Properties

Label 600.2.w.k.557.24
Level $600$
Weight $2$
Character 600.557
Analytic conductor $4.791$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 557.24
Character \(\chi\) \(=\) 600.557
Dual form 600.2.w.k.293.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.771921 + 1.18496i) q^{2} +(0.713099 + 1.57845i) q^{3} +(-0.808275 + 1.82940i) q^{4} +(-1.31994 + 2.06343i) q^{6} +(1.44651 + 1.44651i) q^{7} +(-2.79169 + 0.454373i) q^{8} +(-1.98298 + 2.25118i) q^{9} +0.641278 q^{11} +(-3.46398 + 0.0287228i) q^{12} +(2.03304 + 2.03304i) q^{13} +(-0.597468 + 2.83065i) q^{14} +(-2.69338 - 2.95731i) q^{16} +(4.37963 - 4.37963i) q^{17} +(-4.19826 - 0.612026i) q^{18} -4.93129 q^{19} +(-1.25173 + 3.31474i) q^{21} +(0.495016 + 0.759891i) q^{22} +(-3.73619 - 3.73619i) q^{23} +(-2.70796 - 4.08252i) q^{24} +(-0.839729 + 3.97842i) q^{26} +(-4.96742 - 1.52471i) q^{27} +(-3.81541 + 1.47706i) q^{28} +9.84421i q^{29} +5.23032 q^{31} +(1.42523 - 5.47437i) q^{32} +(0.457295 + 1.01222i) q^{33} +(8.57043 + 1.80897i) q^{34} +(-2.51550 - 5.44722i) q^{36} +(3.44271 - 3.44271i) q^{37} +(-3.80656 - 5.84339i) q^{38} +(-1.75928 + 4.65879i) q^{39} -7.20930i q^{41} +(-4.89408 + 1.07546i) q^{42} +(4.37139 + 4.37139i) q^{43} +(-0.518329 + 1.17315i) q^{44} +(1.54320 - 7.31130i) q^{46} +(-4.08462 + 4.08462i) q^{47} +(2.74731 - 6.36021i) q^{48} -2.81523i q^{49} +(10.0361 + 3.78989i) q^{51} +(-5.36248 + 2.07598i) q^{52} +(3.83383 - 3.83383i) q^{53} +(-2.02773 - 7.06317i) q^{54} +(-4.69546 - 3.38095i) q^{56} +(-3.51650 - 7.78377i) q^{57} +(-11.6650 + 7.59896i) q^{58} -2.50346i q^{59} +9.64270i q^{61} +(4.03740 + 6.19774i) q^{62} +(-6.12474 + 0.387949i) q^{63} +(7.58709 - 2.53694i) q^{64} +(-0.846451 + 1.32323i) q^{66} +(2.59686 - 2.59686i) q^{67} +(4.47213 + 11.5520i) q^{68} +(3.23310 - 8.56166i) q^{69} +16.7173i q^{71} +(4.51299 - 7.18560i) q^{72} +(8.40725 - 8.40725i) q^{73} +(6.73698 + 1.42198i) q^{74} +(3.98584 - 9.02128i) q^{76} +(0.927614 + 0.927614i) q^{77} +(-6.87852 + 1.51154i) q^{78} -5.31759i q^{79} +(-1.13559 - 8.92807i) q^{81} +(8.54275 - 5.56501i) q^{82} +(-2.20075 + 2.20075i) q^{83} +(-5.05222 - 4.96913i) q^{84} +(-1.80557 + 8.55430i) q^{86} +(-15.5386 + 7.01990i) q^{87} +(-1.79025 + 0.291380i) q^{88} +3.96596 q^{89} +5.88160i q^{91} +(9.85485 - 3.81511i) q^{92} +(3.72974 + 8.25578i) q^{93} +(-7.99313 - 1.68712i) q^{94} +(9.65732 - 1.65413i) q^{96} +(-1.11334 - 1.11334i) q^{97} +(3.33595 - 2.17314i) q^{98} +(-1.27164 + 1.44363i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 12 q^{6} - 40 q^{16} + 32 q^{31} - 84 q^{36} - 128 q^{46} - 180 q^{66} + 168 q^{76} + 48 q^{81} + 228 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.771921 + 1.18496i 0.545831 + 0.837895i
