Properties

Label 600.2.w.k.557.8
Level $600$
Weight $2$
Character 600.557
Analytic conductor $4.791$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 557.8
Character \(\chi\) \(=\) 600.557
Dual form 600.2.w.k.293.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18496 - 0.771921i) q^{2} +(1.57845 + 0.713099i) q^{3} +(0.808275 + 1.82940i) q^{4} +(-1.31994 - 2.06343i) q^{6} +(-1.44651 - 1.44651i) q^{7} +(0.454373 - 2.79169i) q^{8} +(1.98298 + 2.25118i) q^{9} +0.641278 q^{11} +(-0.0287228 + 3.46398i) q^{12} +(2.03304 + 2.03304i) q^{13} +(0.597468 + 2.83065i) q^{14} +(-2.69338 + 2.95731i) q^{16} +(4.37963 - 4.37963i) q^{17} +(-0.612026 - 4.19826i) q^{18} +4.93129 q^{19} +(-1.25173 - 3.31474i) q^{21} +(-0.759891 - 0.495016i) q^{22} +(-3.73619 - 3.73619i) q^{23} +(2.70796 - 4.08252i) q^{24} +(-0.839729 - 3.97842i) q^{26} +(1.52471 + 4.96742i) q^{27} +(1.47706 - 3.81541i) q^{28} +9.84421i q^{29} +5.23032 q^{31} +(5.47437 - 1.42523i) q^{32} +(1.01222 + 0.457295i) q^{33} +(-8.57043 + 1.80897i) q^{34} +(-2.51550 + 5.44722i) q^{36} +(3.44271 - 3.44271i) q^{37} +(-5.84339 - 3.80656i) q^{38} +(1.75928 + 4.65879i) q^{39} +7.20930i q^{41} +(-1.07546 + 4.89408i) q^{42} +(4.37139 + 4.37139i) q^{43} +(0.518329 + 1.17315i) q^{44} +(1.54320 + 7.31130i) q^{46} +(-4.08462 + 4.08462i) q^{47} +(-6.36021 + 2.74731i) q^{48} -2.81523i q^{49} +(10.0361 - 3.78989i) q^{51} +(-2.07598 + 5.36248i) q^{52} +(-3.83383 + 3.83383i) q^{53} +(2.02773 - 7.06317i) q^{54} +(-4.69546 + 3.38095i) q^{56} +(7.78377 + 3.51650i) q^{57} +(7.59896 - 11.6650i) q^{58} -2.50346i q^{59} -9.64270i q^{61} +(-6.19774 - 4.03740i) q^{62} +(0.387949 - 6.12474i) q^{63} +(-7.58709 - 2.53694i) q^{64} +(-0.846451 - 1.32323i) q^{66} +(2.59686 - 2.59686i) q^{67} +(11.5520 + 4.47213i) q^{68} +(-3.23310 - 8.56166i) q^{69} -16.7173i q^{71} +(7.18560 - 4.51299i) q^{72} +(-8.40725 + 8.40725i) q^{73} +(-6.73698 + 1.42198i) q^{74} +(3.98584 + 9.02128i) q^{76} +(-0.927614 - 0.927614i) q^{77} +(1.51154 - 6.87852i) q^{78} -5.31759i q^{79} +(-1.13559 + 8.92807i) q^{81} +(5.56501 - 8.54275i) q^{82} +(2.20075 - 2.20075i) q^{83} +(5.05222 - 4.96913i) q^{84} +(-1.80557 - 8.55430i) q^{86} +(-7.01990 + 15.5386i) q^{87} +(0.291380 - 1.79025i) q^{88} -3.96596 q^{89} -5.88160i q^{91} +(3.81511 - 9.85485i) q^{92} +(8.25578 + 3.72974i) q^{93} +(7.99313 - 1.68712i) q^{94} +(9.65732 + 1.65413i) q^{96} +(1.11334 + 1.11334i) q^{97} +(-2.17314 + 3.33595i) q^{98} +(1.27164 + 1.44363i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 12 q^{6} - 40 q^{16} + 32 q^{31} - 84 q^{36} - 128 q^{46} - 180 q^{66} + 168 q^{76} + 48 q^{81} + 228 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18496 0.771921i −0.837895 0.545831i
\(3\) 1.57845 + 0.713099i 0.911316 + 0.411708i
\(4\) 0.808275 + 1.82940i 0.404138 + 0.914698i
\(5\) 0 0
\(6\) −1.31994 2.06343i −0.538864 0.842392i
\(7\) −1.44651 1.44651i −0.546728 0.546728i 0.378765 0.925493i \(-0.376349\pi\)
−0.925493 + 0.378765i \(0.876349\pi\)
\(8\) 0.454373 2.79169i 0.160645 0.987012i
\(9\) 1.98298 + 2.25118i 0.660993 + 0.750392i
\(10\) 0 0
\(11\) 0.641278 0.193353 0.0966764 0.995316i \(-0.469179\pi\)
0.0966764 + 0.995316i \(0.469179\pi\)
\(12\) −0.0287228 + 3.46398i −0.00829157 + 0.999966i
\(13\) 2.03304 + 2.03304i 0.563863 + 0.563863i 0.930402 0.366540i \(-0.119458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(14\) 0.597468 + 2.83065i 0.159680 + 0.756522i
\(15\) 0 0
\(16\) −2.69338 + 2.95731i −0.673346 + 0.739328i
\(17\) 4.37963 4.37963i 1.06222 1.06222i 0.0642843 0.997932i \(-0.479524\pi\)
0.997932 0.0642843i \(-0.0204764\pi\)
\(18\) −0.612026 4.19826i −0.144256 0.989540i
\(19\) 4.93129 1.13131 0.565657 0.824640i \(-0.308622\pi\)
0.565657 + 0.824640i \(0.308622\pi\)
\(20\) 0 0
\(21\) −1.25173 3.31474i −0.273150 0.723335i
\(22\) −0.759891 0.495016i −0.162009 0.105538i
\(23\) −3.73619 3.73619i −0.779050 0.779050i 0.200619 0.979669i \(-0.435705\pi\)
−0.979669 + 0.200619i \(0.935705\pi\)
\(24\) 2.70796 4.08252i 0.552759 0.833341i
\(25\) 0 0
\(26\) −0.839729 3.97842i −0.164684 0.780232i
\(27\) 1.52471 + 4.96742i 0.293431 + 0.955980i
\(28\) 1.47706 3.81541i 0.279138 0.721045i
\(29\) 9.84421i 1.82802i 0.405687 + 0.914012i \(0.367032\pi\)
−0.405687 + 0.914012i \(0.632968\pi\)
\(30\) 0 0
\(31\) 5.23032 0.939394 0.469697 0.882828i \(-0.344363\pi\)
0.469697 + 0.882828i \(0.344363\pi\)
\(32\) 5.47437 1.42523i 0.967741 0.251947i
\(33\) 1.01222 + 0.457295i 0.176205 + 0.0796049i
\(34\) −8.57043 + 1.80897i −1.46982 + 0.310236i
\(35\) 0 0
\(36\) −2.51550 + 5.44722i −0.419250 + 0.907871i
\(37\) 3.44271 3.44271i 0.565978 0.565978i −0.365022 0.930999i \(-0.618938\pi\)
0.930999 + 0.365022i \(0.118938\pi\)
\(38\) −5.84339 3.80656i −0.947923 0.617506i
\(39\) 1.75928 + 4.65879i 0.281710 + 0.746004i
\(40\) 0 0
\(41\) 7.20930i 1.12590i 0.826490 + 0.562951i \(0.190334\pi\)
−0.826490 + 0.562951i \(0.809666\pi\)
\(42\) −1.07546 + 4.89408i −0.165947 + 0.755172i
\(43\) 4.37139 + 4.37139i 0.666630 + 0.666630i 0.956934 0.290304i \(-0.0937564\pi\)
−0.290304 + 0.956934i \(0.593756\pi\)
\(44\) 0.518329 + 1.17315i 0.0781411 + 0.176859i
\(45\) 0 0
\(46\) 1.54320 + 7.31130i 0.227533 + 1.07799i
\(47\) −4.08462 + 4.08462i −0.595803 + 0.595803i −0.939193 0.343390i \(-0.888425\pi\)
0.343390 + 0.939193i \(0.388425\pi\)
\(48\) −6.36021 + 2.74731i −0.918018 + 0.396539i
\(49\) 2.81523i 0.402176i
\(50\) 0 0
\(51\) 10.0361 3.78989i 1.40534 0.530691i
\(52\) −2.07598 + 5.36248i −0.287886 + 0.743642i
\(53\) −3.83383 + 3.83383i −0.526616 + 0.526616i −0.919562 0.392945i \(-0.871456\pi\)
0.392945 + 0.919562i \(0.371456\pi\)
\(54\) 2.02773 7.06317i 0.275939 0.961175i
\(55\) 0 0
\(56\) −4.69546 + 3.38095i −0.627457 + 0.451798i
\(57\) 7.78377 + 3.51650i 1.03098 + 0.465771i
\(58\) 7.59896 11.6650i 0.997792 1.53169i
\(59\) 2.50346i 0.325923i −0.986632 0.162961i \(-0.947895\pi\)
0.986632 0.162961i \(-0.0521046\pi\)
\(60\) 0 0
\(61\) 9.64270i 1.23462i −0.786720 0.617311i \(-0.788222\pi\)
0.786720 0.617311i \(-0.211778\pi\)
\(62\) −6.19774 4.03740i −0.787114 0.512750i
\(63\) 0.387949 6.12474i 0.0488770 0.771644i
\(64\) −7.58709 2.53694i −0.948386 0.317118i
\(65\) 0 0
\(66\) −0.846451 1.32323i −0.104191 0.162879i
\(67\) 2.59686 2.59686i 0.317257 0.317257i −0.530456 0.847713i \(-0.677979\pi\)
0.847713 + 0.530456i \(0.177979\pi\)
\(68\) 11.5520 + 4.47213i 1.40089 + 0.542326i
\(69\) −3.23310 8.56166i −0.389220 1.03070i
\(70\) 0 0
\(71\) 16.7173i 1.98398i −0.126324 0.991989i \(-0.540318\pi\)
0.126324 0.991989i \(-0.459682\pi\)
\(72\) 7.18560 4.51299i 0.846832 0.531861i
\(73\) −8.40725 + 8.40725i −0.983994 + 0.983994i −0.999874 0.0158800i \(-0.994945\pi\)
0.0158800 + 0.999874i \(0.494945\pi\)
\(74\) −6.73698 + 1.42198i −0.783158 + 0.165302i
\(75\) 0 0
