −105.206 + 105.206i −0.463465 + 0.463465i −0.899789 0.436325i \(-0.856280\pi\)
0.436325 + 0.899789i \(0.356280\pi\)
\(228\) 0 0
\(229\) 154.353i 0.674032i 0.941499 + 0.337016i \(0.109418\pi\)
−0.941499 + 0.337016i \(0.890582\pi\)
\(230\) 0 0
\(231\) −295.954 −1.28118
\(232\) 0 0
\(233\) −16.6237 16.6237i −0.0713464 0.0713464i 0.670533 0.741880i \(-0.266065\pi\)
−0.741880 + 0.670533i \(0.766065\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −27.2662 + 27.2662i −0.115047 + 0.115047i
\(238\) 0 0
\(239\) 97.2929i 0.407083i −0.979066 0.203542i \(-0.934755\pi\)
0.979066 0.203542i \(-0.0652452\pi\)
\(240\) 0 0
\(241\) −308.012 −1.27806 −0.639029 0.769183i \(-0.720663\pi\)
−0.639029 + 0.769183i \(0.720663\pi\)
\(242\) 0 0
\(243\) 11.0227 + 11.0227i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −125.051 + 125.051i −0.506277 + 0.506277i
\(248\) 0 0
\(249\) 0.00543319i 2.18200e-5i
\(250\) 0 0
\(251\) 155.213 0.618379 0.309190 0.951000i \(-0.399942\pi\)
0.309190 + 0.951000i \(0.399942\pi\)
\(252\) 0 0
\(253\) −253.320 253.320i −1.00127 1.00127i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −206.538 + 206.538i −0.803648 + 0.803648i −0.983664 0.180015i \(-0.942385\pi\)
0.180015 + 0.983664i \(0.442385\pi\)
\(258\) 0 0
\(259\) 571.317i 2.20586i
\(260\) 0 0
\(261\) 111.667 0.427841
\(262\) 0 0
\(263\) 236.194 + 236.194i 0.898075 + 0.898075i 0.995266 0.0971908i \(-0.0309857\pi\)
−0.0971908 + 0.995266i \(0.530986\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 94.5433 94.5433i 0.354095 0.354095i
\(268\) 0 0
\(269\) 376.885i 1.40106i −0.713623 0.700530i \(-0.752947\pi\)
0.713623 0.700530i \(-0.247053\pi\)
\(270\) 0 0
\(271\) 196.495 0.725074 0.362537 0.931969i \(-0.381911\pi\)
0.362537 + 0.931969i \(0.381911\pi\)
\(272\) 0 0
\(273\) −105.250 105.250i −0.385531 0.385531i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −90.3781 + 90.3781i −0.326275 + 0.326275i −0.851168 0.524893i \(-0.824105\pi\)
0.524893 + 0.851168i \(0.324105\pi\)
\(278\) 0 0
\(279\) 95.0864i 0.340811i
\(280\) 0 0
\(281\) 124.506 0.443083 0.221542 0.975151i \(-0.428891\pi\)
0.221542 + 0.975151i \(0.428891\pi\)
\(282\) 0 0
\(283\) 91.3284 + 91.3284i 0.322715 + 0.322715i 0.849808 0.527093i \(-0.176718\pi\)
−0.527093 + 0.849808i \(0.676718\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 322.788 322.788i 1.12470 1.12470i
\(288\) 0 0
\(289\) 217.233i 0.751670i
\(290\) 0 0
\(291\) 72.0907 0.247734
\(292\) 0 0
\(293\) 311.623 + 311.623i 1.06356 + 1.06356i 0.997838 + 0.0657234i \(0.0209355\pi\)
0.0657234 + 0.997838i \(0.479065\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 50.5141 50.5141i 0.170081 0.170081i
\(298\) 0 0
\(299\) 180.177i 0.602598i
\(300\) 0 0
\(301\) 431.995 1.43520
\(302\) 0 0
\(303\) 219.066 + 219.066i 0.722991 + 0.722991i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 98.1938 98.1938i 0.319850 0.319850i −0.528860 0.848709i \(-0.677380\pi\)
0.848709 + 0.528860i \(0.177380\pi\)
\(308\) 0 0
\(309\) 100.667i 0.325784i
\(310\) 0 0
\(311\) 429.889 1.38228 0.691141 0.722720i \(-0.257109\pi\)
0.691141 + 0.722720i \(0.257109\pi\)
\(312\) 0 0
\(313\) −65.4997 65.4997i −0.209264 0.209264i 0.594691 0.803955i \(-0.297275\pi\)
−0.803955 + 0.594691i \(0.797275\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −174.272 + 174.272i −0.549755 + 0.549755i −0.926370 0.376615i \(-0.877088\pi\)
0.376615 + 0.926370i \(0.377088\pi\)
\(318\) 0 0
\(319\) 511.738i 1.60419i
\(320\) 0 0
\(321\) −90.1667 −0.280893
