Properties

Label 360.3.v.f.73.3
Level $360$
Weight $3$
Character 360.73
Analytic conductor $9.809$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,3,Mod(73,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.73"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 8x^{6} + 269x^{4} - 1116x^{3} + 2312x^{2} + 680x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 5 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.3
Root \(2.36263 - 2.36263i\) of defining polynomial
Character \(\chi\) \(=\) 360.73
Dual form 360.3.v.f.217.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.36263 - 3.70037i) q^{5} +(-8.78825 + 8.78825i) q^{7} -13.7482 q^{11} +(-4.88927 - 4.88927i) q^{13} +(-5.99029 + 5.99029i) q^{17} +25.5765i q^{19} +(-18.4257 - 18.4257i) q^{23} +(-2.38547 - 24.8859i) q^{25} +37.2222i q^{29} +31.6955 q^{31} +(2.96816 + 62.0714i) q^{35} +(-32.5046 + 32.5046i) q^{37} -36.7295 q^{41} +(-24.5780 - 24.5780i) q^{43} +(-20.4063 + 20.4063i) q^{47} -105.467i q^{49} +(-33.5559 - 33.5559i) q^{53} +(-46.2300 + 50.8734i) q^{55} -7.54615i q^{59} +43.6183 q^{61} +(-34.5329 + 1.65131i) q^{65} +(-60.1739 + 60.1739i) q^{67} +18.1632 q^{71} +(68.8218 + 68.8218i) q^{73} +(120.823 - 120.823i) q^{77} -22.2628i q^{79} +(0.00221809 + 0.00221809i) q^{83} +(2.02317 + 42.3094i) q^{85} -77.1943i q^{89} +85.9363 q^{91} +(94.6425 + 86.0043i) q^{95} +(29.4309 - 29.4309i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{5} + 4 q^{7} - 32 q^{11} - 4 q^{13} - 52 q^{17} + 40 q^{23} - 84 q^{25} + 96 q^{31} - 24 q^{35} - 60 q^{37} + 152 q^{41} - 88 q^{43} + 16 q^{47} - 108 q^{53} + 116 q^{55} + 264 q^{61} - 164 q^{65}+ \cdots - 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.36263 3.70037i 0.672526 0.740074i
\(6\) 0 0
\(7\) −8.78825 + 8.78825i −1.25546 + 1.25546i −0.302229 + 0.953235i \(0.597731\pi\)
−0.953235 + 0.302229i \(0.902269\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.7482 −1.24984 −0.624918 0.780691i \(-0.714867\pi\)
−0.624918 + 0.780691i \(0.714867\pi\)
\(12\) 0 0
\(13\) −4.88927 4.88927i −0.376098 0.376098i 0.493594 0.869692i \(-0.335683\pi\)
−0.869692 + 0.493594i \(0.835683\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.99029 + 5.99029i −0.352370 + 0.352370i −0.860991 0.508621i \(-0.830156\pi\)
0.508621 + 0.860991i \(0.330156\pi\)
\(18\) 0 0
\(19\) 25.5765i 1.34613i 0.739583 + 0.673066i \(0.235023\pi\)
−0.739583 + 0.673066i \(0.764977\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −18.4257 18.4257i −0.801118 0.801118i 0.182152 0.983270i \(-0.441694\pi\)
−0.983270 + 0.182152i \(0.941694\pi\)
\(24\) 0 0
\(25\) −2.38547 24.8859i −0.0954189 0.995437i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 37.2222i 1.28352i 0.766904 + 0.641762i \(0.221796\pi\)
−0.766904 + 0.641762i \(0.778204\pi\)
\(30\) 0 0
\(31\) 31.6955 1.02243 0.511217 0.859452i \(-0.329195\pi\)
0.511217 + 0.859452i \(0.329195\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.96816 + 62.0714i 0.0848047 + 1.77347i
\(36\) 0 0
\(37\) −32.5046 + 32.5046i −0.878503 + 0.878503i −0.993380 0.114877i \(-0.963353\pi\)
0.114877 + 0.993380i \(0.463353\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −36.7295 −0.895842 −0.447921 0.894073i \(-0.647835\pi\)
−0.447921 + 0.894073i \(0.647835\pi\)
\(42\) 0 0
\(43\) −24.5780 24.5780i −0.571581 0.571581i 0.360989 0.932570i \(-0.382439\pi\)
−0.932570 + 0.360989i \(0.882439\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −20.4063 + 20.4063i −0.434177 + 0.434177i −0.890046 0.455870i \(-0.849328\pi\)
0.455870 + 0.890046i \(0.349328\pi\)
\(48\) 0 0
\(49\) 105.467i 2.15238i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −33.5559 33.5559i −0.633129 0.633129i 0.315722 0.948852i \(-0.397753\pi\)
−0.948852 + 0.315722i \(0.897753\pi\)
\(54\) 0 0
\(55\) −46.2300 + 50.8734i −0.840546 + 0.924971i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.54615i 0.127901i −0.997953 0.0639504i \(-0.979630\pi\)
0.997953 0.0639504i \(-0.0203699\pi\)
\(60\) 0 0
\(61\) 43.6183 0.715054 0.357527 0.933903i \(-0.383620\pi\)
0.357527 + 0.933903i \(0.383620\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −34.5329 + 1.65131i −0.531276 + 0.0254048i
\(66\) 0 0
\(67\) −60.1739 + 60.1739i −0.898118 + 0.898118i −0.995270 0.0971517i \(-0.969027\pi\)
0.0971517 + 0.995270i \(0.469027\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 18.1632 0.255820 0.127910 0.991786i \(-0.459173\pi\)
0.127910 + 0.991786i \(0.459173\pi\)
\(72\) 0 0
\(73\) 68.8218 + 68.8218i 0.942764 + 0.942764i 0.998448 0.0556839i \(-0.0177339\pi\)
−0.0556839 + 0.998448i \(0.517734\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 120.823 120.823i 1.56912 1.56912i