\(76\) 3.98584 + 9.02128i 0.457207 + 1.03481i
\(77\) −0.927614 0.927614i −0.105711 0.105711i
\(78\) 1.51154 6.87852i 0.171148 0.778839i
\(79\) 5.31759i 0.598275i −0.954210 0.299138i \(-0.903301\pi\)
0.954210 0.299138i \(-0.0966989\pi\)
\(80\) 0 0
\(81\) −1.13559 + 8.92807i −0.126176 + 0.992008i
\(82\) 5.56501 8.54275i 0.614552 0.943389i
\(83\) 2.20075 2.20075i 0.241564 0.241564i −0.575933 0.817497i \(-0.695361\pi\)
0.817497 + 0.575933i \(0.195361\pi\)
\(84\) 5.05222 4.96913i 0.551243 0.542176i
\(85\) 0 0
\(86\) −1.80557 8.55430i −0.194699 0.922434i
\(87\) −7.01990 + 15.5386i −0.752612 + 1.66591i
\(88\) 0.291380 1.79025i 0.0310612 0.190841i
\(89\) −3.96596 −0.420391 −0.210195 0.977659i \(-0.567410\pi\)
−0.210195 + 0.977659i \(0.567410\pi\)
\(90\) 0 0
\(91\) 5.88160i 0.616560i
\(92\) 3.81511 9.85485i 0.397752 1.02744i
\(93\) 8.25578 + 3.72974i 0.856085 + 0.386756i
\(94\) 7.99313 1.68712i 0.824428 0.174013i
\(95\) 0 0
\(96\) 9.65732 + 1.65413i 0.985646 + 0.168824i
\(97\) 1.11334 + 1.11334i 0.113043 + 0.113043i 0.761366 0.648323i \(-0.224529\pi\)
−0.648323 + 0.761366i \(0.724529\pi\)
\(98\) −2.17314 + 3.33595i −0.219520 + 0.336982i
\(99\) 1.27164 + 1.44363i 0.127805 + 0.145090i
\(100\) 0 0
\(101\) 4.32234 0.430089 0.215045 0.976604i \(-0.431010\pi\)
0.215045 + 0.976604i \(0.431010\pi\)
\(102\) −14.8179 3.25620i −1.46719 0.322412i
\(103\) −8.51865 + 8.51865i −0.839368 + 0.839368i −0.988776 0.149408i \(-0.952263\pi\)
0.149408 + 0.988776i \(0.452263\pi\)
\(104\) 6.59937 4.75185i 0.647121 0.465958i
\(105\) 0 0
\(106\) 7.50235 1.58353i 0.728693 0.153806i
\(107\) −10.3436 10.3436i −0.999957 0.999957i 4.33477e−5 1.00000i \(-0.499986\pi\)
−1.00000 4.33477e-5i \(0.999986\pi\)
\(108\) −7.85499 + 6.80434i −0.755847 + 0.654748i
\(109\) 11.4461 1.09634 0.548169 0.836368i \(-0.315325\pi\)
0.548169 + 0.836368i \(0.315325\pi\)
\(110\) 0 0
\(111\) 7.88912 2.97913i 0.748802 0.282767i
\(112\) 8.17377 0.381776i 0.772349 0.0360744i
\(113\) 7.28974 + 7.28974i 0.685761 + 0.685761i 0.961292 0.275531i \(-0.0888537\pi\)
−0.275531 + 0.961292i \(0.588854\pi\)
\(114\) −6.50902 10.1754i −0.609625 0.953011i
\(115\) 0 0
\(116\) −18.0090 + 7.95683i −1.67209 + 0.738773i
\(117\) −0.545254 + 8.60819i −0.0504088 + 0.795827i
\(118\) −1.93247 + 2.96651i −0.177899 + 0.273089i
\(119\) −12.6703 −1.16149
\(120\) 0 0
\(121\) −10.5888 −0.962615
\(122\) −7.44340 + 11.4262i −0.673894 + 1.03448i
\(123\) −5.14094 + 11.3795i −0.463543 + 1.02605i
\(124\) 4.22754 + 9.56834i 0.379644 + 0.859262i
\(125\) 0 0
\(126\) −5.18752 + 6.95812i −0.462141 + 0.619879i
\(127\) −11.4720 11.4720i −1.01797 1.01797i −0.999835 0.0181391i \(-0.994226\pi\)
−0.0181391 0.999835i \(-0.505774\pi\)
\(128\) 7.03210 + 8.86282i 0.621556 + 0.783370i
\(129\) 3.78276 + 10.0172i 0.333054 + 0.881968i
\(130\) 0 0
\(131\) −15.6449 −1.36690 −0.683452 0.729995i \(-0.739522\pi\)
−0.683452 + 0.729995i \(0.739522\pi\)
\(132\) −0.0184193 + 2.22138i −0.00160320 + 0.193346i
\(133\) −7.13314 7.13314i −0.618522 0.618522i
\(134\) −5.08176 + 1.07261i −0.438997 + 0.0926596i
\(135\) 0 0
\(136\) −10.2366 14.2166i −0.877780 1.21906i
\(137\) 8.94191 8.94191i 0.763959 0.763959i −0.213077 0.977035i \(-0.568348\pi\)
0.977035 + 0.213077i \(0.0683485\pi\)
\(138\) −2.77782 + 12.6409i −0.236464 + 1.07607i
\(139\) −1.01636 −0.0862063 −0.0431031 0.999071i \(-0.513724\pi\)
−0.0431031 + 0.999071i \(0.513724\pi\)
\(140\) 0 0
\(141\) −9.36009 + 3.53461i −0.788262 + 0.297668i
\(142\) −12.9044 + 19.8094i −1.08292 + 1.66237i
\(143\) 1.30374 + 1.30374i 0.109024 + 0.109024i
\(144\) −11.9983 0.198991i −0.999862 0.0165826i
\(145\) 0 0
\(146\) 16.4520 3.47255i 1.36158 0.287390i
\(147\) 2.00754 4.44369i 0.165579 0.366510i
\(148\) 9.08073 + 3.51542i 0.746432 + 0.288966i
\(149\) 3.01841i 0.247278i −0.992327 0.123639i \(-0.960544\pi\)
0.992327 0.123639i \(-0.0394565\pi\)
\(150\) 0 0
\(151\) −7.46150 −0.607208 −0.303604 0.952798i \(-0.598190\pi\)
−0.303604 + 0.952798i \(0.598190\pi\)
\(152\) 2.24065 13.7666i 0.181740 1.11662i
\(153\) 18.5440 + 1.17460i 1.49920 + 0.0949611i
\(154\) 0.383143 + 1.81523i 0.0308746 + 0.146276i
\(155\) 0 0
\(156\) −7.10080 + 6.98401i −0.568519 + 0.559168i
\(157\) −6.08638 + 6.08638i −0.485746 + 0.485746i −0.906961 0.421215i \(-0.861604\pi\)
0.421215 + 0.906961i \(0.361604\pi\)
\(158\) −4.10476 + 6.30114i −0.326557 + 0.501292i
\(159\) −8.78538 + 3.31759i −0.696726 + 0.263102i
\(160\) 0 0
\(161\) 10.8089i 0.851858i
\(162\) 8.23740 9.70285i 0.647191 0.762328i
\(163\) −13.5483 13.5483i −1.06119 1.06119i −0.998002 0.0631867i \(-0.979874\pi\)
−0.0631867 0.998002i \(-0.520126\pi\)
\(164\) −13.1887 + 5.82710i −1.02986 + 0.455020i
\(165\) 0 0
\(166\) −4.30662 + 0.909003i −0.334258 + 0.0705523i
\(167\) −8.77613 + 8.77613i −0.679117 + 0.679117i −0.959800 0.280683i \(-0.909439\pi\)
0.280683 + 0.959800i \(0.409439\pi\)
\(168\) −9.82247 + 1.98832i −0.757820 + 0.153402i
\(169\) 4.73353i 0.364118i
\(170\) 0 0
\(171\) 9.77864 + 11.1012i 0.747791 + 0.848930i
\(172\) −4.46372 + 11.5303i −0.340355 + 0.879176i
\(173\) −15.2826 + 15.2826i −1.16192 + 1.16192i −0.177862 + 0.984056i \(0.556918\pi\)
−0.984056 + 0.177862i \(0.943082\pi\)
\(174\) 20.3129 12.9938i 1.53991 0.985057i
\(175\) 0 0
\(176\) −1.72721 + 1.89646i −0.130193 + 0.142951i
\(177\) 1.78521 3.95157i 0.134185 0.297018i
\(178\) 4.69951 + 3.06141i 0.352243 + 0.229462i
\(179\) 2.11966i 0.158431i 0.996858 + 0.0792153i \(0.0252415\pi\)
−0.996858 + 0.0792153i \(0.974759\pi\)
\(180\) 0 0
\(181\) 19.4392i 1.44491i 0.691420 + 0.722453i \(0.256986\pi\)
−0.691420 + 0.722453i \(0.743014\pi\)
\(182\) −4.54013 + 6.96948i −0.336537 + 0.516612i
\(183\) 6.87620 15.2205i 0.508303 1.12513i
\(184\) −12.1279 + 8.73268i −0.894083 + 0.643781i
\(185\) 0 0
\(186\) −6.90373 10.7924i −0.506206 0.791338i
\(187\) 2.80856 2.80856i 0.205382 0.205382i
\(188\) −10.7739 4.17089i −0.785766 0.304194i
\(189\) 4.97990 9.39092i 0.362235 0.683089i
\(190\) 0 0
\(191\) 2.66510i 0.192840i 0.995341 + 0.0964198i \(0.0307391\pi\)
−0.995341 + 0.0964198i \(0.969261\pi\)
\(192\) −10.1667 9.41477i −0.733719 0.679453i
\(193\) −7.73743 + 7.73743i −0.556952 + 0.556952i −0.928439 0.371486i \(-0.878848\pi\)
0.371486 + 0.928439i \(0.378848\pi\)
\(194\) −0.459857 2.17868i −0.0330158 0.156420i
\(195\) 0 0
\(196\) 5.15018 2.27548i 0.367870 0.162535i
\(197\) 7.82754 + 7.82754i 0.557689 + 0.557689i 0.928649 0.370960i \(-0.120971\pi\)
−0.370960 + 0.928649i \(0.620971\pi\)
\(198\) −0.392479 2.69226i −0.0278923 0.191330i
\(199\) 16.8608i 1.19523i −0.801783 0.597615i \(-0.796115\pi\)
0.801783 0.597615i \(-0.203885\pi\)
\(200\) 0 0
\(201\) 5.95082 2.24718i 0.419739 0.158504i
\(202\) −5.12182 3.33651i −0.360370 0.234756i
\(203\) 14.2397 14.2397i 0.999433 0.999433i