\(3\) 0.713099 + 1.57845i 0.411708 + 0.911316i
\(4\) −0.808275 + 1.82940i −0.404138 + 0.914698i
\(5\) 0 0
\(6\) −1.31994 + 2.06343i −0.538864 + 0.842392i
\(7\) 1.44651 + 1.44651i 0.546728 + 0.546728i 0.925493 0.378765i \(-0.123651\pi\)
−0.378765 + 0.925493i \(0.623651\pi\)
\(8\) −2.79169 + 0.454373i −0.987012 + 0.160645i
\(9\) −1.98298 + 2.25118i −0.660993 + 0.750392i
\(10\) 0 0
\(11\) 0.641278 0.193353 0.0966764 0.995316i \(-0.469179\pi\)
0.0966764 + 0.995316i \(0.469179\pi\)
\(12\) −3.46398 + 0.0287228i −0.999966 + 0.00829157i
\(13\) 2.03304 + 2.03304i 0.563863 + 0.563863i 0.930402 0.366540i \(-0.119458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(14\) −0.597468 + 2.83065i −0.159680 + 0.756522i
\(15\) 0 0
\(16\) −2.69338 2.95731i −0.673346 0.739328i
\(17\) 4.37963 4.37963i 1.06222 1.06222i 0.0642843 0.997932i \(-0.479524\pi\)
0.997932 0.0642843i \(-0.0204764\pi\)
\(18\) −4.19826 0.612026i −0.989540 0.144256i
\(19\) −4.93129 −1.13131 −0.565657 0.824640i \(-0.691378\pi\)
−0.565657 + 0.824640i \(0.691378\pi\)
\(20\) 0 0
\(21\) −1.25173 + 3.31474i −0.273150 + 0.723335i
\(22\) 0.495016 + 0.759891i 0.105538 + 0.162009i
\(23\) −3.73619 3.73619i −0.779050 0.779050i 0.200619 0.979669i \(-0.435705\pi\)
−0.979669 + 0.200619i \(0.935705\pi\)
\(24\) −2.70796 4.08252i −0.552759 0.833341i
\(25\) 0 0
\(26\) −0.839729 + 3.97842i −0.164684 + 0.780232i
\(27\) −4.96742 1.52471i −0.955980 0.293431i
\(28\) −3.81541 + 1.47706i −0.721045 + 0.279138i
\(29\) 9.84421i 1.82802i 0.405687 + 0.914012i \(0.367032\pi\)
−0.405687 + 0.914012i \(0.632968\pi\)
\(30\) 0 0
\(31\) 5.23032 0.939394 0.469697 0.882828i \(-0.344363\pi\)
0.469697 + 0.882828i \(0.344363\pi\)
\(32\) 1.42523 5.47437i 0.251947 0.967741i
\(33\) 0.457295 + 1.01222i 0.0796049 + 0.176205i
\(34\) 8.57043 + 1.80897i 1.46982 + 0.310236i
\(35\) 0 0
\(36\) −2.51550 5.44722i −0.419250 0.907871i
\(37\) 3.44271 3.44271i 0.565978 0.565978i −0.365022 0.930999i \(-0.618938\pi\)
0.930999 + 0.365022i \(0.118938\pi\)
\(38\) −3.80656 5.84339i −0.617506 0.947923i
\(39\) −1.75928 + 4.65879i −0.281710 + 0.746004i
\(40\) 0 0
\(41\) 7.20930i 1.12590i −0.826490 0.562951i \(-0.809666\pi\)
0.826490 0.562951i \(-0.190334\pi\)
\(42\) −4.89408 + 1.07546i −0.755172 + 0.165947i
\(43\) 4.37139 + 4.37139i 0.666630 + 0.666630i 0.956934 0.290304i \(-0.0937564\pi\)
−0.290304 + 0.956934i \(0.593756\pi\)
\(44\) −0.518329 + 1.17315i −0.0781411 + 0.176859i
\(45\) 0 0
\(46\) 1.54320 7.31130i 0.227533 1.07799i
\(47\) −4.08462 + 4.08462i −0.595803 + 0.595803i −0.939193 0.343390i \(-0.888425\pi\)
0.343390 + 0.939193i \(0.388425\pi\)
\(48\) 2.74731 6.36021i 0.396539 0.918018i