\(78\) 0 0
\(79\) 22.2628i 0.281807i −0.990023 0.140904i \(-0.954999\pi\)
0.990023 0.140904i \(-0.0450007\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.00221809 + 0.00221809i 2.67240e−5 + 2.67240e-5i 0.707120 0.707093i \(-0.249994\pi\)
−0.707093 + 0.707120i \(0.749994\pi\)
\(84\) 0 0
\(85\) 2.02317 + 42.3094i 0.0238021 + 0.497758i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 77.1943i 0.867352i −0.901069 0.433676i \(-0.857216\pi\)
0.901069 0.433676i \(-0.142784\pi\)
\(90\) 0 0
\(91\) 85.9363 0.944355
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 94.6425 + 86.0043i 0.996237 + 0.905308i
\(96\) 0 0
\(97\) 29.4309 29.4309i 0.303411 0.303411i −0.538936 0.842347i \(-0.681173\pi\)
0.842347 + 0.538936i \(0.181173\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 178.867 1.77096 0.885479 0.464679i \(-0.153830\pi\)
0.885479 + 0.464679i \(0.153830\pi\)
\(102\) 0 0
\(103\) 41.0972 + 41.0972i 0.399002 + 0.399002i 0.877881 0.478879i \(-0.158957\pi\)
−0.478879 + 0.877881i \(0.658957\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 36.8104 36.8104i 0.344022 0.344022i −0.513855 0.857877i \(-0.671783\pi\)
0.857877 + 0.513855i \(0.171783\pi\)
\(108\) 0 0
\(109\) 85.4905i 0.784316i −0.919898 0.392158i \(-0.871729\pi\)
0.919898 0.392158i \(-0.128271\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.6917 + 15.6917i 0.138864 + 0.138864i 0.773122 0.634258i \(-0.218694\pi\)
−0.634258 + 0.773122i \(0.718694\pi\)
\(114\) 0 0
\(115\) −130.141 + 6.22314i −1.13166 + 0.0541143i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 105.288i 0.884777i
\(120\) 0 0
\(121\) 68.0127 0.562088
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −100.109 74.8550i −0.800869 0.598840i
\(126\) 0 0
\(127\) 127.554 127.554i 1.00436 1.00436i 0.00436887 0.999990i \(-0.498609\pi\)
0.999990 0.00436887i \(-0.00139066\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −123.810 −0.945117 −0.472559 0.881299i \(-0.656670\pi\)
−0.472559 + 0.881299i \(0.656670\pi\)
\(132\) 0 0
\(133\) −224.773 224.773i −1.69002 1.69002i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −173.145 + 173.145i −1.26383 + 1.26383i −0.314609 + 0.949221i \(0.601873\pi\)
−0.949221 + 0.314609i \(0.898127\pi\)
\(138\) 0 0
\(139\) 1.06696i 0.00767601i 0.999993 + 0.00383800i \(0.00122168\pi\)
−0.999993 + 0.00383800i \(0.998778\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 67.2186 + 67.2186i 0.470060 + 0.470060i
\(144\) 0 0
\(145\) 137.736 + 125.164i 0.949903 + 0.863203i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 65.2505i 0.437923i 0.975734 + 0.218961i \(0.0702669\pi\)
−0.975734 + 0.218961i \(0.929733\pi\)
\(150\) 0 0
\(151\) 157.183 1.04095 0.520473 0.853878i \(-0.325756\pi\)
0.520473 + 0.853878i \(0.325756\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 106.580 117.285i 0.687613 0.756677i
\(156\) 0 0
\(157\) −121.763 + 121.763i −0.775561 + 0.775561i −0.979073 0.203512i \(-0.934765\pi\)
0.203512 + 0.979073i \(0.434765\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 323.860 2.01155
\(162\) 0 0
\(163\) −196.095 196.095i −1.20304 1.20304i −0.973238 0.229801i \(-0.926193\pi\)
−0.229801 0.973238i \(-0.573807\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 26.4088 26.4088i 0.158136 0.158136i −0.623604 0.781740i \(-0.714332\pi\)
0.781740 + 0.623604i \(0.214332\pi\)
\(168\) 0 0
\(169\) 121.190i 0.717101i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.69052 + 8.69052i 0.0502342 + 0.0502342i 0.731778 0.681543i \(-0.238691\pi\)
−0.681543 + 0.731778i \(0.738691\pi\)
\(174\) 0 0
\(175\) 239.668 + 197.740i 1.36953 + 1.12994i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.67002i 0.0540225i −0.999635 0.0270112i \(-0.991401\pi\)
0.999635 0.0270112i \(-0.00859899\pi\)
\(180\) 0 0
\(181\) 249.048 1.37595 0.687977 0.725733i \(-0.258499\pi\)
0.687977 + 0.725733i \(0.258499\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.9782 + 229.580i 0.0593415 + 1.24097i
\(186\) 0 0
\(187\) 82.3557 82.3557i 0.440405 0.440405i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 162.349 0.849996 0.424998 0.905194i \(-0.360275\pi\)
0.424998 + 0.905194i \(0.360275\pi\)
\(192\) 0 0
\(193\) −8.11418 8.11418i −0.0420424 0.0420424i 0.685773 0.727815i \(-0.259464\pi\)
−0.727815 + 0.685773i \(0.759464\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −229.057 + 229.057i −1.16272 + 1.16272i −0.178847 + 0.983877i \(0.557237\pi\)
−0.983877 + 0.178847i \(0.942763\pi\)
\(198\) 0 0
\(199\) 296.892i 1.49192i 0.665992 + 0.745959i \(0.268008\pi\)
−0.665992 + 0.745959i \(0.731992\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −327.118 327.118i −1.61142 1.61142i
\(204\) 0 0