\(322\) 0 0
\(323\) −153.211 153.211i −0.474337 0.474337i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −104.704 + 104.704i −0.320196 + 0.320196i
\(328\) 0 0
\(329\) 358.671i 1.09019i
\(330\) 0 0
\(331\) −380.789 −1.15042 −0.575210 0.818006i \(-0.695080\pi\)
−0.575210 + 0.818006i \(0.695080\pi\)
\(332\) 0 0
\(333\) 97.5138 + 97.5138i 0.292834 + 0.292834i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −245.960 + 245.960i −0.729851 + 0.729851i −0.970590 0.240739i \(-0.922610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(338\) 0 0
\(339\) 38.4366i 0.113382i
\(340\) 0 0
\(341\) 435.755 1.27787
\(342\) 0 0
\(343\) −496.244 496.244i −1.44678 1.44678i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 172.320 172.320i 0.496600 0.496600i −0.413778 0.910378i \(-0.635791\pi\)
0.910378 + 0.413778i \(0.135791\pi\)
\(348\) 0 0
\(349\) 221.895i 0.635803i −0.948124 0.317902i \(-0.897022\pi\)
0.948124 0.317902i \(-0.102978\pi\)
\(350\) 0 0
\(351\) 35.9287 0.102361
\(352\) 0 0
\(353\) −53.4623 53.4623i −0.151451 0.151451i 0.627315 0.778766i \(-0.284154\pi\)
−0.778766 + 0.627315i \(0.784154\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 128.951 128.951i 0.361209 0.361209i
\(358\) 0 0
\(359\) 49.7577i 0.138601i 0.997596 + 0.0693004i \(0.0220767\pi\)
−0.997596 + 0.0693004i \(0.977923\pi\)
\(360\) 0 0
\(361\) −293.158 −0.812071
\(362\) 0 0
\(363\) −83.2982 83.2982i −0.229472 0.229472i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 56.5205 56.5205i 0.154007 0.154007i −0.625898 0.779905i \(-0.715267\pi\)
0.779905 + 0.625898i \(0.215267\pi\)
\(368\) 0 0
\(369\) 110.189i 0.298614i
\(370\) 0 0
\(371\) −589.795 −1.58974
\(372\) 0 0
\(373\) 143.430 + 143.430i 0.384531 + 0.384531i 0.872732 0.488200i \(-0.162346\pi\)
−0.488200 + 0.872732i \(0.662346\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 181.989 181.989i 0.482731 0.482731i
\(378\) 0 0
\(379\) 659.728i 1.74071i 0.492427 + 0.870354i \(0.336110\pi\)
−0.492427 + 0.870354i \(0.663890\pi\)
\(380\) 0 0
\(381\) 312.441 0.820056
\(382\) 0 0
\(383\) −402.216 402.216i −1.05017 1.05017i −0.998673 0.0514981i \(-0.983600\pi\)
−0.0514981 0.998673i \(-0.516400\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −73.7340 + 73.7340i −0.190527 + 0.190527i
\(388\) 0 0
\(389\) 206.222i 0.530133i 0.964230 + 0.265067i \(0.0853940\pi\)
−0.964230 + 0.265067i \(0.914606\pi\)
\(390\) 0 0
\(391\) 220.751 0.564580
\(392\) 0 0
\(393\) −151.636 151.636i −0.385843 0.385843i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 72.3916 72.3916i 0.182347 0.182347i −0.610031 0.792378i \(-0.708843\pi\)
0.792378 + 0.610031i \(0.208843\pi\)
\(398\) 0 0
\(399\) 550.579i 1.37990i
\(400\) 0 0
\(401\) −489.191 −1.21993 −0.609964 0.792429i \(-0.708816\pi\)
−0.609964 + 0.792429i \(0.708816\pi\)
\(402\) 0 0
\(403\) 154.968 + 154.968i 0.384535 + 0.384535i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 446.879 446.879i 1.09798 1.09798i
\(408\) 0 0
\(409\) 724.079i 1.77037i 0.465244 + 0.885183i \(0.345967\pi\)
−0.465244 + 0.885183i \(0.654033\pi\)
\(410\) 0 0
\(411\) 424.116 1.03191
\(412\) 0 0
\(413\) 66.3174 + 66.3174i 0.160575 + 0.160575i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.30676 1.30676i 0.00313372 0.00313372i
\(418\) 0 0
\(419\) 20.3800i 0.0486395i 0.999704 + 0.0243198i \(0.00774199\pi\)
−0.999704 + 0.0243198i \(0.992258\pi\)
\(420\) 0 0
\(421\) 471.915 1.12094 0.560469 0.828176i \(-0.310621\pi\)
0.560469 + 0.828176i \(0.310621\pi\)