\(49\) 2.81523i 0.402176i
\(50\) 0 0
\(51\) 10.0361 + 3.78989i 1.40534 + 0.530691i
\(52\) −5.36248 + 2.07598i −0.743642 + 0.287886i
\(53\) 3.83383 3.83383i 0.526616 0.526616i −0.392945 0.919562i \(-0.628544\pi\)
0.919562 + 0.392945i \(0.128544\pi\)
\(54\) −2.02773 7.06317i −0.275939 0.961175i
\(55\) 0 0
\(56\) −4.69546 3.38095i −0.627457 0.451798i
\(57\) −3.51650 7.78377i −0.465771 1.03098i
\(58\) −11.6650 + 7.59896i −1.53169 + 0.997792i
\(59\) 2.50346i 0.325923i −0.986632 0.162961i \(-0.947895\pi\)
0.986632 0.162961i \(-0.0521046\pi\)
\(60\) 0 0
\(61\) 9.64270i 1.23462i 0.786720 + 0.617311i \(0.211778\pi\)
−0.786720 + 0.617311i \(0.788222\pi\)
\(62\) 4.03740 + 6.19774i 0.512750 + 0.787114i
\(63\) −6.12474 + 0.387949i −0.771644 + 0.0488770i
\(64\) 7.58709 2.53694i 0.948386 0.317118i
\(65\) 0 0
\(66\) −0.846451 + 1.32323i −0.104191 + 0.162879i
\(67\) 2.59686 2.59686i 0.317257 0.317257i −0.530456 0.847713i \(-0.677979\pi\)
0.847713 + 0.530456i \(0.177979\pi\)
\(68\) 4.47213 + 11.5520i 0.542326 + 1.40089i
\(69\) 3.23310 8.56166i 0.389220 1.03070i
\(70\) 0 0
\(71\) 16.7173i 1.98398i 0.126324 + 0.991989i \(0.459682\pi\)
−0.126324 + 0.991989i \(0.540318\pi\)
\(72\) 4.51299 7.18560i 0.531861 0.846832i
\(73\) 8.40725 8.40725i 0.983994 0.983994i −0.0158800 0.999874i \(-0.505055\pi\)
0.999874 + 0.0158800i \(0.00505498\pi\)
\(74\) 6.73698 + 1.42198i 0.783158 + 0.165302i
\(75\) 0 0
\(76\) 3.98584 9.02128i 0.457207 1.03481i
\(77\) 0.927614 + 0.927614i 0.105711 + 0.105711i
\(78\) −6.87852 + 1.51154i −0.778839 + 0.171148i
\(79\) 5.31759i 0.598275i −0.954210 0.299138i \(-0.903301\pi\)
0.954210 0.299138i \(-0.0966989\pi\)
\(80\) 0 0
\(81\) −1.13559 8.92807i −0.126176 0.992008i
\(82\) 8.54275 5.56501i 0.943389 0.614552i
\(83\) −2.20075 + 2.20075i −0.241564 + 0.241564i −0.817497 0.575933i \(-0.804639\pi\)
0.575933 + 0.817497i \(0.304639\pi\)
\(84\) −5.05222 4.96913i −0.551243 0.542176i
\(85\) 0 0
\(86\) −1.80557 + 8.55430i −0.194699 + 0.922434i
\(87\) −15.5386 + 7.01990i −1.66591 + 0.752612i
\(88\) −1.79025 + 0.291380i −0.190841 + 0.0310612i
\(89\) 3.96596 0.420391 0.210195 0.977659i \(-0.432590\pi\)
0.210195 + 0.977659i \(0.432590\pi\)
\(90\) 0 0
\(91\) 5.88160i 0.616560i
\(92\) 9.85485 3.81511i 1.02744 0.397752i
\(93\) 3.72974 + 8.25578i 0.386756 + 0.856085i
\(94\) −7.99313 1.68712i −0.824428 0.174013i
\(95\) 0 0
\(96\) 9.65732 1.65413i 0.985646 0.168824i
\(97\) −1.11334 1.11334i −0.113043 0.113043i 0.648323 0.761366i \(-0.275471\pi\)
−0.761366 + 0.648323i \(0.775471\pi\)
\(98\) 3.33595 2.17314i 0.336982 0.219520i
\(99\) −1.27164 + 1.44363i −0.127805 + 0.145090i
\(100\) 0 0
\(101\) 4.32234 0.430089 0.215045 0.976604i \(-0.431010\pi\)