\(205\) −123.508 + 135.913i −0.602476 + 0.662989i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 351.631i 1.68244i
\(210\) 0 0
\(211\) −273.424 −1.29585 −0.647923 0.761706i \(-0.724362\pi\)
−0.647923 + 0.761706i \(0.724362\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −173.594 + 8.30102i −0.807415 + 0.0386094i
\(216\) 0 0
\(217\) −278.548 + 278.548i −1.28363 + 1.28363i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 58.5764 0.265051
\(222\) 0 0
\(223\) −232.809 232.809i −1.04399 1.04399i −0.998987 0.0450002i \(-0.985671\pi\)
−0.0450002 0.998987i \(-0.514329\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −105.206 + 105.206i −0.463465 + 0.463465i −0.899789 0.436325i \(-0.856280\pi\)
0.436325 + 0.899789i \(0.356280\pi\)
\(228\) 0 0
\(229\) 154.353i 0.674032i 0.941499 + 0.337016i \(0.109418\pi\)
−0.941499 + 0.337016i \(0.890582\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.6237 16.6237i −0.0713464 0.0713464i 0.670533 0.741880i \(-0.266065\pi\)
−0.741880 + 0.670533i \(0.766065\pi\)
\(234\) 0 0
\(235\) 6.89207 + 144.130i 0.0293280 + 0.613318i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 97.2929i 0.407083i 0.979066 + 0.203542i \(0.0652452\pi\)
−0.979066 + 0.203542i \(0.934755\pi\)
\(240\) 0 0
\(241\) −308.012 −1.27806 −0.639029 0.769183i \(-0.720663\pi\)
−0.639029 + 0.769183i \(0.720663\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −390.266 354.645i −1.59292 1.44753i
\(246\) 0 0
\(247\) 125.051 125.051i 0.506277 0.506277i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −155.213 −0.618379 −0.309190 0.951000i \(-0.600058\pi\)
−0.309190 + 0.951000i \(0.600058\pi\)
\(252\) 0 0
\(253\) 253.320 + 253.320i 1.00127 + 1.00127i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −206.538 + 206.538i −0.803648 + 0.803648i −0.983664 0.180015i \(-0.942385\pi\)
0.180015 + 0.983664i \(0.442385\pi\)
\(258\) 0 0
\(259\) 571.317i 2.20586i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 236.194 + 236.194i 0.898075 + 0.898075i 0.995266 0.0971908i \(-0.0309857\pi\)
−0.0971908 + 0.995266i \(0.530986\pi\)
\(264\) 0 0
\(265\) −237.005 + 11.3332i −0.894358 + 0.0427669i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 376.885i 1.40106i 0.713623 + 0.700530i \(0.247053\pi\)
−0.713623 + 0.700530i \(0.752947\pi\)
\(270\) 0 0
\(271\) 196.495 0.725074 0.362537 0.931969i \(-0.381911\pi\)
0.362537 + 0.931969i \(0.381911\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 32.7959 + 342.136i 0.119258 + 1.24413i
\(276\) 0 0
\(277\) 90.3781 90.3781i 0.326275 0.326275i −0.524893 0.851168i \(-0.675895\pi\)
0.851168 + 0.524893i \(0.175895\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −124.506 −0.443083 −0.221542 0.975151i \(-0.571109\pi\)
−0.221542 + 0.975151i \(0.571109\pi\)
\(282\) 0 0
\(283\) −91.3284 91.3284i −0.322715 0.322715i 0.527093 0.849808i \(-0.323282\pi\)
−0.849808 + 0.527093i \(0.823282\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 322.788 322.788i 1.12470 1.12470i
\(288\) 0 0
\(289\) 217.233i 0.751670i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 311.623 + 311.623i 1.06356 + 1.06356i 0.997838 + 0.0657234i \(0.0209355\pi\)
0.0657234 + 0.997838i \(0.479065\pi\)
\(294\) 0 0
\(295\) −27.9235 25.3749i −0.0946560 0.0860166i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 180.177i 0.602598i
\(300\) 0 0
\(301\) 431.995 1.43520
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 146.672 161.404i 0.480892 0.529193i
\(306\) 0 0
\(307\) −98.1938 + 98.1938i −0.319850 + 0.319850i −0.848709 0.528860i \(-0.822620\pi\)
0.528860 + 0.848709i \(0.322620\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −429.889 −1.38228 −0.691141 0.722720i \(-0.742891\pi\)
−0.691141 + 0.722720i \(0.742891\pi\)
\(312\) 0 0
\(313\) 65.4997 + 65.4997i 0.209264 + 0.209264i 0.803955 0.594691i \(-0.202725\pi\)
−0.594691 + 0.803955i \(0.702725\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −174.272 + 174.272i −0.549755 + 0.549755i −0.926370 0.376615i \(-0.877088\pi\)
0.376615 + 0.926370i \(0.377088\pi\)
\(318\) 0 0
\(319\) 511.738i 1.60419i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −153.211 153.211i −0.474337 0.474337i
\(324\) 0 0
\(325\) −110.011 + 133.337i −0.338495 + 0.410269i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 358.671i 1.09019i
\(330\) 0 0
\(331\) −380.789 −1.15042 −0.575210 0.818006i \(-0.695080\pi\)
−0.575210 + 0.818006i \(0.695080\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.3233 + 425.008i 0.0606665 + 1.26868i
\(336\) 0 0
\(337\) 245.960 245.960i 0.729851 0.729851i −0.240739 0.970590i \(-0.577390\pi\)
0.970590 + 0.240739i \(0.0773897\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −435.755 −1.27787