\(422\) 0 0
\(423\) −61.2189 61.2189i −0.144726 0.144726i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 383.329 383.329i 0.897725 0.897725i
\(428\) 0 0
\(429\) 164.651i 0.383803i
\(430\) 0 0
\(431\) −433.846 −1.00660 −0.503302 0.864110i \(-0.667882\pi\)
−0.503302 + 0.864110i \(0.667882\pi\)
\(432\) 0 0
\(433\) −143.893 143.893i −0.332317 0.332317i 0.521149 0.853466i \(-0.325504\pi\)
−0.853466 + 0.521149i \(0.825504\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 471.265 471.265i 1.07841 1.07841i
\(438\) 0 0
\(439\) 21.7905i 0.0496368i −0.999692 0.0248184i \(-0.992099\pi\)
0.999692 0.0248184i \(-0.00790075\pi\)
\(440\) 0 0
\(441\) 316.400 0.717461
\(442\) 0 0
\(443\) −186.194 186.194i −0.420302 0.420302i 0.465005 0.885308i \(-0.346052\pi\)
−0.885308 + 0.465005i \(0.846052\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −79.9152 + 79.9152i −0.178781 + 0.178781i
\(448\) 0 0
\(449\) 173.546i 0.386517i −0.981148 0.193258i \(-0.938094\pi\)
0.981148 0.193258i \(-0.0619056\pi\)
\(450\) 0 0
\(451\) 504.964 1.11965
\(452\) 0 0
\(453\) −192.509 192.509i −0.424964 0.424964i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 195.883 195.883i 0.428628 0.428628i −0.459533 0.888161i \(-0.651983\pi\)
0.888161 + 0.459533i \(0.151983\pi\)
\(458\) 0 0
\(459\) 44.0195i 0.0959030i
\(460\) 0 0
\(461\) 710.784 1.54183 0.770916 0.636937i \(-0.219799\pi\)
0.770916 + 0.636937i \(0.219799\pi\)
\(462\) 0 0
\(463\) −407.194 407.194i −0.879468 0.879468i 0.114011 0.993479i \(-0.463630\pi\)
−0.993479 + 0.114011i \(0.963630\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 46.4766 46.4766i 0.0995215 0.0995215i −0.655593 0.755114i \(-0.727581\pi\)
0.755114 + 0.655593i \(0.227581\pi\)
\(468\) 0 0
\(469\) 1057.65i 2.25511i
\(470\) 0 0
\(471\) −298.257 −0.633243
\(472\) 0 0
\(473\) 337.903 + 337.903i 0.714382 + 0.714382i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 100.668 100.668i 0.211043 0.211043i
\(478\) 0 0
\(479\) 632.568i 1.32060i −0.751001 0.660301i \(-0.770429\pi\)
0.751001 0.660301i \(-0.229571\pi\)
\(480\) 0 0
\(481\) 317.848 0.660806
\(482\) 0 0
\(483\) 396.645 + 396.645i 0.821212 + 0.821212i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.5000 24.5000i 0.0503080 0.0503080i −0.681505 0.731813i \(-0.738674\pi\)
0.731813 + 0.681505i \(0.238674\pi\)
\(488\) 0 0
\(489\) 480.333i 0.982277i
\(490\) 0 0
\(491\) 888.550 1.80967 0.904837 0.425759i \(-0.139993\pi\)
0.904837 + 0.425759i \(0.139993\pi\)
\(492\) 0 0
\(493\) 222.972 + 222.972i 0.452276 + 0.452276i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −159.623 + 159.623i −0.321173 + 0.321173i
\(498\) 0 0
\(499\) 313.223i 0.627702i 0.949472 + 0.313851i \(0.101619\pi\)
−0.949472 + 0.313851i \(0.898381\pi\)
\(500\) 0 0
\(501\) −64.6880 −0.129118
\(502\) 0 0
\(503\) 22.1824 + 22.1824i 0.0441001 + 0.0441001i 0.728813 0.684713i \(-0.240072\pi\)
−0.684713 + 0.728813i \(0.740072\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −148.427 + 148.427i −0.292755 + 0.292755i
\(508\) 0 0
\(509\) 510.456i 1.00286i 0.865198 + 0.501431i \(0.167193\pi\)
−0.865198 + 0.501431i \(0.832807\pi\)
\(510\) 0 0
\(511\) −1209.65 −2.36721
\(512\) 0 0
\(513\) 93.9741 + 93.9741i 0.183185 + 0.183185i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −280.550 + 280.550i −0.542649 + 0.542649i
\(518\) 0 0
\(519\) 21.2874i 0.0410161i
\(520\) 0 0
\(521\) −765.379 −1.46906 −0.734529 0.678578i \(-0.762597\pi\)
−0.734529 + 0.678578i \(0.762597\pi\)