0.215045 + 0.976604i \(0.431010\pi\)
\(102\) 3.25620 + 14.8179i 0.322412 + 1.46719i
\(103\) 8.51865 8.51865i 0.839368 0.839368i −0.149408 0.988776i \(-0.547737\pi\)
0.988776 + 0.149408i \(0.0477368\pi\)
\(104\) −6.59937 4.75185i −0.647121 0.465958i
\(105\) 0 0
\(106\) 7.50235 + 1.58353i 0.728693 + 0.153806i
\(107\) 10.3436 + 10.3436i 0.999957 + 0.999957i 1.00000 4.33477e-5i \(-1.37980e-5\pi\)
−4.33477e−5 1.00000i \(0.500014\pi\)
\(108\) 6.80434 7.85499i 0.654748 0.755847i
\(109\) −11.4461 −1.09634 −0.548169 0.836368i \(-0.684675\pi\)
−0.548169 + 0.836368i \(0.684675\pi\)
\(110\) 0 0
\(111\) 7.88912 + 2.97913i 0.748802 + 0.282767i
\(112\) 0.381776 8.17377i 0.0360744 0.772349i
\(113\) 7.28974 + 7.28974i 0.685761 + 0.685761i 0.961292 0.275531i \(-0.0888537\pi\)
−0.275531 + 0.961292i \(0.588854\pi\)
\(114\) 6.50902 10.1754i 0.609625 0.953011i
\(115\) 0 0
\(116\) −18.0090 7.95683i −1.67209 0.738773i
\(117\) −8.60819 + 0.545254i −0.795827 + 0.0504088i
\(118\) 2.96651 1.93247i 0.273089 0.177899i
\(119\) 12.6703 1.16149
\(120\) 0 0
\(121\) −10.5888 −0.962615
\(122\) −11.4262 + 7.44340i −1.03448 + 0.673894i
\(123\) 11.3795 5.14094i 1.02605 0.463543i
\(124\) −4.22754 + 9.56834i −0.379644 + 0.859262i
\(125\) 0 0
\(126\) −5.18752 6.95812i −0.462141 0.619879i
\(127\) 11.4720 + 11.4720i 1.01797 + 1.01797i 0.999835 + 0.0181391i \(0.00577417\pi\)
0.0181391 + 0.999835i \(0.494226\pi\)
\(128\) 8.86282 + 7.03210i 0.783370 + 0.621556i
\(129\) −3.78276 + 10.0172i −0.333054 + 0.881968i
\(130\) 0 0
\(131\) −15.6449 −1.36690 −0.683452 0.729995i \(-0.739522\pi\)
−0.683452 + 0.729995i \(0.739522\pi\)
\(132\) −2.22138 + 0.0184193i −0.193346 + 0.00160320i
\(133\) −7.13314 7.13314i −0.618522 0.618522i
\(134\) 5.08176 + 1.07261i 0.438997 + 0.0926596i
\(135\) 0 0
\(136\) −10.2366 + 14.2166i −0.877780 + 1.21906i
\(137\) 8.94191 8.94191i 0.763959 0.763959i −0.213077 0.977035i \(-0.568348\pi\)
0.977035 + 0.213077i \(0.0683485\pi\)
\(138\) 12.6409 2.77782i 1.07607 0.236464i
\(139\) 1.01636 0.0862063 0.0431031 0.999071i \(-0.486276\pi\)
0.0431031 + 0.999071i \(0.486276\pi\)
\(140\) 0 0
\(141\) −9.36009 3.53461i −0.788262 0.297668i
\(142\) −19.8094 + 12.9044i −1.66237 + 1.08292i
\(143\) 1.30374 + 1.30374i 0.109024 + 0.109024i
\(144\) 11.9983 0.198991i 0.999862 0.0165826i
\(145\) 0 0
\(146\) 16.4520 + 3.47255i 1.36158 + 0.287390i
\(147\) 4.44369 2.00754i 0.366510 0.165579i
\(148\) 3.51542 + 9.08073i 0.288966 + 0.746432i
\(149\) 3.01841i 0.247278i −0.992327 0.123639i \(-0.960544\pi\)
0.992327 0.123639i \(-0.0394565\pi\)
\(150\) 0 0
\(151\) −7.46150 −0.607208 −0.303604 0.952798i \(-0.598190\pi\)
−0.303604 + 0.952798i \(0.598190\pi\)