\(204\) 15.0452 + 15.2968i 1.05337 + 1.07099i
\(205\) 0 0
\(206\) 16.6700 3.51856i 1.16145 0.245150i
\(207\) 1.00204 15.8196i 0.0696464 1.09954i
\(208\) −11.4881 + 0.536578i −0.796554 + 0.0372050i
\(209\) 3.16233 0.218743
\(210\) 0 0
\(211\) 6.45821i 0.444602i 0.974978 + 0.222301i \(0.0713567\pi\)
−0.974978 + 0.222301i \(0.928643\pi\)
\(212\) −10.1124 3.91480i −0.694521 0.268870i
\(213\) 11.9211 26.3873i 0.816820 1.80803i
\(214\) 4.27235 + 20.2413i 0.292052 + 1.38367i
\(215\) 0 0
\(216\) 14.5603 1.99946i 0.990702 0.136046i
\(217\) −7.56570 7.56570i −0.513593 0.513593i
\(218\) −13.5632 8.83549i −0.918617 0.598415i
\(219\) −19.2656 + 7.27518i −1.30185 + 0.491611i
\(220\) 0 0
\(221\) 17.8079 1.19789
\(222\) −11.6480 2.55961i −0.781760 0.171790i
\(223\) 8.41178 8.41178i 0.563294 0.563294i −0.366947 0.930242i \(-0.619597\pi\)
0.930242 + 0.366947i \(0.119597\pi\)
\(224\) −9.98032 5.85712i −0.666838 0.391345i
\(225\) 0 0
\(226\) −3.01097 14.2652i −0.200287 0.948905i
\(227\) 0.0799436 + 0.0799436i 0.00530604 + 0.00530604i 0.709755 0.704449i \(-0.248806\pi\)
−0.704449 + 0.709755i \(0.748806\pi\)
\(228\) −0.141640 + 17.0819i −0.00938037 + 1.13128i
\(229\) −12.9730 −0.857282 −0.428641 0.903475i \(-0.641007\pi\)
−0.428641 + 0.903475i \(0.641007\pi\)
\(230\) 0 0
\(231\) −0.802707 2.12567i −0.0528142 0.139859i
\(232\) 27.4820 + 4.47295i 1.80428 + 0.293663i
\(233\) −2.12983 2.12983i −0.139530 0.139530i 0.633892 0.773422i \(-0.281456\pi\)
−0.773422 + 0.633892i \(0.781456\pi\)
\(234\) 7.29095 9.77949i 0.476624 0.639306i
\(235\) 0 0
\(236\) 4.57982 2.02348i 0.298121 0.131718i
\(237\) 3.79197 8.39352i 0.246315 0.545218i
\(238\) 15.0139 + 9.78050i 0.973205 + 0.633975i
\(239\) 16.7173 1.08135 0.540676 0.841231i \(-0.318168\pi\)
0.540676 + 0.841231i \(0.318168\pi\)
\(240\) 0 0
\(241\) −4.68712 −0.301924 −0.150962 0.988540i \(-0.548237\pi\)
−0.150962 + 0.988540i \(0.548237\pi\)
\(242\) 12.5473 + 8.17369i 0.806571 + 0.525425i
\(243\) −8.15906 + 13.2827i −0.523404 + 0.852085i
\(244\) 17.6403 7.79396i 1.12931 0.498957i
\(245\) 0 0
\(246\) 14.8759 9.51586i 0.948452 0.606709i
\(247\) 10.0255 + 10.0255i 0.637906 + 0.637906i
\(248\) 2.37652 14.6015i 0.150909 0.927193i
\(249\) 5.04312 1.90441i 0.319595 0.120687i
\(250\) 0 0
\(251\) −18.3364 −1.15738 −0.578691 0.815547i \(-0.696436\pi\)
−0.578691 + 0.815547i \(0.696436\pi\)
\(252\) 11.5181 4.24076i 0.725575 0.267143i
\(253\) −2.39594 2.39594i −0.150632 0.150632i
\(254\) 4.73841 + 22.4494i 0.297314 + 1.40860i
\(255\) 0 0
\(256\) −1.49138 15.9303i −0.0932115 0.995646i
\(257\) −1.28687 + 1.28687i −0.0802726 + 0.0802726i −0.746103 0.665830i \(-0.768077\pi\)
0.665830 + 0.746103i \(0.268077\pi\)
\(258\) 3.25008 14.7900i 0.202341 0.920788i
\(259\) −9.95980 −0.618872
\(260\) 0 0
\(261\) −22.1611 + 19.5209i −1.37173 + 1.20831i
\(262\) 18.5387 + 12.0767i 1.14532 + 0.746098i
\(263\) −3.96091 3.96091i −0.244240 0.244240i 0.574361 0.818602i \(-0.305250\pi\)
−0.818602 + 0.574361i \(0.805250\pi\)
\(264\) 1.73655 2.61803i 0.106878 0.161129i
\(265\) 0 0
\(266\) 2.94629 + 13.9587i 0.180648 + 0.855865i
\(267\) −6.26005 2.82812i −0.383109 0.173078i
\(268\) 6.84967 + 2.65171i 0.418410 + 0.161979i
\(269\) 1.81888i 0.110899i −0.998461 0.0554497i \(-0.982341\pi\)
0.998461 0.0554497i \(-0.0176592\pi\)
\(270\) 0 0
\(271\) 7.54876 0.458555 0.229277 0.973361i \(-0.426364\pi\)
0.229277 + 0.973361i \(0.426364\pi\)
\(272\) 1.15591 + 24.7479i 0.0700875 + 1.50056i
\(273\) 4.19417 9.28379i 0.253843 0.561880i
\(274\) −17.4983 + 3.69338i −1.05711 + 0.223125i
\(275\) 0 0
\(276\) 13.0494 12.8348i 0.785483 0.772564i
\(277\) −6.09911 + 6.09911i −0.366460 + 0.366460i −0.866184 0.499724i \(-0.833435\pi\)
0.499724 + 0.866184i \(0.333435\pi\)
\(278\) 1.20435 + 0.784548i 0.0722318 + 0.0470540i
\(279\) 10.3716 + 11.7744i 0.620933 + 0.704914i
\(280\) 0 0
\(281\) 4.32219i 0.257840i 0.991655 + 0.128920i \(0.0411511\pi\)
−0.991655 + 0.128920i \(0.958849\pi\)
\(282\) 13.8198 + 3.03687i 0.822957 + 0.180843i
\(283\) −6.55658 6.55658i −0.389748 0.389748i 0.484849 0.874598i \(-0.338874\pi\)
−0.874598 + 0.484849i \(0.838874\pi\)
\(284\) 30.5826 13.5122i 1.81474 0.801800i
\(285\) 0 0
\(286\) −0.538500 2.55127i −0.0318422 0.150860i
\(287\) 10.4283 10.4283i 0.615563 0.615563i
\(288\) 14.0640 + 9.49758i 0.828729 + 0.559650i
\(289\) 21.3623i 1.25661i
\(290\) 0 0
\(291\) 0.963426 + 2.55127i 0.0564770 + 0.149558i
\(292\) −22.1756 8.58482i −1.29773 0.502388i
\(293\) 3.85667 3.85667i 0.225309 0.225309i −0.585421 0.810730i \(-0.699071\pi\)
0.810730 + 0.585421i \(0.199071\pi\)
\(294\) −5.80904 + 3.71595i −0.338790 + 0.216718i
\(295\) 0 0
\(296\) −8.04670 11.1753i −0.467705 0.649548i
\(297\) 0.977765 + 3.18550i 0.0567357 + 0.184841i
\(298\) −2.32998 + 3.57671i −0.134972 + 0.207193i
\(299\) 15.1916i 0.878555i
\(300\) 0 0
\(301\) 12.6465i 0.728932i
\(302\) 8.84160 + 5.75969i 0.508777 + 0.331433i
\(303\) 6.82258 + 3.08226i 0.391947 + 0.177071i
\(304\) −13.2818 + 14.5834i −0.761766 + 0.836413i
\(305\) 0 0
\(306\) −21.0673 15.7064i −1.20434 0.897875i
\(307\) −3.22023 + 3.22023i −0.183788 + 0.183788i −0.793004 0.609216i \(-0.791484\pi\)
0.609216 + 0.793004i \(0.291484\pi\)
\(308\) 0.947206 2.44674i 0.0539721 0.139416i
\(309\) −19.5209 + 7.37158i −1.11050 + 0.419355i
\(310\) 0 0
\(311\) 12.3453i 0.700036i −0.936743 0.350018i \(-0.886175\pi\)
0.936743 0.350018i \(-0.113825\pi\)
\(312\) 13.8053 2.79454i 0.781570 0.158209i
\(313\) 11.6983 11.6983i 0.661226 0.661226i −0.294443 0.955669i \(-0.595134\pi\)
0.955669 + 0.294443i \(0.0951341\pi\)
\(314\) 11.9103 2.51393i 0.672139 0.141869i
\(315\) 0 0
\(316\) 9.72797 4.29807i 0.547241 0.241785i
\(317\) 5.15672 + 5.15672i 0.289631 + 0.289631i 0.836934 0.547304i \(-0.184346\pi\)
−0.547304 + 0.836934i \(0.684346\pi\)
\(318\) 12.9713 + 2.85041i 0.727393 + 0.159843i
\(319\) 6.31288i 0.353453i
\(320\) 0 0
\(321\) −8.95082 23.7029i −0.499586 1.32297i
\(322\) 8.34359 12.8081i 0.464970 0.713768i
\(323\) 21.5972 21.5972i 1.20170 1.20170i
\(324\) −17.2508 + 5.13890i −0.958380 + 0.285494i
\(325\) 0 0
\(326\) 5.59604 + 26.5125i 0.309936 + 1.46839i
\(327\) 18.0670 + 8.16221i 0.999110 + 0.451371i
\(328\) 20.1261 + 3.27571i 1.11128 + 0.180871i
\(329\) 11.8169 0.651485
\(330\) 0 0
\(331\) 14.0460i 0.772037i 0.922491 + 0.386019i \(0.126150\pi\)
−0.922491 + 0.386019i \(0.873850\pi\)
\(332\) 5.80486 + 2.24723i 0.318583 + 0.123333i
\(333\) 14.5770 + 0.923324i 0.798812 + 0.0505979i
\(334\) 17.1739 3.62491i 0.939713 0.198346i
\(335\) 0 0
\(336\) 13.1741 + 5.22610i 0.718706 + 0.285107i
\(337\) 10.5701 + 10.5701i 0.575791 + 0.575791i 0.933741 0.357950i \(-0.116524\pi\)
−0.357950 + 0.933741i \(0.616524\pi\)
\(338\) −3.65391 + 5.60906i −0.198747 + 0.305092i
\(339\) 6.30815 + 16.7048i 0.342612 + 0.907278i