\(342\) 0 0
\(343\) 496.244 + 496.244i 1.44678 + 1.44678i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 172.320 172.320i 0.496600 0.496600i −0.413778 0.910378i \(-0.635791\pi\)
0.910378 + 0.413778i \(0.135791\pi\)
\(348\) 0 0
\(349\) 221.895i 0.635803i −0.948124 0.317902i \(-0.897022\pi\)
0.948124 0.317902i \(-0.102978\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −53.4623 53.4623i −0.151451 0.151451i 0.627315 0.778766i \(-0.284154\pi\)
−0.778766 + 0.627315i \(0.784154\pi\)
\(354\) 0 0
\(355\) 61.0761 67.2106i 0.172045 0.189326i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 49.7577i 0.138601i −0.997596 0.0693004i \(-0.977923\pi\)
0.997596 0.0693004i \(-0.0220767\pi\)
\(360\) 0 0
\(361\) −293.158 −0.812071
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 486.088 23.2440i 1.33175 0.0636823i
\(366\) 0 0
\(367\) −56.5205 + 56.5205i −0.154007 + 0.154007i −0.779905 0.625898i \(-0.784733\pi\)
0.625898 + 0.779905i \(0.284733\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 589.795 1.58974
\(372\) 0 0
\(373\) −143.430 143.430i −0.384531 0.384531i 0.488200 0.872732i \(-0.337654\pi\)
−0.872732 + 0.488200i \(0.837654\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 181.989 181.989i 0.482731 0.482731i
\(378\) 0 0
\(379\) 659.728i 1.74071i 0.492427 + 0.870354i \(0.336110\pi\)
−0.492427 + 0.870354i \(0.663890\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −402.216 402.216i −1.05017 1.05017i −0.998673 0.0514981i \(-0.983600\pi\)
−0.0514981 0.998673i \(-0.516400\pi\)
\(384\) 0 0
\(385\) −40.8069 853.369i −0.105992 2.21654i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 206.222i 0.530133i −0.964230 0.265067i \(-0.914606\pi\)
0.964230 0.265067i \(-0.0853940\pi\)
\(390\) 0 0
\(391\) 220.751 0.564580
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −82.3804 74.8614i −0.208558 0.189522i
\(396\) 0 0
\(397\) −72.3916 + 72.3916i −0.182347 + 0.182347i −0.792378 0.610031i \(-0.791157\pi\)
0.610031 + 0.792378i \(0.291157\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 489.191 1.21993 0.609964 0.792429i \(-0.291184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(402\) 0 0
\(403\) −154.968 154.968i −0.384535 0.384535i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 446.879 446.879i 1.09798 1.09798i
\(408\) 0 0
\(409\) 724.079i 1.77037i 0.465244 + 0.885183i \(0.345967\pi\)
−0.465244 + 0.885183i \(0.654033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 66.3174 + 66.3174i 0.160575 + 0.160575i
\(414\) 0 0
\(415\) 0.0156664 0.000749143i 3.77503e−5 1.80516e-6i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.3800i 0.0486395i −0.999704 0.0243198i \(-0.992258\pi\)
0.999704 0.0243198i \(-0.00774199\pi\)
\(420\) 0 0
\(421\) 471.915 1.12094 0.560469 0.828176i \(-0.310621\pi\)
0.560469 + 0.828176i \(0.310621\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 163.364 + 134.784i 0.384385 + 0.317140i
\(426\) 0 0
\(427\) −383.329 + 383.329i −0.897725 + 0.897725i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 433.846 1.00660 0.503302 0.864110i \(-0.332118\pi\)
0.503302 + 0.864110i \(0.332118\pi\)
\(432\) 0 0
\(433\) 143.893 + 143.893i 0.332317 + 0.332317i 0.853466 0.521149i \(-0.174496\pi\)
−0.521149 + 0.853466i \(0.674496\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 471.265 471.265i 1.07841 1.07841i
\(438\) 0 0
\(439\) 21.7905i 0.0496368i −0.999692 0.0248184i \(-0.992099\pi\)
0.999692 0.0248184i \(-0.00790075\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −186.194 186.194i −0.420302 0.420302i 0.465005 0.885308i \(-0.346052\pi\)
−0.885308 + 0.465005i \(0.846052\pi\)
\(444\) 0 0
\(445\) −285.647 259.576i −0.641904 0.583316i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 173.546i 0.386517i 0.981148 + 0.193258i \(0.0619056\pi\)
−0.981148 + 0.193258i \(0.938094\pi\)
\(450\) 0 0
\(451\) 504.964 1.11965
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 288.972 317.996i 0.635103 0.698893i
\(456\) 0 0
\(457\) −195.883 + 195.883i −0.428628 + 0.428628i −0.888161 0.459533i \(-0.848017\pi\)
0.459533 + 0.888161i \(0.348017\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −710.784 −1.54183 −0.770916 0.636937i \(-0.780201\pi\)
−0.770916 + 0.636937i \(0.780201\pi\)
\(462\) 0 0
\(463\) 407.194 + 407.194i 0.879468 + 0.879468i 0.993479 0.114011i \(-0.0363700\pi\)
−0.114011 + 0.993479i \(0.536370\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 46.4766 46.4766i 0.0995215 0.0995215i −0.655593 0.755114i \(-0.727581\pi\)
0.755114 + 0.655593i \(0.227581\pi\)
\(468\) 0 0
\(469\) 1057.65i 2.25511i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 337.903 + 337.903i 0.714382 + 0.714382i