\(152\) 13.7666 2.24065i 1.11662 0.181740i
\(153\) 1.17460 + 18.5440i 0.0949611 + 1.49920i
\(154\) −0.383143 + 1.81523i −0.0308746 + 0.146276i
\(155\) 0 0
\(156\) −7.10080 6.98401i −0.568519 0.559168i
\(157\) −6.08638 + 6.08638i −0.485746 + 0.485746i −0.906961 0.421215i \(-0.861604\pi\)
0.421215 + 0.906961i \(0.361604\pi\)
\(158\) 6.30114 4.10476i 0.501292 0.326557i
\(159\) 8.78538 + 3.31759i 0.696726 + 0.263102i
\(160\) 0 0
\(161\) 10.8089i 0.851858i
\(162\) 9.70285 8.23740i 0.762328 0.647191i
\(163\) −13.5483 13.5483i −1.06119 1.06119i −0.998002 0.0631867i \(-0.979874\pi\)
−0.0631867 0.998002i \(-0.520126\pi\)
\(164\) 13.1887 + 5.82710i 1.02986 + 0.455020i
\(165\) 0 0
\(166\) −4.30662 0.909003i −0.334258 0.0705523i
\(167\) −8.77613 + 8.77613i −0.679117 + 0.679117i −0.959800 0.280683i \(-0.909439\pi\)
0.280683 + 0.959800i \(0.409439\pi\)
\(168\) 1.98832 9.82247i 0.153402 0.757820i
\(169\) 4.73353i 0.364118i
\(170\) 0 0
\(171\) 9.77864 11.1012i 0.747791 0.848930i
\(172\) −11.5303 + 4.46372i −0.879176 + 0.340355i
\(173\) 15.2826 15.2826i 1.16192 1.16192i 0.177862 0.984056i \(-0.443082\pi\)
0.984056 0.177862i \(-0.0569180\pi\)
\(174\) −20.3129 12.9938i −1.53991 0.985057i
\(175\) 0 0
\(176\) −1.72721 1.89646i −0.130193 0.142951i
\(177\) 3.95157 1.78521i 0.297018 0.134185i
\(178\) 3.06141 + 4.69951i 0.229462 + 0.352243i
\(179\) 2.11966i 0.158431i 0.996858 + 0.0792153i \(0.0252415\pi\)
−0.996858 + 0.0792153i \(0.974759\pi\)
\(180\) 0 0
\(181\) 19.4392i 1.44491i −0.691420 0.722453i \(-0.743014\pi\)
0.691420 0.722453i \(-0.256986\pi\)
\(182\) −6.96948 + 4.54013i −0.516612 + 0.336537i
\(183\) −15.2205 + 6.87620i −1.12513 + 0.508303i
\(184\) 12.1279 + 8.73268i 0.894083 + 0.643781i
\(185\) 0 0
\(186\) −6.90373 + 10.7924i −0.506206 + 0.791338i
\(187\) 2.80856 2.80856i 0.205382 0.205382i
\(188\) −4.17089 10.7739i −0.304194 0.785766i
\(189\) −4.97990 9.39092i −0.362235 0.683089i
\(190\) 0 0
\(191\) 2.66510i 0.192840i −0.995341 0.0964198i \(-0.969261\pi\)
0.995341 0.0964198i \(-0.0307391\pi\)
\(192\) 9.41477 + 10.1667i 0.679453 + 0.733719i
\(193\) 7.73743 7.73743i 0.556952 0.556952i −0.371486 0.928439i \(-0.621152\pi\)
0.928439 + 0.371486i \(0.121152\pi\)
\(194\) 0.459857 2.17868i 0.0330158 0.156420i
\(195\) 0 0
\(196\) 5.15018 + 2.27548i 0.367870 + 0.162535i
\(197\) −7.82754 7.82754i −0.557689 0.557689i 0.370960 0.928649i \(-0.379029\pi\)
−0.928649 + 0.370960i \(0.879029\pi\)
\(198\) −2.69226 0.392479i −0.191330 0.0278923i
\(199\) 16.8608i 1.19523i −0.801783 0.597615i \(-0.796115\pi\)
0.801783 0.597615i \(-0.203885\pi\)
\(200\) 0 0
\(201\) 5.95082 + 2.24718i 0.419739 + 0.158504i
\(202\) 3.33651 + 5.12182i 0.234756 + 0.360370i