\(340\) 0 0
\(341\) 3.35409 0.181634
\(342\) −3.01808 20.7028i −0.163199 1.11948i
\(343\) −14.1978 + 14.1978i −0.766609 + 0.766609i
\(344\) 14.1898 10.2173i 0.765063 0.550881i
\(345\) 0 0
\(346\) 29.9063 6.31237i 1.60778 0.339355i
\(347\) 20.2172 + 20.2172i 1.08532 + 1.08532i 0.996004 + 0.0893127i \(0.0284671\pi\)
0.0893127 + 0.996004i \(0.471533\pi\)
\(348\) −34.1002 0.282754i −1.82796 0.0151572i
\(349\) −0.603017 −0.0322788 −0.0161394 0.999870i \(-0.505138\pi\)
−0.0161394 + 0.999870i \(0.505138\pi\)
\(350\) 0 0
\(351\) −6.99915 + 13.1987i −0.373587 + 0.704496i
\(352\) 3.51060 0.913967i 0.187115 0.0487146i
\(353\) −19.6483 19.6483i −1.04578 1.04578i −0.998901 0.0468748i \(-0.985074\pi\)
−0.0468748 0.998901i \(-0.514926\pi\)
\(354\) −5.16572 + 3.30442i −0.274555 + 0.175628i
\(355\) 0 0
\(356\) −3.20559 7.25531i −0.169896 0.384531i
\(357\) −19.9994 9.03520i −1.05848 0.478194i
\(358\) 1.63621 2.51171i 0.0864763 0.132748i
\(359\) 12.6703 0.668714 0.334357 0.942446i \(-0.391481\pi\)
0.334357 + 0.942446i \(0.391481\pi\)
\(360\) 0 0
\(361\) 5.31759 0.279873
\(362\) 15.0056 23.0348i 0.788674 1.21068i
\(363\) −16.7138 7.55084i −0.877246 0.396316i
\(364\) 10.7598 4.75395i 0.563966 0.249175i
\(365\) 0 0
\(366\) −19.8971 + 12.7278i −1.04004 + 0.665293i
\(367\) −2.17316 2.17316i −0.113438 0.113438i 0.648109 0.761547i \(-0.275560\pi\)
−0.761547 + 0.648109i \(0.775560\pi\)
\(368\) 21.1121 0.986092i 1.10054 0.0514036i
\(369\) −16.2294 + 14.2959i −0.844868 + 0.744214i
\(370\) 0 0
\(371\) 11.0913 0.575832
\(372\) −0.150230 + 18.1178i −0.00778905 + 0.939362i
\(373\) −19.7420 19.7420i −1.02220 1.02220i −0.999748 0.0224556i \(-0.992852\pi\)
−0.0224556 0.999748i \(-0.507148\pi\)
\(374\) −5.49603 + 1.16005i −0.284193 + 0.0599849i
\(375\) 0 0
\(376\) 9.54706 + 13.2589i 0.492352 + 0.683778i
\(377\) −20.0136 + 20.0136i −1.03075 + 1.03075i
\(378\) −13.1500 + 7.28380i −0.676365 + 0.374638i
\(379\) 8.76740 0.450351 0.225176 0.974318i \(-0.427704\pi\)
0.225176 + 0.974318i \(0.427704\pi\)
\(380\) 0 0
\(381\) −9.92724 26.2886i −0.508588 1.34680i
\(382\) 2.05724 3.15804i 0.105258 0.161579i
\(383\) 16.7382 + 16.7382i 0.855284 + 0.855284i 0.990778 0.135495i \(-0.0432623\pi\)
−0.135495 + 0.990778i \(0.543262\pi\)
\(384\) 4.77972 + 19.0041i 0.243914 + 0.969797i
\(385\) 0 0
\(386\) 15.1413 3.19588i 0.770670 0.162666i
\(387\) −1.17239 + 18.5091i −0.0595961 + 0.940872i
\(388\) −1.13686 + 2.93663i −0.0577152 + 0.149085i
\(389\) 20.9924i 1.06435i 0.846633 + 0.532177i \(0.178626\pi\)
−0.846633 + 0.532177i \(0.821374\pi\)
\(390\) 0 0
\(391\) −32.7263 −1.65504
\(392\) −7.85926 1.27917i −0.396953 0.0646077i
\(393\) −24.6947 11.1564i −1.24568 0.562765i
\(394\) −3.23310 15.3176i −0.162881 0.771689i
\(395\) 0 0
\(396\) −1.61314 + 3.49319i −0.0810631 + 0.175539i
\(397\) 22.7486 22.7486i 1.14172 1.14172i 0.153584 0.988136i \(-0.450918\pi\)
0.988136 0.153584i \(-0.0490815\pi\)
\(398\) −13.0152 + 19.9794i −0.652393 + 1.00148i
\(399\) −6.17264 16.3459i −0.309018 0.818319i
\(400\) 0 0
\(401\) 24.2516i 1.21107i −0.795819 0.605535i \(-0.792959\pi\)
0.795819 0.605535i \(-0.207041\pi\)
\(402\) −8.78615 1.93074i −0.438213 0.0962964i
\(403\) 10.6334 + 10.6334i 0.529689 + 0.529689i
\(404\) 3.49364 + 7.90728i 0.173815 + 0.393402i
\(405\) 0 0
\(406\) −27.8655 + 5.88160i −1.38294 + 0.291899i
\(407\) 2.20773 2.20773i 0.109433 0.109433i
\(408\) −6.02007 29.7398i −0.298038 1.47234i
\(409\) 24.0958i 1.19146i 0.803184 + 0.595731i \(0.203137\pi\)
−0.803184 + 0.595731i \(0.796863\pi\)
\(410\) 0 0
\(411\) 20.4908 7.73784i 1.01074 0.381680i
\(412\) −22.4694 8.69857i −1.10699 0.428548i
\(413\) −3.62127 + 3.62127i −0.178191 + 0.178191i
\(414\) −13.3989 + 17.9722i −0.658519 + 0.883284i
\(415\) 0 0
\(416\) 14.0271 + 8.23206i 0.687737 + 0.403610i
\(417\) −1.60426 0.724763i −0.0785611 0.0354918i
\(418\) −3.74724 2.44107i −0.183284 0.119397i
\(419\) 39.9565i 1.95200i −0.217767 0.976001i \(-0.569877\pi\)
0.217767 0.976001i \(-0.430123\pi\)
\(420\) 0 0
\(421\) 27.1153i 1.32152i 0.750599 + 0.660758i \(0.229765\pi\)
−0.750599 + 0.660758i \(0.770235\pi\)
\(422\) 4.98523 7.65274i 0.242677 0.372530i
\(423\) −17.2949 1.09548i −0.840907 0.0532642i
\(424\) 8.96087 + 12.4448i 0.435178 + 0.604375i
\(425\) 0 0
\(426\) −34.4950 + 22.0659i −1.67129 + 1.06910i
\(427\) −13.9482 + 13.9482i −0.675002 + 0.675002i
\(428\) 10.5621 27.2831i 0.510538 1.31878i
\(429\) 1.12819 + 2.98758i 0.0544694 + 0.144242i
\(430\) 0 0
\(431\) 30.9739i 1.49196i 0.665969 + 0.745979i \(0.268018\pi\)
−0.665969 + 0.745979i \(0.731982\pi\)
\(432\) −18.7968 8.87011i −0.904363 0.426763i
\(433\) 8.18096 8.18096i 0.393152 0.393152i −0.482658 0.875809i \(-0.660328\pi\)
0.875809 + 0.482658i \(0.160328\pi\)
\(434\) 3.12495 + 14.8052i 0.150002 + 0.710673i
\(435\) 0 0
\(436\) 9.25160 + 20.9395i 0.443071 + 1.00282i
\(437\) −18.4242 18.4242i −0.881351 0.881351i
\(438\) 28.4449 + 6.25069i 1.35915 + 0.298670i
\(439\) 9.63432i 0.459821i 0.973212 + 0.229910i \(0.0738433\pi\)
−0.973212 + 0.229910i \(0.926157\pi\)
\(440\) 0 0
\(441\) 6.33759 5.58255i 0.301790 0.265836i
\(442\) −21.1017 13.7463i −1.00370 0.653844i
\(443\) −5.86218 + 5.86218i −0.278521 + 0.278521i −0.832518 0.553998i \(-0.813102\pi\)
0.553998 + 0.832518i \(0.313102\pi\)
\(444\) 11.8266 + 12.0244i 0.561265 + 0.570651i
\(445\) 0 0
\(446\) −16.4609 + 3.47442i −0.779445 + 0.164518i
\(447\) 2.15243 4.76440i 0.101806 0.225348i
\(448\) 7.30508 + 14.6445i 0.345132 + 0.691887i
\(449\) −6.40566 −0.302302 −0.151151 0.988511i \(-0.548298\pi\)
−0.151151 + 0.988511i \(0.548298\pi\)
\(450\) 0 0
\(451\) 4.62317i 0.217696i
\(452\) −7.44371 + 19.2279i −0.350122 + 0.904406i
\(453\) −11.7776 5.32079i −0.553358 0.249993i
\(454\) −0.0330201 0.156440i −0.00154971 0.00734211i
\(455\) 0 0
\(456\) 13.3537 20.1321i 0.625345 0.942771i
\(457\) −16.7031 16.7031i −0.781338 0.781338i 0.198719 0.980057i \(-0.436322\pi\)
−0.980057 + 0.198719i \(0.936322\pi\)
\(458\) 15.3726 + 10.0142i 0.718313 + 0.467931i
\(459\) 28.4331 + 15.0778i 1.32714 + 0.703770i
\(460\) 0 0
\(461\) 35.5078 1.65376 0.826882 0.562376i \(-0.190113\pi\)
0.826882 + 0.562376i \(0.190113\pi\)
\(462\) −0.689670 + 3.13847i −0.0320864 + 0.146015i
\(463\) 9.79796 9.79796i 0.455350 0.455350i −0.441776 0.897126i \(-0.645651\pi\)
0.897126 + 0.441776i \(0.145651\pi\)
\(464\) −29.1124 26.5142i −1.35151 1.23089i
\(465\) 0 0
\(466\) 0.879707 + 4.16782i 0.0407517 + 0.193071i
\(467\) −8.06737 8.06737i −0.373313 0.373313i 0.495369 0.868683i \(-0.335033\pi\)
−0.868683 + 0.495369i \(0.835033\pi\)
\(468\) −16.1885 + 5.96030i −0.748314 + 0.275515i
\(469\) −7.51276 −0.346907
\(470\) 0 0
\(471\) −13.9472 + 5.26682i −0.642653 + 0.242682i
\(472\) −6.98889 1.13751i −0.321690 0.0523579i
\(473\) 2.80328 + 2.80328i 0.128895 + 0.128895i