\(474\) 0 0
\(475\) 636.495 61.0120i 1.33999 0.128446i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 632.568i 1.32060i 0.751001 + 0.660301i \(0.229571\pi\)
−0.751001 + 0.660301i \(0.770429\pi\)
\(480\) 0 0
\(481\) 317.848 0.660806
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.94005 207.870i −0.0204950 0.428599i
\(486\) 0 0
\(487\) −24.5000 + 24.5000i −0.0503080 + 0.0503080i −0.731813 0.681505i \(-0.761326\pi\)
0.681505 + 0.731813i \(0.261326\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −888.550 −1.80967 −0.904837 0.425759i \(-0.860007\pi\)
−0.904837 + 0.425759i \(0.860007\pi\)
\(492\) 0 0
\(493\) −222.972 222.972i −0.452276 0.452276i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −159.623 + 159.623i −0.321173 + 0.321173i
\(498\) 0 0
\(499\) 313.223i 0.627702i 0.949472 + 0.313851i \(0.101619\pi\)
−0.949472 + 0.313851i \(0.898381\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.1824 + 22.1824i 0.0441001 + 0.0441001i 0.728813 0.684713i \(-0.240072\pi\)
−0.684713 + 0.728813i \(0.740072\pi\)
\(504\) 0 0
\(505\) 601.462 661.873i 1.19101 1.31064i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 510.456i 1.00286i −0.865198 0.501431i \(-0.832807\pi\)
0.865198 0.501431i \(-0.167193\pi\)
\(510\) 0 0
\(511\) −1209.65 −2.36721
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 290.270 13.8803i 0.563630 0.0269520i
\(516\) 0 0
\(517\) 280.550 280.550i 0.542649 0.542649i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 765.379 1.46906 0.734529 0.678578i \(-0.237403\pi\)
0.734529 + 0.678578i \(0.237403\pi\)
\(522\) 0 0
\(523\) −57.8350 57.8350i −0.110583 0.110583i 0.649650 0.760233i \(-0.274915\pi\)
−0.760233 + 0.649650i \(0.774915\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −189.865 + 189.865i −0.360275 + 0.360275i
\(528\) 0 0
\(529\) 150.014i 0.283580i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 179.581 + 179.581i 0.336924 + 0.336924i
\(534\) 0 0
\(535\) −12.4324 259.992i −0.0232382 0.485966i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1449.98i 2.69012i
\(540\) 0 0
\(541\) −650.947 −1.20323 −0.601615 0.798786i \(-0.705476\pi\)
−0.601615 + 0.798786i \(0.705476\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −316.346 287.473i −0.580452 0.527473i
\(546\) 0 0
\(547\) 200.024 200.024i 0.365674 0.365674i −0.500223 0.865897i \(-0.666749\pi\)
0.865897 + 0.500223i \(0.166749\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −952.014 −1.72779
\(552\) 0 0
\(553\) 195.651 + 195.651i 0.353799 + 0.353799i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −169.939 + 169.939i −0.305097 + 0.305097i −0.843004 0.537907i \(-0.819215\pi\)
0.537907 + 0.843004i \(0.319215\pi\)
\(558\) 0 0
\(559\) 240.337i 0.429941i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 288.641 + 288.641i 0.512684 + 0.512684i 0.915348 0.402664i \(-0.131916\pi\)
−0.402664 + 0.915348i \(0.631916\pi\)
\(564\) 0 0
\(565\) 110.830 5.29974i 0.196160 0.00938007i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 119.228i 0.209540i 0.994496 + 0.104770i \(0.0334107\pi\)
−0.994496 + 0.104770i \(0.966589\pi\)
\(570\) 0 0
\(571\) −1070.64 −1.87503 −0.937513 0.347951i \(-0.886878\pi\)
−0.937513 + 0.347951i \(0.886878\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −414.587 + 502.495i −0.721021 + 0.873904i
\(576\) 0 0
\(577\) 572.086 572.086i 0.991484 0.991484i −0.00848018 0.999964i \(-0.502699\pi\)
0.999964 + 0.00848018i \(0.00269936\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.0389863 −6.71020e−5
\(582\) 0 0
\(583\) 461.332 + 461.332i 0.791307 + 0.791307i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 314.886 314.886i 0.536433 0.536433i −0.386047 0.922479i \(-0.626160\pi\)
0.922479 + 0.386047i \(0.126160\pi\)
\(588\) 0 0
\(589\) 810.659i 1.37633i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −781.658 781.658i −1.31814 1.31814i −0.915246 0.402896i \(-0.868004\pi\)
−0.402896 0.915246i \(-0.631996\pi\)
\(594\) 0 0
\(595\) −389.606 354.046i −0.654800 0.595035i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 423.280i 0.706645i −0.935502 0.353322i \(-0.885052\pi\)
0.935502 0.353322i \(-0.114948\pi\)
\(600\) 0 0
\(601\) −68.1617 −0.113414 −0.0567069 0.998391i \(-0.518060\pi\)
−0.0567069 + 0.998391i \(0.518060\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 228.701 251.672i 0.378019 0.415987i
\(606\) 0 0
\(607\) 186.390 186.390i 0.307068 0.307068i −0.536703 0.843771i \(-0.680331\pi\)
0.843771 + 0.536703i \(0.180331\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 199.544 0.326586
\(612\) 0 0
\(613\) 337.566 + 337.566i 0.550679 + 0.550679i 0.926637 0.375958i \(-0.122686\pi\)