\(203\) −14.2397 + 14.2397i −0.999433 + 0.999433i
\(204\) −15.0452 + 15.2968i −1.05337 + 1.07099i
\(205\) 0 0
\(206\) 16.6700 + 3.51856i 1.16145 + 0.245150i
\(207\) 15.8196 1.00204i 1.09954 0.0696464i
\(208\) 0.536578 11.4881i 0.0372050 0.796554i
\(209\) −3.16233 −0.218743
\(210\) 0 0
\(211\) 6.45821i 0.444602i −0.974978 0.222301i \(-0.928643\pi\)
0.974978 0.222301i \(-0.0713567\pi\)
\(212\) 3.91480 + 10.1124i 0.268870 + 0.694521i
\(213\) −26.3873 + 11.9211i −1.80803 + 0.816820i
\(214\) −4.27235 + 20.2413i −0.292052 + 1.38367i
\(215\) 0 0
\(216\) 14.5603 + 1.99946i 0.990702 + 0.136046i
\(217\) 7.56570 + 7.56570i 0.513593 + 0.513593i
\(218\) −8.83549 13.5632i −0.598415 0.918617i
\(219\) 19.2656 + 7.27518i 1.30185 + 0.491611i
\(220\) 0 0
\(221\) 17.8079 1.19789
\(222\) 2.55961 + 11.6480i 0.171790 + 0.781760i
\(223\) −8.41178 + 8.41178i −0.563294 + 0.563294i −0.930242 0.366947i \(-0.880403\pi\)
0.366947 + 0.930242i \(0.380403\pi\)
\(224\) 9.98032 5.85712i 0.666838 0.391345i
\(225\) 0 0
\(226\) −3.01097 + 14.2652i −0.200287 + 0.948905i
\(227\) −0.0799436 0.0799436i −0.00530604 0.00530604i 0.704449 0.709755i \(-0.251194\pi\)
−0.709755 + 0.704449i \(0.751194\pi\)
\(228\) 17.0819 0.141640i 1.13128 0.00938037i
\(229\) 12.9730 0.857282 0.428641 0.903475i \(-0.358993\pi\)
0.428641 + 0.903475i \(0.358993\pi\)
\(230\) 0 0
\(231\) −0.802707 + 2.12567i −0.0528142 + 0.139859i
\(232\) −4.47295 27.4820i −0.293663 1.80428i
\(233\) −2.12983 2.12983i −0.139530 0.139530i 0.633892 0.773422i \(-0.281456\pi\)
−0.773422 + 0.633892i \(0.781456\pi\)
\(234\) −7.29095 9.77949i −0.476624 0.639306i
\(235\) 0 0
\(236\) 4.57982 + 2.02348i 0.298121 + 0.131718i
\(237\) 8.39352 3.79197i 0.545218 0.246315i
\(238\) 9.78050 + 15.0139i 0.633975 + 0.973205i
\(239\) −16.7173 −1.08135 −0.540676 0.841231i \(-0.681832\pi\)
−0.540676 + 0.841231i \(0.681832\pi\)
\(240\) 0 0
\(241\) −4.68712 −0.301924 −0.150962 0.988540i \(-0.548237\pi\)
−0.150962 + 0.988540i \(0.548237\pi\)
\(242\) −8.17369 12.5473i −0.525425 0.806571i
\(243\) 13.2827 8.15906i 0.852085 0.523404i
\(244\) −17.6403 7.79396i −1.12931 0.498957i
\(245\) 0 0
\(246\) 14.8759 + 9.51586i 0.948452 + 0.606709i
\(247\) −10.0255 10.0255i −0.637906 0.637906i
\(248\) −14.6015 + 2.37652i −0.927193 + 0.150909i
\(249\) −5.04312 1.90441i −0.319595 0.120687i
\(250\) 0 0
\(251\) −18.3364 −1.15738 −0.578691 0.815547i \(-0.696436\pi\)
−0.578691 + 0.815547i \(0.696436\pi\)
\(252\) 4.24076 11.5181i 0.267143 0.725575i
\(253\) −2.39594 2.39594i −0.150632 0.150632i
\(254\) −4.73841 + 22.4494i −0.297314 + 1.40860i
\(255\) 0 0
\(256\) −1.49138 + 15.9303i −0.0932115 + 0.995646i
\(257\) −1.28687 + 1.28687i −0.0802726 + 0.0802726i −0.746103 0.665830i \(-0.768077\pi\)