\(522\) 0 0
\(523\) 57.8350 + 57.8350i 0.110583 + 0.110583i 0.760233 0.649650i \(-0.225085\pi\)
−0.649650 + 0.760233i \(0.725085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −189.865 + 189.865i −0.360275 + 0.360275i
\(528\) 0 0
\(529\) 150.014i 0.283580i
\(530\) 0 0
\(531\) −22.6384 −0.0426336
\(532\) 0 0
\(533\) 179.581 + 179.581i 0.336924 + 0.336924i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.8433 11.8433i 0.0220546 0.0220546i
\(538\) 0 0
\(539\) 1449.98i 2.69012i
\(540\) 0 0
\(541\) −650.947 −1.20323 −0.601615 0.798786i \(-0.705476\pi\)
−0.601615 + 0.798786i \(0.705476\pi\)
\(542\) 0 0
\(543\) −305.020 305.020i −0.561731 0.561731i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −200.024 + 200.024i −0.365674 + 0.365674i −0.865897 0.500223i \(-0.833251\pi\)
0.500223 + 0.865897i \(0.333251\pi\)
\(548\) 0 0
\(549\) 130.855i 0.238351i
\(550\) 0 0
\(551\) 952.014 1.72779
\(552\) 0 0
\(553\) −195.651 195.651i −0.353799 0.353799i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −169.939 + 169.939i −0.305097 + 0.305097i −0.843004 0.537907i \(-0.819215\pi\)
0.537907 + 0.843004i \(0.319215\pi\)
\(558\) 0 0
\(559\) 240.337i 0.429941i
\(560\) 0 0
\(561\) 201.729 0.359589
\(562\) 0 0
\(563\) 288.641 + 288.641i 0.512684 + 0.512684i 0.915348 0.402664i \(-0.131916\pi\)
−0.402664 + 0.915348i \(0.631916\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −79.0943 + 79.0943i −0.139496 + 0.139496i
\(568\) 0 0
\(569\) 119.228i 0.209540i −0.994496 0.104770i \(-0.966589\pi\)
0.994496 0.104770i \(-0.0334107\pi\)
\(570\) 0 0
\(571\) −1070.64 −1.87503 −0.937513 0.347951i \(-0.886878\pi\)
−0.937513 + 0.347951i \(0.886878\pi\)
\(572\) 0 0
\(573\) 198.836 + 198.836i 0.347010 + 0.347010i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −572.086 + 572.086i −0.991484 + 0.991484i −0.999964 0.00848018i \(-0.997301\pi\)
0.00848018 + 0.999964i \(0.497301\pi\)
\(578\) 0 0
\(579\) 19.8756i 0.0343275i
\(580\) 0 0
\(581\) 0.0389863 6.71020e−5
\(582\) 0 0
\(583\) −461.332 461.332i −0.791307 0.791307i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 314.886 314.886i 0.536433 0.536433i −0.386047 0.922479i \(-0.626160\pi\)
0.922479 + 0.386047i \(0.126160\pi\)
\(588\) 0 0
\(589\) 810.659i 1.37633i
\(590\) 0 0
\(591\) 561.072 0.949360
\(592\) 0 0
\(593\) −781.658 781.658i −1.31814 1.31814i −0.915246 0.402896i \(-0.868004\pi\)
−0.402896 0.915246i \(-0.631996\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 363.616 363.616i 0.609073 0.609073i
\(598\) 0 0
\(599\) 423.280i 0.706645i 0.935502 + 0.353322i \(0.114948\pi\)
−0.935502 + 0.353322i \(0.885052\pi\)
\(600\) 0 0
\(601\) −68.1617 −0.113414 −0.0567069 0.998391i \(-0.518060\pi\)
−0.0567069 + 0.998391i \(0.518060\pi\)
\(602\) 0 0
\(603\) 180.522 + 180.522i 0.299373 + 0.299373i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −186.390 + 186.390i −0.307068 + 0.307068i −0.843771 0.536703i \(-0.819669\pi\)
0.536703 + 0.843771i \(0.319669\pi\)
\(608\) 0 0
\(609\) 801.272i 1.31572i
\(610\) 0 0
\(611\) −199.544 −0.326586
\(612\) 0 0
\(613\) −337.566 337.566i −0.550679 0.550679i 0.375958 0.926637i \(-0.377314\pi\)
−0.926637 + 0.375958i \(0.877314\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −858.797 + 858.797i −1.39189 + 1.39189i −0.570808 + 0.821084i \(0.693370\pi\)
−0.821084 + 0.570808i \(0.806630\pi\)
\(618\) 0 0
\(619\) 202.653i 0.327388i 0.986511 + 0.163694i \(0.0523410\pi\)
−0.986511 + 0.163694i \(0.947659\pi\)
\(620\) 0 0