−0.375958 + 0.926637i \(0.622686\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −858.797 + 858.797i −1.39189 + 1.39189i −0.570808 + 0.821084i \(0.693370\pi\)
−0.821084 + 0.570808i \(0.806630\pi\)
\(618\) 0 0
\(619\) 202.653i 0.327388i 0.986511 + 0.163694i \(0.0523410\pi\)
−0.986511 + 0.163694i \(0.947659\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 678.403 + 678.403i 1.08893 + 1.08893i
\(624\) 0 0
\(625\) −613.619 + 118.729i −0.981790 + 0.189967i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 389.424i 0.619116i
\(630\) 0 0
\(631\) −536.853 −0.850797 −0.425398 0.905006i \(-0.639866\pi\)
−0.425398 + 0.905006i \(0.639866\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −43.0802 900.911i −0.0678429 1.41876i
\(636\) 0 0
\(637\) −515.656 + 515.656i −0.809507 + 0.809507i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −665.993 −1.03899 −0.519495 0.854473i \(-0.673880\pi\)
−0.519495 + 0.854473i \(0.673880\pi\)
\(642\) 0 0
\(643\) −7.83317 7.83317i −0.0121822 0.0121822i 0.700989 0.713172i \(-0.252742\pi\)
−0.713172 + 0.700989i \(0.752742\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 287.426 287.426i 0.444244 0.444244i −0.449191 0.893436i \(-0.648288\pi\)
0.893436 + 0.449191i \(0.148288\pi\)
\(648\) 0 0
\(649\) 103.746i 0.159855i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 587.685 + 587.685i 0.899976 + 0.899976i 0.995434 0.0954571i \(-0.0304313\pi\)
−0.0954571 + 0.995434i \(0.530431\pi\)
\(654\) 0 0
\(655\) −416.328 + 458.144i −0.635616 + 0.699457i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 754.028i 1.14420i −0.820184 0.572101i \(-0.806129\pi\)
0.820184 0.572101i \(-0.193871\pi\)
\(660\) 0 0
\(661\) −818.290 −1.23796 −0.618978 0.785408i \(-0.712453\pi\)
−0.618978 + 0.785408i \(0.712453\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1587.57 + 75.9152i −2.38732 + 0.114158i
\(666\) 0 0
\(667\) 685.845 685.845i 1.02825 1.02825i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −599.672 −0.893700
\(672\) 0 0
\(673\) 202.080 + 202.080i 0.300268 + 0.300268i 0.841119 0.540851i \(-0.181898\pi\)
−0.540851 + 0.841119i \(0.681898\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.2645 47.2645i 0.0698147 0.0698147i −0.671337 0.741152i \(-0.734280\pi\)
0.741152 + 0.671337i \(0.234280\pi\)
\(678\) 0 0
\(679\) 517.292i 0.761844i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 126.090 + 126.090i 0.184612 + 0.184612i 0.793362 0.608750i \(-0.208329\pi\)
−0.608750 + 0.793362i \(0.708329\pi\)
\(684\) 0 0
\(685\) 58.4783 + 1222.92i 0.0853698 + 1.78529i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 328.127i 0.476237i
\(690\) 0 0
\(691\) 485.927 0.703223 0.351612 0.936146i \(-0.385634\pi\)
0.351612 + 0.936146i \(0.385634\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.94816 + 3.58781i 0.00568081 + 0.00516231i
\(696\) 0 0
\(697\) 220.021 220.021i 0.315668 0.315668i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 94.5850 0.134929 0.0674643 0.997722i \(-0.478509\pi\)
0.0674643 + 0.997722i \(0.478509\pi\)
\(702\) 0 0
\(703\) −831.354 831.354i −1.18258 1.18258i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1571.93 + 1571.93i −2.22338 + 2.22338i
\(708\) 0 0
\(709\) 24.3499i 0.0343440i 0.999853 + 0.0171720i \(0.00546629\pi\)
−0.999853 + 0.0171720i \(0.994534\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −584.011 584.011i −0.819090 0.819090i
\(714\) 0 0
\(715\) 474.765 22.7026i 0.664007 0.0317518i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 534.841i 0.743868i −0.928259 0.371934i \(-0.878695\pi\)
0.928259 0.371934i \(-0.121305\pi\)
\(720\) 0 0
\(721\) −722.346 −1.00187
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 926.309 88.7925i 1.27767 0.122472i
\(726\) 0 0
\(727\) 435.834 435.834i 0.599497 0.599497i −0.340682 0.940179i \(-0.610658\pi\)
0.940179 + 0.340682i \(0.110658\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 294.459 0.402816
\(732\) 0 0
\(733\) 224.087 + 224.087i 0.305712 + 0.305712i 0.843244 0.537531i \(-0.180643\pi\)
−0.537531 + 0.843244i \(0.680643\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 827.282 827.282i 1.12250 1.12250i
\(738\) 0 0
\(739\) 730.510i 0.988512i 0.869317 + 0.494256i \(0.164559\pi\)
−0.869317 + 0.494256i \(0.835441\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 941.961 + 941.961i 1.26778 + 1.26778i 0.947232 + 0.320549i \(0.103867\pi\)
0.320549 + 0.947232i \(0.396133\pi\)
\(744\) 0 0
\(745\) 241.451 + 219.413i 0.324095 + 0.294514i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 646.998i 0.863816i
\(750\) 0 0
\(751\) 231.169 0.307814 0.153907 0.988085i \(-0.450814\pi\)