0.665830 + 0.746103i \(0.268077\pi\)
\(258\) −14.7900 + 3.25008i −0.920788 + 0.202341i
\(259\) 9.95980 0.618872
\(260\) 0 0
\(261\) −22.1611 19.5209i −1.37173 1.20831i
\(262\) −12.0767 18.5387i −0.746098 1.14532i
\(263\) −3.96091 3.96091i −0.244240 0.244240i 0.574361 0.818602i \(-0.305250\pi\)
−0.818602 + 0.574361i \(0.805250\pi\)
\(264\) −1.73655 2.61803i −0.106878 0.161129i
\(265\) 0 0
\(266\) 2.94629 13.9587i 0.180648 0.855865i
\(267\) 2.82812 + 6.26005i 0.173078 + 0.383109i
\(268\) 2.65171 + 6.84967i 0.161979 + 0.418410i
\(269\) 1.81888i 0.110899i −0.998461 0.0554497i \(-0.982341\pi\)
0.998461 0.0554497i \(-0.0176592\pi\)
\(270\) 0 0
\(271\) 7.54876 0.458555 0.229277 0.973361i \(-0.426364\pi\)
0.229277 + 0.973361i \(0.426364\pi\)
\(272\) −24.7479 1.15591i −1.50056 0.0700875i
\(273\) −9.28379 + 4.19417i −0.561880 + 0.253843i
\(274\) 17.4983 + 3.69338i 1.05711 + 0.223125i
\(275\) 0 0
\(276\) 13.0494 + 12.8348i 0.785483 + 0.772564i
\(277\) −6.09911 + 6.09911i −0.366460 + 0.366460i −0.866184 0.499724i \(-0.833435\pi\)
0.499724 + 0.866184i \(0.333435\pi\)
\(278\) 0.784548 + 1.20435i 0.0470540 + 0.0722318i
\(279\) −10.3716 + 11.7744i −0.620933 + 0.704914i
\(280\) 0 0
\(281\) 4.32219i 0.257840i −0.991655 0.128920i \(-0.958849\pi\)
0.991655 0.128920i \(-0.0411511\pi\)
\(282\) −3.03687 13.8198i −0.180843 0.822957i
\(283\) −6.55658 6.55658i −0.389748 0.389748i 0.484849 0.874598i \(-0.338874\pi\)
−0.874598 + 0.484849i \(0.838874\pi\)
\(284\) −30.5826 13.5122i −1.81474 0.801800i
\(285\) 0 0
\(286\) −0.538500 + 2.55127i −0.0318422 + 0.150860i
\(287\) 10.4283 10.4283i 0.615563 0.615563i
\(288\) 9.49758 + 14.0640i 0.559650 + 0.828729i
\(289\) 21.3623i 1.25661i
\(290\) 0 0
\(291\) 0.963426 2.55127i 0.0564770 0.149558i
\(292\) 8.58482 + 22.1756i 0.502388 + 1.29773i
\(293\) −3.85667 + 3.85667i −0.225309 + 0.225309i −0.810730 0.585421i \(-0.800929\pi\)
0.585421 + 0.810730i \(0.300929\pi\)
\(294\) 5.80904 + 3.71595i 0.338790 + 0.216718i
\(295\) 0 0
\(296\) −8.04670 + 11.1753i −0.467705 + 0.649548i
\(297\) −3.18550 0.977765i −0.184841 0.0567357i
\(298\) 3.57671 2.32998i 0.207193 0.134972i
\(299\) 15.1916i 0.878555i
\(300\) 0 0
\(301\) 12.6465i 0.728932i
\(302\) −5.75969 8.84160i −0.331433 0.508777i
\(303\) 3.08226 + 6.82258i 0.177071 + 0.391947i
\(304\) 13.2818 + 14.5834i 0.761766 + 0.836413i
\(305\) 0 0
\(306\) −21.0673 + 15.7064i −1.20434 + 0.897875i
\(307\) −3.22023 + 3.22023i −0.183788 + 0.183788i −0.793004 0.609216i \(-0.791484\pi\)
0.609216 + 0.793004i \(0.291484\pi\)
\(308\) −2.44674 + 0.947206i −0.139416 + 0.0539721i
\(309\) 19.5209 + 7.37158i 1.11050 + 0.419355i
\(310\) 0 0