\(621\) −135.401 −0.218037
\(622\) 0 0
\(623\) 678.403 + 678.403i 1.08893 + 1.08893i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 430.658 430.658i 0.686855 0.686855i
\(628\) 0 0
\(629\) 389.424i 0.619116i
\(630\) 0 0
\(631\) −536.853 −0.850797 −0.425398 0.905006i \(-0.639866\pi\)
−0.425398 + 0.905006i \(0.639866\pi\)
\(632\) 0 0
\(633\) 334.874 + 334.874i 0.529027 + 0.529027i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 515.656 515.656i 0.809507 0.809507i
\(638\) 0 0
\(639\) 54.4896i 0.0852733i
\(640\) 0 0
\(641\) 665.993 1.03899 0.519495 0.854473i \(-0.326120\pi\)
0.519495 + 0.854473i \(0.326120\pi\)
\(642\) 0 0
\(643\) 7.83317 + 7.83317i 0.0121822 + 0.0121822i 0.713172 0.700989i \(-0.247258\pi\)
−0.700989 + 0.713172i \(0.747258\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 287.426 287.426i 0.444244 0.444244i −0.449191 0.893436i \(-0.648288\pi\)
0.893436 + 0.449191i \(0.148288\pi\)
\(648\) 0 0
\(649\) 103.746i 0.159855i
\(650\) 0 0
\(651\) −682.300 −1.04808
\(652\) 0 0
\(653\) 587.685 + 587.685i 0.899976 + 0.899976i 0.995434 0.0954571i \(-0.0304313\pi\)
−0.0954571 + 0.995434i \(0.530431\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 206.465 206.465i 0.314255 0.314255i
\(658\) 0 0
\(659\) 754.028i 1.14420i 0.820184 + 0.572101i \(0.193871\pi\)
−0.820184 + 0.572101i \(0.806129\pi\)
\(660\) 0 0
\(661\) −818.290 −1.23796 −0.618978 0.785408i \(-0.712453\pi\)
−0.618978 + 0.785408i \(0.712453\pi\)
\(662\) 0 0
\(663\) 71.7411 + 71.7411i 0.108207 + 0.108207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −685.845 + 685.845i −1.02825 + 1.02825i
\(668\) 0 0
\(669\) 570.264i 0.852412i
\(670\) 0 0
\(671\) 599.672 0.893700
\(672\) 0 0
\(673\) −202.080 202.080i −0.300268 0.300268i 0.540851 0.841119i \(-0.318102\pi\)
−0.841119 + 0.540851i \(0.818102\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.2645 47.2645i 0.0698147 0.0698147i −0.671337 0.741152i \(-0.734280\pi\)
0.741152 + 0.671337i \(0.234280\pi\)
\(678\) 0 0
\(679\) 517.292i 0.761844i
\(680\) 0 0
\(681\) 257.702 0.378417
\(682\) 0 0
\(683\) 126.090 + 126.090i 0.184612 + 0.184612i 0.793362 0.608750i \(-0.208329\pi\)
−0.608750 + 0.793362i \(0.708329\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 189.043 189.043i 0.275172 0.275172i
\(688\) 0 0
\(689\) 328.127i 0.476237i
\(690\) 0 0
\(691\) 485.927 0.703223 0.351612 0.936146i \(-0.385634\pi\)
0.351612 + 0.936146i \(0.385634\pi\)
\(692\) 0 0
\(693\) 362.468 + 362.468i 0.523041 + 0.523041i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −220.021 + 220.021i −0.315668 + 0.315668i
\(698\) 0 0
\(699\) 40.7196i 0.0582541i
\(700\) 0 0
\(701\) −94.5850 −0.134929 −0.0674643 0.997722i \(-0.521491\pi\)
−0.0674643 + 0.997722i \(0.521491\pi\)
\(702\) 0 0
\(703\) 831.354 + 831.354i 1.18258 + 1.18258i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1571.93 + 1571.93i −2.22338 + 2.22338i
\(708\) 0 0
\(709\) 24.3499i 0.0343440i 0.999853 + 0.0171720i \(0.00546629\pi\)
−0.999853 + 0.0171720i \(0.994534\pi\)
\(710\) 0 0
\(711\) 66.7883 0.0939357
\(712\) 0 0
\(713\) −584.011 584.011i −0.819090 0.819090i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −119.159 + 119.159i −0.166191 + 0.166191i
\(718\) 0 0
\(719\) 534.841i 0.743868i 0.928259 + 0.371934i \(0.121305\pi\)
−0.928259 + 0.371934i \(0.878695\pi\)
\(720\) 0 0
\(721\) −722.346 −1.00187
\(722\) 0 0
\(723\) 377.236 + 377.236i 0.521765 + 0.521765i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −435.834 + 435.834i −0.599497 + 0.599497i −0.940179 0.340682i \(-0.889342\pi\)