\(474\) −10.9725 + 7.01891i −0.503982 + 0.322389i
\(475\) 0 0
\(476\) −10.2411 23.1791i −0.469401 1.06241i
\(477\) −16.2330 1.02822i −0.743258 0.0470790i
\(478\) −19.8094 12.9044i −0.906060 0.590235i
\(479\) 4.04697 0.184911 0.0924553 0.995717i \(-0.470528\pi\)
0.0924553 + 0.995717i \(0.470528\pi\)
\(480\) 0 0
\(481\) 13.9983 0.638267
\(482\) 5.55406 + 3.61809i 0.252981 + 0.164799i
\(483\) −7.70779 + 17.0612i −0.350717 + 0.776312i
\(484\) −8.55863 19.3710i −0.389029 0.880502i
\(485\) 0 0
\(486\) 19.9214 9.44134i 0.903652 0.428268i
\(487\) −6.28516 6.28516i −0.284808 0.284808i 0.550215 0.835023i \(-0.314546\pi\)
−0.835023 + 0.550215i \(0.814546\pi\)
\(488\) −26.9194 4.38139i −1.21859 0.198336i
\(489\) −11.7240 31.0466i −0.530178 1.40398i
\(490\) 0 0
\(491\) −25.1486 −1.13494 −0.567471 0.823393i \(-0.692078\pi\)
−0.567471 + 0.823393i \(0.692078\pi\)
\(492\) −24.9729 0.207071i −1.12586 0.00933550i
\(493\) 43.1140 + 43.1140i 1.94176 + 1.94176i
\(494\) −4.14094 19.6187i −0.186310 0.882688i
\(495\) 0 0
\(496\) −14.0873 + 15.4677i −0.632537 + 0.694520i
\(497\) −24.1817 + 24.1817i −1.08470 + 1.08470i
\(498\) −7.44597 1.63623i −0.333662 0.0733214i
\(499\) 4.01216 0.179609 0.0898044 0.995959i \(-0.471376\pi\)
0.0898044 + 0.995959i \(0.471376\pi\)
\(500\) 0 0
\(501\) −20.1109 + 7.59439i −0.898488 + 0.339292i
\(502\) 21.7279 + 14.1542i 0.969765 + 0.631734i
\(503\) 13.7823 + 13.7823i 0.614523 + 0.614523i 0.944121 0.329598i \(-0.106913\pi\)
−0.329598 + 0.944121i \(0.606913\pi\)
\(504\) −16.9221 3.86595i −0.753770 0.172203i
\(505\) 0 0
\(506\) 0.989624 + 4.68858i 0.0439942 + 0.208433i
\(507\) 3.37548 7.47162i 0.149910 0.331826i
\(508\) 11.7143 30.2593i 0.519738 1.34254i
\(509\) 10.5288i 0.466680i 0.972395 + 0.233340i \(0.0749656\pi\)
−0.972395 + 0.233340i \(0.925034\pi\)
\(510\) 0 0
\(511\) 24.3223 1.07595
\(512\) −10.5297 + 20.0281i −0.465353 + 0.885125i
\(513\) 7.51879 + 24.4958i 0.331963 + 1.08151i
\(514\) 2.51825 0.531531i 0.111075 0.0234448i
\(515\) 0 0
\(516\) −15.2680 + 15.0169i −0.672135 + 0.661080i
\(517\) −2.61938 + 2.61938i −0.115200 + 0.115200i
\(518\) 11.8020 + 7.68818i 0.518550 + 0.337799i
\(519\) −35.0208 + 13.2248i −1.53724 + 0.580503i
\(520\) 0 0
\(521\) 32.5500i 1.42604i −0.701144 0.713020i \(-0.747327\pi\)
0.701144 0.713020i \(-0.252673\pi\)
\(522\) 41.3286 6.02492i 1.80890 0.263703i
\(523\) 9.90568 + 9.90568i 0.433145 + 0.433145i 0.889697 0.456552i \(-0.150916\pi\)
−0.456552 + 0.889697i \(0.650916\pi\)
\(524\) −12.6454 28.6208i −0.552417 1.25030i
\(525\) 0 0
\(526\) 1.63602 + 7.75105i 0.0713340 + 0.337962i
\(527\) 22.9069 22.9069i 0.997839 0.997839i
\(528\) −4.07867 + 1.76179i −0.177501 + 0.0766720i
\(529\) 4.91829i 0.213839i
\(530\) 0 0
\(531\) 5.63573 4.96431i 0.244570 0.215433i
\(532\) 7.28380 18.8149i 0.315793 0.815729i
\(533\) −14.6568 + 14.6568i −0.634855 + 0.634855i
\(534\) 5.23484 + 8.18348i 0.226534 + 0.354134i
\(535\) 0 0
\(536\) −6.06969 8.42958i −0.262171 0.364102i
\(537\) −1.51153 + 3.34576i −0.0652271 + 0.144380i
\(538\) −1.40404 + 2.15531i −0.0605322 + 0.0929220i
\(539\) 1.80535i 0.0777619i
\(540\) 0 0
\(541\) 44.0216i 1.89264i −0.323234 0.946319i \(-0.604770\pi\)
0.323234 0.946319i \(-0.395230\pi\)
\(542\) −8.94500 5.82705i −0.384221 0.250293i
\(543\) −13.8621 + 30.6838i −0.594880 + 1.31677i
\(544\) 17.7337 30.2177i 0.760328 1.29557i
\(545\) 0 0
\(546\) −12.1363 + 7.76338i −0.519385 + 0.332242i
\(547\) 5.74698 5.74698i 0.245723 0.245723i −0.573490 0.819213i \(-0.694411\pi\)
0.819213 + 0.573490i \(0.194411\pi\)
\(548\) 23.5858 + 9.13077i 1.00754 + 0.390047i
\(549\) 21.7074 19.1213i 0.926450 0.816076i
\(550\) 0 0
\(551\) 48.5446i 2.06807i
\(552\) −25.3705 + 5.13563i −1.07984 + 0.218587i
\(553\) −7.69193 + 7.69193i −0.327094 + 0.327094i
\(554\) 11.9352 2.51919i 0.507080 0.107030i
\(555\) 0 0
\(556\) −0.821496 1.85932i −0.0348392 0.0788527i
\(557\) 24.0378 + 24.0378i 1.01851 + 1.01851i 0.999825 + 0.0186883i \(0.00594902\pi\)
0.0186883 + 0.999825i \(0.494051\pi\)
\(558\) −3.20110 21.9583i −0.135513 0.929568i
\(559\) 17.7744i 0.751776i
\(560\) 0 0
\(561\) 6.43594 2.43038i 0.271726 0.102611i
\(562\) 3.33639 5.12164i 0.140737 0.216043i
\(563\) −14.5105 + 14.5105i −0.611544 + 0.611544i −0.943348 0.331805i \(-0.892343\pi\)
0.331805 + 0.943348i \(0.392343\pi\)
\(564\) −14.0317 14.2664i −0.590842 0.600723i
\(565\) 0 0
\(566\) 2.70814 + 12.8305i 0.113832 + 0.539305i
\(567\) 14.5572 11.2719i 0.611343 0.473375i
\(568\) −46.6695 7.59590i −1.95821 0.318717i
\(569\) −31.0050 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(570\) 0 0
\(571\) 33.0629i 1.38364i −0.722070 0.691820i \(-0.756809\pi\)
0.722070 0.691820i \(-0.243191\pi\)
\(572\) −1.33128 + 3.43884i −0.0556636 + 0.143785i
\(573\) −1.90048 + 4.20671i −0.0793936 + 0.175738i
\(574\) −20.4070 + 4.30732i −0.851771 + 0.179784i
\(575\) 0 0
\(576\) −9.33394 22.1106i −0.388914 0.921274i
\(577\) −17.5957 17.5957i −0.732519 0.732519i 0.238599 0.971118i \(-0.423312\pi\)
−0.971118 + 0.238599i \(0.923312\pi\)
\(578\) −16.4900 + 25.3135i −0.685894 + 1.05290i
\(579\) −17.7307 + 6.69556i −0.736861 + 0.278258i
\(580\) 0 0
\(581\) −6.36681 −0.264140
\(582\) 0.827757 3.76685i 0.0343116 0.156141i
\(583\) −2.45855 + 2.45855i −0.101823 + 0.101823i
\(584\) 19.6504 + 27.2905i 0.813140 + 1.12929i
\(585\) 0 0
\(586\) −7.54706 + 1.59297i −0.311766 + 0.0658048i
\(587\) 6.48696 + 6.48696i 0.267746 + 0.267746i 0.828191 0.560446i \(-0.189370\pi\)
−0.560446 + 0.828191i \(0.689370\pi\)
\(588\) 9.75192 + 0.0808615i 0.402162 + 0.00333467i
\(589\) 25.7922 1.06275
\(590\) 0 0
\(591\) 6.77353 + 17.9372i 0.278626 + 0.737836i
\(592\) 0.908632 + 19.4537i 0.0373445 + 0.799542i
\(593\) 2.17189 + 2.17189i 0.0891890 + 0.0891890i 0.750294 0.661105i \(-0.229912\pi\)
−0.661105 + 0.750294i \(0.729912\pi\)
\(594\) 1.30034 4.52946i 0.0533535 0.185846i
\(595\) 0 0
\(596\) 5.52187 2.43971i 0.226185 0.0999343i
\(597\) 12.0234 26.6138i 0.492086 1.08923i
\(598\) −11.7267 + 18.0015i −0.479542 + 0.736137i
\(599\) 7.56553 0.309119 0.154560 0.987983i \(-0.450604\pi\)
0.154560 + 0.987983i \(0.450604\pi\)
\(600\) 0 0
\(601\) 29.2389 1.19268 0.596339 0.802732i \(-0.296621\pi\)
0.596339 + 0.802732i \(0.296621\pi\)
\(602\) −9.76209 + 14.9856i −0.397873 + 0.610768i
\(603\) 10.9955 + 0.696471i 0.447772 + 0.0283625i
\(604\) −6.03095 13.6500i −0.245396 0.555412i
\(605\) 0 0
\(606\) −5.70525 8.91886i −0.231760 0.362304i
\(607\) 28.6094 + 28.6094i 1.16122 + 1.16122i 0.984209 + 0.177009i \(0.0566421\pi\)
0.177009 + 0.984209i \(0.443358\pi\)
\(608\) 26.9957 7.02820i 1.09482 0.285031i
\(609\) 32.6310 12.3223i 1.32227 0.499324i
\(610\) 0 0
\(611\) −16.6084 −0.671902
\(612\) 12.8399 + 34.8738i 0.519021 + 1.40969i