0.153907 + 0.988085i \(0.450814\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 528.547 581.634i 0.700062 0.770377i
\(756\) 0 0
\(757\) −382.911 + 382.911i −0.505826 + 0.505826i −0.913243 0.407416i \(-0.866430\pi\)
0.407416 + 0.913243i \(0.366430\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 941.999 1.23784 0.618922 0.785453i \(-0.287570\pi\)
0.618922 + 0.785453i \(0.287570\pi\)
\(762\) 0 0
\(763\) 751.312 + 751.312i 0.984681 + 0.984681i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36.8952 + 36.8952i −0.0481032 + 0.0481032i
\(768\) 0 0
\(769\) 1388.76i 1.80593i −0.429718 0.902963i \(-0.641387\pi\)
0.429718 0.902963i \(-0.358613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 185.158 + 185.158i 0.239532 + 0.239532i 0.816656 0.577124i \(-0.195825\pi\)
−0.577124 + 0.816656i \(0.695825\pi\)
\(774\) 0 0
\(775\) −75.6086 788.771i −0.0975595 1.01777i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 939.413i 1.20592i
\(780\) 0 0
\(781\) −249.711 −0.319733
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 41.1245 + 860.012i 0.0523879 + 1.09556i
\(786\) 0 0
\(787\) 194.815 194.815i 0.247542 0.247542i −0.572419 0.819961i \(-0.693995\pi\)
0.819961 + 0.572419i \(0.193995\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −275.805 −0.348679
\(792\) 0 0
\(793\) −213.262 213.262i −0.268930 0.268930i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −694.112 + 694.112i −0.870906 + 0.870906i −0.992571 0.121665i \(-0.961177\pi\)
0.121665 + 0.992571i \(0.461177\pi\)
\(798\) 0 0
\(799\) 244.479i 0.305982i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −946.175 946.175i −1.17830 1.17830i
\(804\) 0 0
\(805\) 1089.02 1198.40i 1.35282 1.48870i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1492.22i 1.84453i 0.386563 + 0.922263i \(0.373662\pi\)
−0.386563 + 0.922263i \(0.626338\pi\)
\(810\) 0 0
\(811\) −80.5721 −0.0993490 −0.0496745 0.998765i \(-0.515818\pi\)
−0.0496745 + 0.998765i \(0.515818\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1385.02 + 66.2296i −1.69941 + 0.0812634i
\(816\) 0 0
\(817\) 628.619 628.619i 0.769423 0.769423i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 221.422 0.269698 0.134849 0.990866i \(-0.456945\pi\)
0.134849 + 0.990866i \(0.456945\pi\)
\(822\) 0 0
\(823\) −815.236 815.236i −0.990566 0.990566i 0.00938979 0.999956i \(-0.497011\pi\)
−0.999956 + 0.00938979i \(0.997011\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.5640 29.5640i 0.0357485 0.0357485i −0.689007 0.724755i \(-0.741953\pi\)
0.724755 + 0.689007i \(0.241953\pi\)
\(828\) 0 0
\(829\) 558.092i 0.673211i 0.941646 + 0.336606i \(0.109279\pi\)
−0.941646 + 0.336606i \(0.890721\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 631.777 + 631.777i 0.758436 + 0.758436i
\(834\) 0 0
\(835\) −8.91936 186.525i −0.0106819 0.223383i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 623.755i 0.743451i −0.928343 0.371725i \(-0.878766\pi\)
0.928343 0.371725i \(-0.121234\pi\)
\(840\) 0 0
\(841\) −544.492 −0.647434
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −448.448 407.517i −0.530708 0.482269i
\(846\) 0 0
\(847\) −597.713 + 597.713i −0.705682 + 0.705682i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1197.84 1.40757
\(852\) 0 0
\(853\) −454.178 454.178i −0.532448 0.532448i 0.388852 0.921300i \(-0.372872\pi\)
−0.921300 + 0.388852i \(0.872872\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 769.104 769.104i 0.897438 0.897438i −0.0977709 0.995209i \(-0.531171\pi\)
0.995209 + 0.0977709i \(0.0311712\pi\)
\(858\) 0 0
\(859\) 536.071i 0.624064i −0.950072 0.312032i \(-0.898990\pi\)
0.950072 0.312032i \(-0.101010\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −500.177 500.177i −0.579579 0.579579i 0.355208 0.934787i \(-0.384410\pi\)
−0.934787 + 0.355208i \(0.884410\pi\)
\(864\) 0 0
\(865\) 61.3812 2.93516i 0.0709609 0.00339324i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 306.073i 0.352212i
\(870\) 0 0
\(871\) 588.413 0.675561
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1537.62 221.935i 1.75728 0.253640i
\(876\) 0 0
\(877\) −102.540 + 102.540i −0.116922 + 0.116922i −0.763147 0.646225i \(-0.776347\pi\)
0.646225 + 0.763147i \(0.276347\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −649.515 −0.737247 −0.368624 0.929579i \(-0.620171\pi\)
−0.368624 + 0.929579i \(0.620171\pi\)
\(882\) 0 0
\(883\) −341.476 341.476i −0.386723 0.386723i 0.486794 0.873517i \(-0.338166\pi\)
−0.873517 + 0.486794i \(0.838166\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −516.110 + 516.110i −0.581860 + 0.581860i −0.935414 0.353554i \(-0.884973\pi\)
0.353554 + 0.935414i \(0.384973\pi\)
\(888\) 0 0