0.340682 + 0.940179i \(0.389342\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −294.459 −0.402816
\(732\) 0 0
\(733\) −224.087 224.087i −0.305712 0.305712i 0.537531 0.843244i \(-0.319357\pi\)
−0.843244 + 0.537531i \(0.819357\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 827.282 827.282i 1.12250 1.12250i
\(738\) 0 0
\(739\) 730.510i 0.988512i 0.869317 + 0.494256i \(0.164559\pi\)
−0.869317 + 0.494256i \(0.835441\pi\)
\(740\) 0 0
\(741\) 306.310 0.413374
\(742\) 0 0
\(743\) 941.961 + 941.961i 1.26778 + 1.26778i 0.947232 + 0.320549i \(0.103867\pi\)
0.320549 + 0.947232i \(0.396133\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.00665427 + 0.00665427i −8.90800e−6 + 8.90800e-6i
\(748\) 0 0
\(749\) 646.998i 0.863816i
\(750\) 0 0
\(751\) 231.169 0.307814 0.153907 0.988085i \(-0.450814\pi\)
0.153907 + 0.988085i \(0.450814\pi\)
\(752\) 0 0
\(753\) −190.096 190.096i −0.252452 0.252452i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 382.911 382.911i 0.505826 0.505826i −0.407416 0.913243i \(-0.633570\pi\)
0.913243 + 0.407416i \(0.133570\pi\)
\(758\) 0 0
\(759\) 620.505i 0.817530i
\(760\) 0 0
\(761\) −941.999 −1.23784 −0.618922 0.785453i \(-0.712430\pi\)
−0.618922 + 0.785453i \(0.712430\pi\)
\(762\) 0 0
\(763\) −751.312 751.312i −0.984681 0.984681i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36.8952 + 36.8952i −0.0481032 + 0.0481032i
\(768\) 0 0
\(769\) 1388.76i 1.80593i −0.429718 0.902963i \(-0.641387\pi\)
0.429718 0.902963i \(-0.358613\pi\)
\(770\) 0 0
\(771\) 505.912 0.656176
\(772\) 0 0
\(773\) 185.158 + 185.158i 0.239532 + 0.239532i 0.816656 0.577124i \(-0.195825\pi\)
−0.577124 + 0.816656i \(0.695825\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −699.718 + 699.718i −0.900538 + 0.900538i
\(778\) 0 0
\(779\) 939.413i 1.20592i
\(780\) 0 0
\(781\) −249.711 −0.319733
\(782\) 0 0
\(783\) −136.763 136.763i −0.174665 0.174665i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −194.815 + 194.815i −0.247542 + 0.247542i −0.819961 0.572419i \(-0.806005\pi\)
0.572419 + 0.819961i \(0.306005\pi\)
\(788\) 0 0
\(789\) 578.554i 0.733275i
\(790\) 0 0
\(791\) 275.805 0.348679
\(792\) 0 0
\(793\) 213.262 + 213.262i 0.268930 + 0.268930i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −694.112 + 694.112i −0.870906 + 0.870906i −0.992571 0.121665i \(-0.961177\pi\)
0.121665 + 0.992571i \(0.461177\pi\)
\(798\) 0 0
\(799\) 244.479i 0.305982i
\(800\) 0 0
\(801\) −231.583 −0.289117
\(802\) 0 0
\(803\) −946.175 946.175i −1.17830 1.17830i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −461.588 + 461.588i −0.571980 + 0.571980i
\(808\) 0 0
\(809\) 1492.22i 1.84453i −0.386563 0.922263i \(-0.626338\pi\)
0.386563 0.922263i \(-0.373662\pi\)
\(810\) 0 0
\(811\) −80.5721 −0.0993490 −0.0496745 0.998765i \(-0.515818\pi\)
−0.0496745 + 0.998765i \(0.515818\pi\)
\(812\) 0 0
\(813\) −240.656 240.656i −0.296010 0.296010i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −628.619 + 628.619i −0.769423 + 0.769423i
\(818\) 0 0
\(819\) 257.809i 0.314785i
\(820\) 0 0
\(821\) −221.422 −0.269698 −0.134849 0.990866i \(-0.543055\pi\)
−0.134849 + 0.990866i \(0.543055\pi\)
\(822\) 0 0
\(823\) 815.236 + 815.236i 0.990566 + 0.990566i 0.999956 0.00938979i \(-0.00298891\pi\)
−0.00938979 + 0.999956i \(0.502989\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.5640 29.5640i 0.0357485 0.0357485i −0.689007 0.724755i \(-0.741953\pi\)