\(613\) −9.80228 9.80228i −0.395910 0.395910i 0.480878 0.876788i \(-0.340318\pi\)
−0.876788 + 0.480878i \(0.840318\pi\)
\(614\) 6.30161 1.33009i 0.254312 0.0536780i
\(615\) 0 0
\(616\) −3.01110 + 2.16813i −0.121321 + 0.0873564i
\(617\) −6.03941 + 6.03941i −0.243138 + 0.243138i −0.818147 0.575009i \(-0.804998\pi\)
0.575009 + 0.818147i \(0.304998\pi\)
\(618\) 28.8218 + 6.33352i 1.15938 + 0.254772i
\(619\) 16.8314 0.676509 0.338255 0.941055i \(-0.390163\pi\)
0.338255 + 0.941055i \(0.390163\pi\)
\(620\) 0 0
\(621\) 12.8626 24.2559i 0.516159 0.973354i
\(622\) −9.52958 + 14.6287i −0.382101 + 0.586557i
\(623\) 5.73679 + 5.73679i 0.229840 + 0.229840i
\(624\) −18.5159 7.34517i −0.741230 0.294042i
\(625\) 0 0
\(626\) −22.8922 + 4.83188i −0.914956 + 0.193121i
\(627\) 4.99156 + 2.25505i 0.199344 + 0.0900582i
\(628\) −16.0539 6.21493i −0.640619 0.248003i
\(629\) 30.1556i 1.20238i
\(630\) 0 0
\(631\) 20.4913 0.815744 0.407872 0.913039i \(-0.366271\pi\)
0.407872 + 0.913039i \(0.366271\pi\)
\(632\) −14.8451 2.41617i −0.590505 0.0961101i
\(633\) −4.60535 + 10.1939i −0.183046 + 0.405173i
\(634\) −2.12994 10.0911i −0.0845909 0.400769i
\(635\) 0 0
\(636\) −13.1702 13.3904i −0.522232 0.530965i
\(637\) 5.72347 5.72347i 0.226772 0.226772i
\(638\) 4.87305 7.48053i 0.192926 0.296157i
\(639\) 37.6336 33.1500i 1.48876 1.31140i
\(640\) 0 0
\(641\) 25.3407i 1.00090i 0.865767 + 0.500448i \(0.166831\pi\)
−0.865767 + 0.500448i \(0.833169\pi\)
\(642\) −7.69037 + 34.9964i −0.303515 + 1.38120i
\(643\) 16.2516 + 16.2516i 0.640899 + 0.640899i 0.950776 0.309878i \(-0.100288\pi\)
−0.309878 + 0.950776i \(0.600288\pi\)
\(644\) −19.7737 + 8.73654i −0.779193 + 0.344268i
\(645\) 0 0
\(646\) −42.2632 + 8.92055i −1.66282 + 0.350974i
\(647\) 3.30434 3.30434i 0.129907 0.129907i −0.639164 0.769071i \(-0.720719\pi\)
0.769071 + 0.639164i \(0.220719\pi\)
\(648\) 24.4084 + 7.22689i 0.958854 + 0.283899i
\(649\) 1.60541i 0.0630180i
\(650\) 0 0
\(651\) −6.54695 17.3371i −0.256595 0.679496i
\(652\) 13.8345 35.7361i 0.541801 1.39953i
\(653\) −2.00144 + 2.00144i −0.0783225 + 0.0783225i −0.745183 0.666860i \(-0.767638\pi\)
0.666860 + 0.745183i \(0.267638\pi\)
\(654\) −15.1082 23.6183i −0.590778 0.923547i
\(655\) 0 0
\(656\) −21.3201 19.4174i −0.832411 0.758122i
\(657\) −35.5976 2.25480i −1.38879 0.0879681i
\(658\) −14.0025 9.12169i −0.545876 0.355600i
\(659\) 14.5552i 0.566989i 0.958974 + 0.283495i \(0.0914938\pi\)
−0.958974 + 0.283495i \(0.908506\pi\)
\(660\) 0 0
\(661\) 10.7204i 0.416977i 0.978025 + 0.208488i \(0.0668544\pi\)
−0.978025 + 0.208488i \(0.933146\pi\)
\(662\) 10.8424 16.6440i 0.421402 0.646887i
\(663\) 28.1088 + 12.6988i 1.09165 + 0.493180i
\(664\) −5.14386 7.14379i −0.199620 0.277233i
\(665\) 0 0
\(666\) −16.5604 12.3464i −0.641703 0.478412i
\(667\) 36.7799 36.7799i 1.42412 1.42412i
\(668\) −23.1486 8.96149i −0.895644 0.346731i
\(669\) 19.2760 7.27910i 0.745252 0.281426i
\(670\) 0 0
\(671\) 6.18365i 0.238717i
\(672\) −11.5767 16.3621i −0.446580 0.631181i
\(673\) 12.2384 12.2384i 0.471755 0.471755i −0.430727 0.902482i \(-0.641743\pi\)
0.902482 + 0.430727i \(0.141743\pi\)
\(674\) −4.36590 20.6845i −0.168168 0.796737i
\(675\) 0 0
\(676\) 8.65950 3.82599i 0.333058 0.147154i
\(677\) −3.99371 3.99371i −0.153491 0.153491i 0.626184 0.779675i \(-0.284616\pi\)
−0.779675 + 0.626184i \(0.784616\pi\)
\(678\) 5.41984 24.6639i 0.208148 0.947212i
\(679\) 3.22091i 0.123607i
\(680\) 0 0
\(681\) 0.0691789 + 0.183194i 0.00265094 + 0.00702002i
\(682\) −3.97448 2.58910i −0.152191 0.0991416i
\(683\) −7.19759 + 7.19759i −0.275408 + 0.275408i −0.831273 0.555865i \(-0.812387\pi\)
0.555865 + 0.831273i \(0.312387\pi\)
\(684\) −12.4047 + 26.8618i −0.474304 + 1.02709i
\(685\) 0 0
\(686\) 27.7835 5.86429i 1.06078 0.223900i
\(687\) −20.4772 9.25106i −0.781255 0.352950i
\(688\) −24.7014 + 1.15374i −0.941731 + 0.0439859i
\(689\) −15.5886 −0.593879
\(690\) 0 0
\(691\) 24.1691i 0.919434i −0.888065 0.459717i \(-0.847951\pi\)
0.888065 0.459717i \(-0.152049\pi\)
\(692\) −40.3106 15.6054i −1.53238 0.593229i
\(693\) 0.248783 3.92766i 0.00945050 0.149200i
\(694\) −8.35055 39.5627i −0.316983 1.50178i
\(695\) 0 0
\(696\) 40.1892 + 26.6577i 1.52337 + 1.01046i
\(697\) 31.5740 + 31.5740i 1.19595 + 1.19595i
\(698\) 0.714553 + 0.465482i 0.0270462 + 0.0176187i
\(699\) −1.84304 4.88059i −0.0697100 0.184601i
\(700\) 0 0
\(701\) 30.9018 1.16714 0.583572 0.812061i \(-0.301655\pi\)
0.583572 + 0.812061i \(0.301655\pi\)
\(702\) 18.4821 10.2372i 0.697563 0.386379i
\(703\) 16.9770 16.9770i 0.640299 0.640299i
\(704\) −4.86544 1.62689i −0.183373 0.0613156i
\(705\) 0 0
\(706\) 8.11559 + 38.4495i 0.305434 + 1.44707i
\(707\) −6.25230 6.25230i −0.235142 0.235142i
\(708\) 8.67194 + 0.0719064i 0.325911 + 0.00270241i
\(709\) −20.8029 −0.781269 −0.390634 0.920546i \(-0.627744\pi\)
−0.390634 + 0.920546i \(0.627744\pi\)
\(710\) 0 0
\(711\) 11.9708 10.5447i 0.448941 0.395456i
\(712\) −1.80203 + 11.0717i −0.0675338 + 0.414931i
\(713\) −19.5415 19.5415i −0.731835 0.731835i
\(714\) 16.7241 + 26.1444i 0.625884 + 0.978428i
\(715\) 0 0
\(716\) −3.87769 + 1.71327i −0.144916 + 0.0640277i
\(717\) 26.3873 + 11.9211i 0.985453 + 0.445201i
\(718\) −15.0139 9.78050i −0.560313 0.365005i
\(719\) −34.2881 −1.27873 −0.639364 0.768904i \(-0.720802\pi\)
−0.639364 + 0.768904i \(0.720802\pi\)
\(720\) 0 0
\(721\) 24.6446 0.917812
\(722\) −6.30114 4.10476i −0.234504 0.152763i
\(723\) −7.39836 3.34238i −0.275148 0.124304i
\(724\) −35.5621 + 15.7123i −1.32165 + 0.583941i
\(725\) 0 0
\(726\) 13.9766 + 21.8492i 0.518719 + 0.810899i
\(727\) 2.33356 + 2.33356i 0.0865468 + 0.0865468i 0.749055 0.662508i \(-0.230508\pi\)
−0.662508 + 0.749055i \(0.730508\pi\)
\(728\) −16.4196 2.67244i −0.608552 0.0990474i
\(729\) −22.3505 + 15.1478i −0.827797 + 0.561028i
\(730\) 0 0
\(731\) 38.2901 1.41621
\(732\) 33.4021 + 0.276966i 1.23458 + 0.0102369i
\(733\) 35.6179 + 35.6179i 1.31558 + 1.31558i 0.917237 + 0.398342i \(0.130414\pi\)
0.398342 + 0.917237i \(0.369586\pi\)
\(734\) 0.897608 + 4.25263i 0.0331313 + 0.156967i
\(735\) 0 0
\(736\) −25.7782 15.1284i −0.950198 0.557640i
\(737\) 1.66531 1.66531i 0.0613425 0.0613425i
\(738\) 30.2665 4.41228i 1.11413 0.162418i
\(739\) −14.3621 −0.528318 −0.264159 0.964479i \(-0.585094\pi\)
−0.264159 + 0.964479i \(0.585094\pi\)
\(740\) 0 0
\(741\) 8.67551 + 22.9738i 0.318703 + 0.843965i
\(742\) −13.1428 8.56162i −0.482487 0.314307i
\(743\) 1.87689 + 1.87689i 0.0688563 + 0.0688563i 0.740696 0.671840i \(-0.234496\pi\)
−0.671840 + 0.740696i \(0.734496\pi\)
\(744\) 14.1635 21.3529i 0.519259 0.782835i
\(745\) 0 0
\(746\) 8.15428 + 38.6329i 0.298550 + 1.41445i
\(747\) 9.31833 + 0.590235i 0.340940 + 0.0215956i
\(748\) 7.40806 + 2.86788i 0.270866 + 0.104860i
\(749\) 29.9243i 1.09341i
\(750\) 0 0