\(889\) 2241.95i 2.52188i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −521.922 521.922i −0.584459 0.584459i
\(894\) 0 0
\(895\) −35.7827 32.5167i −0.0399806 0.0363315i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1179.77i 1.31232i
\(900\) 0 0
\(901\) 402.019 0.446192
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 837.454 921.568i 0.925364 1.01831i
\(906\) 0 0
\(907\) −62.4116 + 62.4116i −0.0688111 + 0.0688111i −0.740675 0.671864i \(-0.765494\pi\)
0.671864 + 0.740675i \(0.265494\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1140.91 1.25237 0.626183 0.779676i \(-0.284616\pi\)
0.626183 + 0.779676i \(0.284616\pi\)
\(912\) 0 0
\(913\) −0.0304947 0.0304947i −3.34006e−5 3.34006e-5i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1088.08 1088.08i 1.18656 1.18656i
\(918\) 0 0
\(919\) 1200.77i 1.30661i −0.757097 0.653303i \(-0.773383\pi\)
0.757097 0.653303i \(-0.226617\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −88.8049 88.8049i −0.0962133 0.0962133i
\(924\) 0 0
\(925\) 886.446 + 731.368i 0.958320 + 0.790669i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 87.8294i 0.0945419i 0.998882 + 0.0472709i \(0.0150524\pi\)
−0.998882 + 0.0472709i \(0.984948\pi\)
\(930\) 0 0
\(931\) 2697.47 2.89739
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −27.8150 581.678i −0.0297486 0.622115i
\(936\) 0 0
\(937\) −215.447 + 215.447i −0.229933 + 0.229933i −0.812665 0.582732i \(-0.801984\pi\)
0.582732 + 0.812665i \(0.301984\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −805.908 −0.856438 −0.428219 0.903675i \(-0.640859\pi\)
−0.428219 + 0.903675i \(0.640859\pi\)
\(942\) 0 0
\(943\) 676.767 + 676.767i 0.717675 + 0.717675i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 739.218 739.218i 0.780589 0.780589i −0.199341 0.979930i \(-0.563880\pi\)
0.979930 + 0.199341i \(0.0638801\pi\)
\(948\) 0 0
\(949\) 672.977i 0.709144i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 790.131 + 790.131i 0.829098 + 0.829098i 0.987392 0.158294i \(-0.0505993\pi\)
−0.158294 + 0.987392i \(0.550599\pi\)
\(954\) 0 0
\(955\) 545.920 600.752i 0.571644 0.629060i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3043.28i 3.17339i
\(960\) 0 0
\(961\) 43.6021 0.0453716
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −57.3105 + 2.74050i −0.0593891 + 0.00283990i
\(966\) 0 0
\(967\) −213.927 + 213.927i −0.221227 + 0.221227i −0.809015 0.587788i \(-0.799999\pi\)
0.587788 + 0.809015i \(0.299999\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1356.34 1.39685 0.698423 0.715686i \(-0.253886\pi\)
0.698423 + 0.715686i \(0.253886\pi\)
\(972\) 0 0
\(973\) −9.37676 9.37676i −0.00963695 0.00963695i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1047.93 1047.93i 1.07260 1.07260i 0.0754457 0.997150i \(-0.475962\pi\)
0.997150 0.0754457i \(-0.0240380\pi\)
\(978\) 0 0
\(979\) 1061.28i 1.08405i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 741.601 + 741.601i 0.754426 + 0.754426i 0.975302 0.220876i \(-0.0708915\pi\)
−0.220876 + 0.975302i \(0.570891\pi\)
\(984\) 0 0
\(985\) 77.3621 + 1617.83i 0.0785402 + 1.64246i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 905.734i 0.915808i
\(990\) 0 0
\(991\) 304.849 0.307618 0.153809 0.988101i \(-0.450846\pi\)
0.153809 + 0.988101i \(0.450846\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1098.61 + 998.336i 1.10413 + 1.00335i
\(996\) 0 0
\(997\) −542.650 + 542.650i −0.544283 + 0.544283i −0.924782 0.380499i \(-0.875752\pi\)
0.380499 + 0.924782i \(0.375752\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.v.f.73.3 8
3.2 odd 2 120.3.u.b.73.3 8
4.3 odd 2 720.3.bh.o.433.3 8
5.2 odd 4 inner 360.3.v.f.217.3 8
5.3 odd 4 1800.3.v.t.1657.4 8
5.4 even 2 1800.3.v.t.793.4 8
12.11 even 2 240.3.bg.e.193.1 8
15.2 even 4 120.3.u.b.97.3 yes 8
15.8 even 4 600.3.u.h.457.2 8
15.14 odd 2 600.3.u.h.193.2 8
20.7 even 4 720.3.bh.o.577.3 8
24.5 odd 2 960.3.bg.l.193.2 8
24.11 even 2 960.3.bg.k.193.4 8
60.23 odd 4 1200.3.bg.q.1057.3 8
60.47 odd 4 240.3.bg.e.97.1 8
60.59 even 2 1200.3.bg.q.193.3 8
120.77 even 4 960.3.bg.l.577.2 8
120.107 odd 4 960.3.bg.k.577.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.u.b.73.3 8 3.2 odd 2
120.3.u.b.97.3 yes 8 15.2 even 4
240.3.bg.e.97.1 8 60.47 odd 4
240.3.bg.e.193.1 8 12.11 even 2
360.3.v.f.73.3 8 1.1 even 1 trivial
360.3.v.f.217.3 8 5.2 odd 4 inner
600.3.u.h.193.2 8 15.14 odd 2
600.3.u.h.457.2 8 15.8 even 4
720.3.bh.o.433.3 8 4.3 odd 2
720.3.bh.o.577.3 8 20.7 even 4
960.3.bg.k.193.4 8 24.11 even 2
960.3.bg.k.577.4 8 120.107 odd 4
960.3.bg.l.193.2 8 24.5 odd 2
960.3.bg.l.577.2 8 120.77 even 4
1200.3.bg.q.193.3 8 60.59 even 2
1200.3.bg.q.1057.3 8 60.23 odd 4
1800.3.v.t.793.4 8 5.4 even 2
1800.3.v.t.1657.4 8 5.3 odd 4