0.724755 + 0.689007i \(0.241953\pi\)
\(828\) 0 0
\(829\) 558.092i 0.673211i 0.941646 + 0.336606i \(0.109279\pi\)
−0.941646 + 0.336606i \(0.890721\pi\)
\(830\) 0 0
\(831\) 221.380 0.266402
\(832\) 0 0
\(833\) 631.777 + 631.777i 0.758436 + 0.758436i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 116.457 116.457i 0.139136 0.139136i
\(838\) 0 0
\(839\) 623.755i 0.743451i 0.928343 + 0.371725i \(0.121234\pi\)
−0.928343 + 0.371725i \(0.878766\pi\)
\(840\) 0 0
\(841\) −544.492 −0.647434
\(842\) 0 0
\(843\) −152.489 152.489i −0.180888 0.180888i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 597.713 597.713i 0.705682 0.705682i
\(848\) 0 0
\(849\) 223.708i 0.263496i
\(850\) 0 0
\(851\) −1197.84 −1.40757
\(852\) 0 0
\(853\) 454.178 + 454.178i 0.532448 + 0.532448i 0.921300 0.388852i \(-0.127128\pi\)
−0.388852 + 0.921300i \(0.627128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 769.104 769.104i 0.897438 0.897438i −0.0977709 0.995209i \(-0.531171\pi\)
0.995209 + 0.0977709i \(0.0311712\pi\)
\(858\) 0 0
\(859\) 536.071i 0.624064i −0.950072 0.312032i \(-0.898990\pi\)
0.950072 0.312032i \(-0.101010\pi\)
\(860\) 0 0
\(861\) −790.666 −0.918312
\(862\) 0 0
\(863\) −500.177 500.177i −0.579579 0.579579i 0.355208 0.934787i \(-0.384410\pi\)
−0.934787 + 0.355208i \(0.884410\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 266.055 266.055i 0.306868 0.306868i
\(868\) 0 0
\(869\) 306.073i 0.352212i
\(870\) 0 0
\(871\) 588.413 0.675561
\(872\) 0 0
\(873\) −88.2927 88.2927i −0.101137 0.101137i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 102.540 102.540i 0.116922 0.116922i −0.646225 0.763147i \(-0.723653\pi\)
0.763147 + 0.646225i \(0.223653\pi\)
\(878\) 0 0
\(879\) 763.318i 0.868394i
\(880\) 0 0
\(881\) 649.515 0.737247 0.368624 0.929579i \(-0.379829\pi\)
0.368624 + 0.929579i \(0.379829\pi\)
\(882\) 0 0
\(883\) 341.476 + 341.476i 0.386723 + 0.386723i 0.873517 0.486794i \(-0.161834\pi\)
−0.486794 + 0.873517i \(0.661834\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −516.110 + 516.110i −0.581860 + 0.581860i −0.935414 0.353554i \(-0.884973\pi\)
0.353554 + 0.935414i \(0.384973\pi\)
\(888\) 0 0
\(889\) 2241.95i 2.52188i
\(890\) 0 0
\(891\) −123.734 −0.138871
\(892\) 0 0
\(893\) −521.922 521.922i −0.584459 0.584459i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −220.670 + 220.670i −0.246009 + 0.246009i
\(898\) 0 0
\(899\) 1179.77i 1.31232i
\(900\) 0 0
\(901\) 402.019 0.446192
\(902\) 0 0
\(903\) −529.084 529.084i −0.585918 0.585918i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 62.4116 62.4116i 0.0688111 0.0688111i −0.671864 0.740675i \(-0.734506\pi\)
0.740675 + 0.671864i \(0.234506\pi\)
\(908\) 0 0
\(909\) 536.600i 0.590319i
\(910\) 0 0
\(911\) −1140.91 −1.25237 −0.626183 0.779676i \(-0.715384\pi\)
−0.626183 + 0.779676i \(0.715384\pi\)
\(912\) 0 0
\(913\) 0.0304947 + 0.0304947i 3.34006e−5 + 3.34006e-5i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1088.08 1088.08i 1.18656 1.18656i
\(918\) 0 0
\(919\) 1200.77i 1.30661i −0.757097 0.653303i \(-0.773383\pi\)
0.757097 0.653303i \(-0.226617\pi\)
\(920\) 0 0
\(921\) −240.525 −0.261156
\(922\) 0 0
\(923\) −88.8049 88.8049i −0.0962133 0.0962133i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 123.292 123.292i 0.133001 0.133001i
\(928\) 0 0
\(929\) 87.8294i 0.0945419i −0.998882 0.0472709i \(-0.984948\pi\)
0.998882 0.0472709i \(-0.0150524\pi\)
\(930\) 0 0
\(931\) 2697.47 2.89739
\(932\) 0 0