\(751\) −30.0439 −1.09632 −0.548158 0.836375i \(-0.684671\pi\)
−0.548158 + 0.836375i \(0.684671\pi\)
\(752\) −1.07805 23.0809i −0.0393125 0.841675i
\(753\) −28.9430 13.0757i −1.05474 0.476503i
\(754\) 39.1644 8.26647i 1.42628 0.301047i
\(755\) 0 0
\(756\) 21.2048 + 1.51977i 0.771212 + 0.0552735i
\(757\) −34.9468 + 34.9468i −1.27016 + 1.27016i −0.324162 + 0.946002i \(0.605082\pi\)
−0.946002 + 0.324162i \(0.894918\pi\)
\(758\) −10.3891 6.76775i −0.377347 0.245816i
\(759\) −2.07332 5.49040i −0.0752567 0.199289i
\(760\) 0 0
\(761\) 2.88711i 0.104657i 0.998630 + 0.0523287i \(0.0166644\pi\)
−0.998630 + 0.0523287i \(0.983336\pi\)
\(762\) −8.52929 + 38.8140i −0.308984 + 1.40608i
\(763\) −16.5569 16.5569i −0.599399 0.599399i
\(764\) −4.87552 + 2.15413i −0.176390 + 0.0779337i
\(765\) 0 0
\(766\) −6.91359 32.7548i −0.249798 1.18348i
\(767\) 5.08962 5.08962i 0.183776 0.183776i
\(768\) 9.00584 26.2087i 0.324970 0.945724i
\(769\) 19.0345i 0.686400i 0.939262 + 0.343200i \(0.111511\pi\)
−0.939262 + 0.343200i \(0.888489\pi\)
\(770\) 0 0
\(771\) −2.94892 + 1.11359i −0.106203 + 0.0401048i
\(772\) −20.4088 7.90085i −0.734529 0.284358i
\(773\) 18.9794 18.9794i 0.682642 0.682642i −0.277953 0.960595i \(-0.589656\pi\)
0.960595 + 0.277953i \(0.0896558\pi\)
\(774\) 15.6768 21.0276i 0.563492 0.755823i
\(775\) 0 0
\(776\) 3.61398 2.60223i 0.129734 0.0934148i
\(777\) −15.7210 7.10233i −0.563988 0.254795i
\(778\) 16.2044 24.8752i 0.580958 0.891818i
\(779\) 35.5511i 1.27375i
\(780\) 0 0
\(781\) 10.7204i 0.383608i
\(782\) 38.7794 + 25.2621i 1.38675 + 0.903371i
\(783\) −48.9003 + 15.0096i −1.74756 + 0.536399i
\(784\) 8.32552 + 7.58250i 0.297340 + 0.270804i
\(785\) 0 0
\(786\) 20.6504 + 32.2823i 0.736576 + 1.15147i
\(787\) −28.3424 + 28.3424i −1.01030 + 1.01030i −0.0103521 + 0.999946i \(0.503295\pi\)
−0.999946 + 0.0103521i \(0.996705\pi\)
\(788\) −7.99286 + 20.6465i −0.284734 + 0.735500i
\(789\) −3.42756 9.07661i −0.122024 0.323136i
\(790\) 0 0
\(791\) 21.0893i 0.749850i
\(792\) 4.60797 2.89408i 0.163737 0.102837i
\(793\) 19.6040 19.6040i 0.696157 0.696157i
\(794\) −44.5164 + 9.39613i −1.57983 + 0.333456i
\(795\) 0 0
\(796\) 30.8451 13.6282i 1.09327 0.483037i
\(797\) −15.8150 15.8150i −0.560195 0.560195i 0.369168 0.929363i \(-0.379643\pi\)
−0.929363 + 0.369168i \(0.879643\pi\)
\(798\) −5.30341 + 24.1341i −0.187739 + 0.854338i
\(799\) 35.7782i 1.26574i
\(800\) 0 0
\(801\) −7.86441 8.92807i −0.277875 0.315458i
\(802\) −18.7204 + 28.7373i −0.661039 + 1.01475i
\(803\) −5.39139 + 5.39139i −0.190258 + 0.190258i
\(804\) 8.92089 + 9.07007i 0.314616 + 0.319877i
\(805\) 0 0
\(806\) −4.39206 20.8084i −0.154704 0.732945i
\(807\) 1.29704 2.87101i 0.0456581 0.101064i
\(808\) 1.96396 12.0666i 0.0690918 0.424503i
\(809\) 49.0232 1.72356 0.861782 0.507279i \(-0.169349\pi\)
0.861782 + 0.507279i \(0.169349\pi\)
\(810\) 0 0
\(811\) 21.1676i 0.743295i 0.928374 + 0.371648i \(0.121207\pi\)
−0.928374 + 0.371648i \(0.878793\pi\)
\(812\) 37.5597 + 14.5405i 1.31809 + 0.510271i
\(813\) 11.9153 + 5.38302i 0.417888 + 0.188791i
\(814\) −4.32028 + 0.911887i −0.151426 + 0.0319616i
\(815\) 0 0
\(816\) −15.8232 + 39.8875i −0.553922 + 1.39634i
\(817\) 21.5566 + 21.5566i 0.754169 + 0.754169i
\(818\) 18.6001 28.5527i 0.650336 0.998320i
\(819\) 13.2405 11.6631i 0.462661 0.407542i
\(820\) 0 0
\(821\) −13.4855 −0.470649 −0.235324 0.971917i \(-0.575615\pi\)
−0.235324 + 0.971917i \(0.575615\pi\)
\(822\) −30.2538 6.64821i −1.05522 0.231883i
\(823\) −19.8632 + 19.8632i −0.692387 + 0.692387i −0.962757 0.270370i \(-0.912854\pi\)
0.270370 + 0.962757i \(0.412854\pi\)
\(824\) 19.9108 + 27.6521i 0.693626 + 0.963306i
\(825\) 0 0
\(826\) 7.08641 1.49574i 0.246568 0.0520433i
\(827\) −36.8216 36.8216i −1.28041 1.28041i −0.940432 0.339982i \(-0.889579\pi\)
−0.339982 0.940432i \(-0.610421\pi\)
\(828\) 29.7503 10.9535i 1.03389 0.380660i
\(829\) 34.1845 1.18728 0.593638 0.804732i \(-0.297691\pi\)
0.593638 + 0.804732i \(0.297691\pi\)
\(830\) 0 0
\(831\) −13.9764 + 5.27784i −0.484835 + 0.183086i
\(832\) −10.2671 20.5825i −0.355949 0.713571i
\(833\) −12.3297 12.3297i −0.427198 0.427198i
\(834\) 1.34153 + 2.09718i 0.0464535 + 0.0726195i
\(835\) 0 0
\(836\) 2.55603 + 5.78515i 0.0884022 + 0.200084i
\(837\) 7.97474 + 25.9812i 0.275647 + 0.898042i
\(838\) −30.8432 + 47.3469i −1.06546 + 1.63557i
\(839\) 19.6854 0.679616 0.339808 0.940495i \(-0.389638\pi\)
0.339808 + 0.940495i \(0.389638\pi\)
\(840\) 0 0
\(841\) −67.9085 −2.34167
\(842\) 20.9308 32.1306i 0.721324 1.10729i
\(843\) −3.08215 + 6.82234i −0.106155 + 0.234974i
\(844\) −11.8146 + 5.22001i −0.406676 + 0.179680i
\(845\) 0 0
\(846\) 19.6482 + 14.6484i 0.675519 + 0.503623i
\(847\) 15.3167 + 15.3167i 0.526289 + 0.526289i
\(848\) −1.01186 21.6638i −0.0347474 0.743937i
\(849\) −5.67371 15.0247i −0.194721 0.515647i
\(850\) 0 0
\(851\) −25.7252 −0.881850
\(852\) 57.9084 + 0.480168i 1.98391 + 0.0164503i
\(853\) −29.0954 29.0954i −0.996209 0.996209i 0.00378410 0.999993i \(-0.498795\pi\)
−0.999993 + 0.00378410i \(0.998795\pi\)
\(854\) 27.2951 5.76121i 0.934018 0.197144i
\(855\) 0 0
\(856\) −33.5761 + 24.1764i −1.14761 + 0.826331i
\(857\) 8.71719 8.71719i 0.297773 0.297773i −0.542368 0.840141i \(-0.682472\pi\)
0.840141 + 0.542368i \(0.182472\pi\)
\(858\) 0.969317 4.41105i 0.0330920 0.150591i
\(859\) −49.6253 −1.69319 −0.846597 0.532235i \(-0.821352\pi\)
−0.846597 + 0.532235i \(0.821352\pi\)
\(860\) 0 0
\(861\) 23.8969 9.02409i 0.814405 0.307540i
\(862\) 23.9094 36.7029i 0.814357 1.25011i
\(863\) −26.7844 26.7844i −0.911750 0.911750i 0.0846599 0.996410i \(-0.473020\pi\)
−0.996410 + 0.0846599i \(0.973020\pi\)
\(864\) 15.4265 + 25.0204i 0.524821 + 0.851212i
\(865\) 0 0
\(866\) −16.0092 + 3.37908i −0.544014 + 0.114826i
\(867\) 15.2334 33.7192i 0.517354 1.14516i
\(868\) 7.72550 19.9558i 0.262220 0.677345i
\(869\) 3.41005i 0.115678i
\(870\) 0 0
\(871\) 10.5590 0.357779
\(872\) 5.20081 31.9540i 0.176122 1.08210i
\(873\) −0.298595 + 4.71406i −0.0101059 + 0.159547i
\(874\) 7.60998 + 36.0541i 0.257412 + 1.21955i
\(875\) 0 0
\(876\) −28.8811 29.3640i −0.975801 0.992119i
\(877\) −13.3952 + 13.3952i −0.452323 + 0.452323i −0.896125 0.443802i \(-0.853629\pi\)
0.443802 + 0.896125i \(0.353629\pi\)
\(878\) 7.43694 11.4163i 0.250984 0.385282i
\(879\) 8.83773 3.33735i 0.298089 0.112566i
\(880\) 0 0
\(881\) 11.8169i 0.398120i −0.979987 0.199060i \(-0.936211\pi\)
0.979987 0.199060i \(-0.0637889\pi\)
\(882\) −11.8191 + 1.72300i −0.397970 + 0.0580163i
\(883\) 19.7888 + 19.7888i 0.665947 + 0.665947i 0.956775 0.290828i \(-0.0939308\pi\)
−0.290828 + 0.956775i \(0.593931\pi\)
\(884\) 14.3937 + 32.5777i 0.484112 + 1.09571i
\(885\) 0 0
\(886\) 11.4716 2.42133i 0.385396 0.0813461i
\(887\) −0.472133 + 0.472133i −0.0158527 + 0.0158527i −0.714989 0.699136i \(-0.753568\pi\)
0.699136 + 0.714989i \(0.253568\pi\)
\(888\) −4.73222 23.3776i −0.158803 0.784502i
\(889\) 33.1886i 1.11311i
\(890\) 0 0
\(891\) −0.728228 + 5.72538i −0.0243966 + 0.191807i
\(892\) 22.1875 + 8.58944i 0.742893 + 0.287596i
\(893\) −20.1424 + 20.1424i −0.674041 + 0.674041i
\(894\) −6.22828 + 3.98413i −0.208305 + 0.133249i
\(895\) 0 0
\(896\) 2.64814 22.9921i 0.0884683 0.768113i
\(897\) 10.8331 23.9792i 0.361708 0.800641i
\(898\) 7.59048 + 4.94467i 0.253297 + 0.165006i
\(899\) 51.4884i 1.71723i
\(900\) 0 0
\(901\) 33.5815i 1.11876i
\(902\) 3.56872 5.47828i 0.118825 0.182407i
\(903\) 9.01820 19.9618i 0.300107 0.664287i
\(904\) 23.6630 17.0384i 0.787019 0.566690i
\(905\) 0 0
\(906\) 9.84875 + 15.3963i 0.327203 + 0.511508i
\(907\) −38.0394 + 38.0394i −1.26308 + 1.26308i −0.313482 + 0.949594i \(0.601495\pi\)
−0.949594 + 0.313482i \(0.898505\pi\)
\(908\) −0.0816321 + 0.210865i −0.00270906 + 0.00699780i
\(909\) 8.57111 + 9.73035i 0.284286 + 0.322735i
\(910\) 0 0
\(911\) 50.1309i 1.66091i −0.557086 0.830455i \(-0.688081\pi\)
0.557086 0.830455i \(-0.311919\pi\)
\(912\) −31.3640 + 13.5478i −1.03857 + 0.448611i
\(913\) 1.41129 1.41129i 0.0467070 0.0467070i
\(914\) 6.89908 + 32.6860i 0.228201 + 1.08116i
\(915\) 0 0
\(916\) −10.4858 23.7328i −0.346460 0.784154i
\(917\) 22.6305 + 22.6305i 0.747325 + 0.747325i
\(918\) −22.0533 39.8147i −0.727869 1.31408i
\(919\) 21.5999i 0.712514i −0.934388 0.356257i \(-0.884053\pi\)
0.934388 0.356257i \(-0.115947\pi\)
\(920\) 0 0
\(921\) −7.37929 + 2.78661i −0.243156 + 0.0918219i
\(922\) −42.0754 27.4092i −1.38568 0.902675i
\(923\) 33.9869 33.9869i 1.11869 1.11869i
\(924\) 3.23988 3.18659i 0.106584 0.104831i
\(925\) 0 0
\(926\) −19.1735 + 4.04697i −0.630079 + 0.132992i
\(927\) −36.0693 2.28468i −1.18467 0.0750387i
\(928\) 14.0302 + 53.8909i 0.460565 + 1.76905i
\(929\) 0.457555 0.0150119 0.00750595 0.999972i \(-0.497611\pi\)
0.00750595 + 0.999972i \(0.497611\pi\)
\(930\) 0 0
\(931\) 13.8827i 0.454988i
\(932\) 2.17481 5.61778i 0.0712383 0.184017i
\(933\) 8.80340 19.4863i 0.288211 0.637954i
\(934\) 3.33216 + 15.7869i 0.109032 + 0.516563i
\(935\) 0 0
\(936\) 23.7837 + 5.43352i 0.777394 + 0.177600i
\(937\) −7.63736 7.63736i −0.249502 0.249502i 0.571264 0.820766i \(-0.306453\pi\)
−0.820766 + 0.571264i \(0.806453\pi\)
\(938\) 8.90234 + 5.79926i 0.290672 + 0.189352i
\(939\) 26.8071 10.1231i 0.874818 0.330354i
\(940\) 0 0
\(941\) −52.1835 −1.70113 −0.850567 0.525867i \(-0.823741\pi\)
−0.850567 + 0.525867i \(0.823741\pi\)
\(942\) 20.5925 + 4.52515i 0.670940 + 0.147437i
\(943\) 26.9353 26.9353i 0.877135 0.877135i
\(944\) 7.40351 + 6.74277i 0.240964 + 0.219459i
\(945\) 0 0
\(946\) −1.15787 5.48569i −0.0376456 0.178355i
\(947\) 28.3995 + 28.3995i 0.922860 + 0.922860i 0.997231 0.0743707i \(-0.0236948\pi\)
−0.0743707 + 0.997231i \(0.523695\pi\)
\(948\) 18.4200 + 0.152736i 0.598255 + 0.00496064i
\(949\) −34.1845 −1.10968
\(950\) 0 0
\(951\) 4.46235 + 11.8169i 0.144702 + 0.383188i
\(952\) −5.75706 + 35.3717i −0.186587 + 1.14640i
\(953\) 23.6130 + 23.6130i 0.764900 + 0.764900i 0.977204 0.212304i \(-0.0680967\pi\)
−0.212304 + 0.977204i \(0.568097\pi\)
\(954\) 18.4418 + 13.7490i 0.597076 + 0.445141i
\(955\) 0 0
\(956\) 13.5122 + 30.5826i 0.437015 + 0.989111i
\(957\) −4.50171 + 9.96454i −0.145520 + 0.322108i
\(958\) −4.79551 3.12394i −0.154936 0.100930i
\(959\) −25.8691 −0.835356
\(960\) 0 0
\(961\) −3.64371 −0.117539
\(962\) −16.5875 10.8056i −0.534801 0.348386i
\(963\) 2.77413 43.7965i 0.0893952 1.41132i
\(964\) −3.78848 8.57460i −0.122019 0.276169i
\(965\) 0 0
\(966\) 22.3034 14.2671i 0.717599 0.459036i
\(967\) 3.10676 + 3.10676i 0.0999067 + 0.0999067i 0.755293 0.655387i \(-0.227494\pi\)
−0.655387 + 0.755293i \(0.727494\pi\)
\(968\) −4.81125 + 29.5606i −0.154640 + 0.950112i
\(969\) 49.4909 18.6891i 1.58988 0.600379i
\(970\) 0 0
\(971\) −16.7395 −0.537196 −0.268598 0.963252i \(-0.586560\pi\)
−0.268598 + 0.963252i \(0.586560\pi\)
\(972\) −30.8941 4.19010i −0.990928 0.134397i
\(973\) 1.47017 + 1.47017i 0.0471314 + 0.0471314i
\(974\) 2.59603 + 12.2993i 0.0831823 + 0.394096i
\(975\) 0 0
\(976\) 28.5165 + 25.9715i 0.912790 + 0.831327i
\(977\) 38.9727 38.9727i 1.24685 1.24685i 0.289745 0.957104i \(-0.406430\pi\)
0.957104 0.289745i \(-0.0935704\pi\)
\(978\) −10.0730 + 45.8391i −0.322100 + 1.46577i
\(979\) −2.54328 −0.0812837
\(980\) 0 0
\(981\) 22.6974 + 25.7672i 0.724672 + 0.822683i
\(982\) 29.8002 + 19.4128i 0.950963 + 0.619486i
\(983\) −21.8279 21.8279i −0.696200 0.696200i 0.267388 0.963589i \(-0.413839\pi\)
−0.963589 + 0.267388i \(0.913839\pi\)
\(984\) 29.4321 + 19.5225i 0.938261 + 0.622353i
\(985\) 0 0
\(986\) −17.8079 84.3691i −0.567119 2.68686i
\(987\) 18.6523 + 8.42660i 0.593708 + 0.268222i
\(988\) −10.2372 + 26.4439i −0.325690 + 0.841294i
\(989\) 32.6647i 1.03868i
\(990\) 0 0
\(991\) −1.28868 −0.0409363 −0.0204681 0.999791i \(-0.506516\pi\)
−0.0204681 + 0.999791i \(0.506516\pi\)
\(992\) 28.6327 7.45440i 0.909090 0.236677i
\(993\) −10.0162 + 22.1708i −0.317854 + 0.703570i
\(994\) 47.3208 9.98805i 1.50092 0.316802i
\(995\) 0 0
\(996\) 7.56016 + 7.68658i 0.239553 + 0.243559i
\(997\) 17.8369 17.8369i 0.564900 0.564900i −0.365795 0.930695i \(-0.619203\pi\)
0.930695 + 0.365795i \(0.119203\pi\)
\(998\) −4.75426 3.09707i −0.150493 0.0980361i
\(999\) 22.3505 + 11.8522i 0.707139 + 0.374988i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.k.557.8 yes 64
3.2 odd 2 inner 600.2.w.k.557.26 yes 64
5.2 odd 4 inner 600.2.w.k.293.24 yes 64
5.3 odd 4 inner 600.2.w.k.293.9 yes 64
5.4 even 2 inner 600.2.w.k.557.25 yes 64
8.5 even 2 inner 600.2.w.k.557.23 yes 64
15.2 even 4 inner 600.2.w.k.293.10 yes 64
15.8 even 4 inner 600.2.w.k.293.23 yes 64
15.14 odd 2 inner 600.2.w.k.557.7 yes 64
24.5 odd 2 inner 600.2.w.k.557.9 yes 64
40.13 odd 4 inner 600.2.w.k.293.26 yes 64
40.29 even 2 inner 600.2.w.k.557.10 yes 64
40.37 odd 4 inner 600.2.w.k.293.7 64
120.29 odd 2 inner 600.2.w.k.557.24 yes 64
120.53 even 4 inner 600.2.w.k.293.8 yes 64
120.77 even 4 inner 600.2.w.k.293.25 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.k.293.7 64 40.37 odd 4 inner
600.2.w.k.293.8 yes 64 120.53 even 4 inner
600.2.w.k.293.9 yes 64 5.3 odd 4 inner
600.2.w.k.293.10 yes 64 15.2 even 4 inner
600.2.w.k.293.23 yes 64 15.8 even 4 inner
600.2.w.k.293.24 yes 64 5.2 odd 4 inner
600.2.w.k.293.25 yes 64 120.77 even 4 inner
600.2.w.k.293.26 yes 64 40.13 odd 4 inner
600.2.w.k.557.7 yes 64 15.14 odd 2 inner
600.2.w.k.557.8 yes 64 1.1 even 1 trivial
600.2.w.k.557.9 yes 64 24.5 odd 2 inner
600.2.w.k.557.10 yes 64 40.29 even 2 inner
600.2.w.k.557.23 yes 64 8.5 even 2 inner
600.2.w.k.557.24 yes 64 120.29 odd 2 inner
600.2.w.k.557.25 yes 64 5.4 even 2 inner
600.2.w.k.557.26 yes 64 3.2 odd 2 inner