\(933\) −526.505 526.505i −0.564314 0.564314i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 215.447 215.447i 0.229933 0.229933i −0.582732 0.812665i \(-0.698016\pi\)
0.812665 + 0.582732i \(0.198016\pi\)
\(938\) 0 0
\(939\) 160.441i 0.170863i
\(940\) 0 0
\(941\) 805.908 0.856438 0.428219 0.903675i \(-0.359141\pi\)
0.428219 + 0.903675i \(0.359141\pi\)
\(942\) 0 0
\(943\) −676.767 676.767i −0.717675 0.717675i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 739.218 739.218i 0.780589 0.780589i −0.199341 0.979930i \(-0.563880\pi\)
0.979930 + 0.199341i \(0.0638801\pi\)
\(948\) 0 0
\(949\) 672.977i 0.709144i
\(950\) 0 0
\(951\) 426.879 0.448873
\(952\) 0 0
\(953\) 790.131 + 790.131i 0.829098 + 0.829098i 0.987392 0.158294i \(-0.0505993\pi\)
−0.158294 + 0.987392i \(0.550599\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −626.748 + 626.748i −0.654909 + 0.654909i
\(958\) 0 0
\(959\) 3043.28i 3.17339i
\(960\) 0 0
\(961\) 43.6021 0.0453716
\(962\) 0 0
\(963\) 110.431 + 110.431i 0.114674 + 0.114674i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 213.927 213.927i 0.221227 0.221227i −0.587788 0.809015i \(-0.700001\pi\)
0.809015 + 0.587788i \(0.200001\pi\)
\(968\) 0 0
\(969\) 375.288i 0.387294i
\(970\) 0 0
\(971\) −1356.34 −1.39685 −0.698423 0.715686i \(-0.746114\pi\)
−0.698423 + 0.715686i \(0.746114\pi\)
\(972\) 0 0
\(973\) 9.37676 + 9.37676i 0.00963695 + 0.00963695i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1047.93 1047.93i 1.07260 1.07260i 0.0754457 0.997150i \(-0.475962\pi\)
0.997150 0.0754457i \(-0.0240380\pi\)
\(978\) 0 0
\(979\) 1061.28i 1.08405i
\(980\) 0 0
\(981\) 256.471 0.261439
\(982\) 0 0
\(983\) 741.601 + 741.601i 0.754426 + 0.754426i 0.975302 0.220876i \(-0.0708915\pi\)
−0.220876 + 0.975302i \(0.570891\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 439.281 439.281i 0.445067 0.445067i
\(988\) 0 0
\(989\) 905.734i 0.915808i
\(990\) 0 0
\(991\) 304.849 0.307618 0.153809 0.988101i \(-0.450846\pi\)
0.153809 + 0.988101i \(0.450846\pi\)
\(992\) 0 0
\(993\) 466.369 + 466.369i 0.469657 + 0.469657i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 542.650 542.650i 0.544283 0.544283i −0.380499 0.924782i \(-0.624248\pi\)
0.924782 + 0.380499i \(0.124248\pi\)
\(998\) 0 0
\(999\) 238.859i 0.239098i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.u.h.193.2 8
3.2 odd 2 1800.3.v.t.793.4 8
4.3 odd 2 1200.3.bg.q.193.3 8
5.2 odd 4 inner 600.3.u.h.457.2 8
5.3 odd 4 120.3.u.b.97.3 yes 8
5.4 even 2 120.3.u.b.73.3 8
15.2 even 4 1800.3.v.t.1657.4 8
15.8 even 4 360.3.v.f.217.3 8
15.14 odd 2 360.3.v.f.73.3 8
20.3 even 4 240.3.bg.e.97.1 8
20.7 even 4 1200.3.bg.q.1057.3 8
20.19 odd 2 240.3.bg.e.193.1 8
40.3 even 4 960.3.bg.k.577.4 8
40.13 odd 4 960.3.bg.l.577.2 8
40.19 odd 2 960.3.bg.k.193.4 8
40.29 even 2 960.3.bg.l.193.2 8
60.23 odd 4 720.3.bh.o.577.3 8
60.59 even 2 720.3.bh.o.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.u.b.73.3 8 5.4 even 2
120.3.u.b.97.3 yes 8 5.3 odd 4
240.3.bg.e.97.1 8 20.3 even 4
240.3.bg.e.193.1 8 20.19 odd 2
360.3.v.f.73.3 8 15.14 odd 2
360.3.v.f.217.3 8 15.8 even 4
600.3.u.h.193.2 8 1.1 even 1 trivial
600.3.u.h.457.2 8 5.2 odd 4 inner
720.3.bh.o.433.3 8 60.59 even 2
720.3.bh.o.577.3 8 60.23 odd 4
960.3.bg.k.193.4 8 40.19 odd 2
960.3.bg.k.577.4 8 40.3 even 4
960.3.bg.l.193.2 8 40.29 even 2
960.3.bg.l.577.2 8 40.13 odd 4
1200.3.bg.q.193.3 8 4.3 odd 2
1200.3.bg.q.1057.3 8 20.7 even 4
1800.3.v.t.793.4 8 3.2 odd 2
1800.3.v.t.1657.4 8 15.2 even 4