\(311\) 12.3453i 0.700036i 0.936743 + 0.350018i \(0.113825\pi\)
−0.936743 + 0.350018i \(0.886175\pi\)
\(312\) 2.79454 13.8053i 0.158209 0.781570i
\(313\) −11.6983 + 11.6983i −0.661226 + 0.661226i −0.955669 0.294443i \(-0.904866\pi\)
0.294443 + 0.955669i \(0.404866\pi\)
\(314\) −11.9103 2.51393i −0.672139 0.141869i
\(315\) 0 0
\(316\) 9.72797 + 4.29807i 0.547241 + 0.241785i
\(317\) −5.15672 5.15672i −0.289631 0.289631i 0.547304 0.836934i \(-0.315654\pi\)
−0.836934 + 0.547304i \(0.815654\pi\)
\(318\) 2.85041 + 12.9713i 0.159843 + 0.727393i
\(319\) 6.31288i 0.353453i
\(320\) 0 0
\(321\) −8.95082 + 23.7029i −0.499586 + 1.32297i
\(322\) 12.8081 8.34359i 0.713768 0.464970i
\(323\) −21.5972 + 21.5972i −1.20170 + 1.20170i
\(324\) 17.2508 + 5.13890i 0.958380 + 0.285494i
\(325\) 0 0
\(326\) 5.59604 26.5125i 0.309936 1.46839i
\(327\) −8.16221 18.0670i −0.451371 0.999110i
\(328\) 3.27571 + 20.1261i 0.180871 + 1.11128i
\(329\) −11.8169 −0.651485
\(330\) 0 0
\(331\) 14.0460i 0.772037i −0.922491 0.386019i \(-0.873850\pi\)
0.922491 0.386019i \(-0.126150\pi\)
\(332\) −2.24723 5.80486i −0.123333 0.318583i
\(333\) 0.923324 + 14.5770i 0.0505979 + 0.798812i
\(334\) −17.1739 3.62491i −0.939713 0.198346i
\(335\) 0 0
\(336\) 13.1741 5.22610i 0.718706 0.285107i
\(337\) −10.5701 10.5701i −0.575791 0.575791i 0.357950 0.933741i \(-0.383476\pi\)
−0.933741 + 0.357950i \(0.883476\pi\)
\(338\) 5.60906 3.65391i 0.305092 0.198747i
\(339\) −6.30815 + 16.7048i −0.342612 + 0.907278i
\(340\) 0 0
\(341\) 3.35409 0.181634
\(342\) 20.7028 + 3.01808i 1.11948 + 0.163199i
\(343\) 14.1978 14.1978i 0.766609 0.766609i
\(344\) −14.1898 10.2173i −0.765063 0.550881i
\(345\) 0 0
\(346\) 29.9063 + 6.31237i 1.60778 + 0.339355i
\(347\) −20.2172 20.2172i −1.08532 1.08532i −0.996004 0.0893127i \(-0.971533\pi\)
−0.0893127 0.996004i \(-0.528467\pi\)
\(348\) −0.282754 34.1002i −0.0151572 1.82796i
\(349\) 0.603017 0.0322788 0.0161394 0.999870i \(-0.494862\pi\)
0.0161394 + 0.999870i \(0.494862\pi\)
\(350\) 0 0
\(351\) −6.99915 13.1987i −0.373587 0.704496i
\(352\) 0.913967 3.51060i 0.0487146 0.187115i
\(353\) −19.6483 19.6483i −1.04578 1.04578i −0.998901 0.0468748i \(-0.985074\pi\)
−0.0468748 0.998901i \(-0.514926\pi\)
\(354\) 5.16572 + 3.30442i 0.274555 + 0.175628i
\(355\) 0 0
\(356\) −3.20559 + 7.25531i −0.169896 + 0.384531i
\(357\) 9.03520 + 19.9994i 0.478194 + 1.05848i
\(358\) −2.51171 + 1.63621i −0.132748 + 0.0864763i
\(359\) −12.6703 −0.668714 −0.334357 0.942446i \(-0.608519\pi\)
−0.334357 + 0.942446i \(0.608519\pi\)
\(360\) 0 0
\(361\) 5.31759 0.279873
\(362\) 23.0348 15.0056i 1.21068 0.788674i
\(363\) −7.55084 16.7138i −0.396316 0.877246i
\(364\) −10.7598 4.75395i −0.563966 0.249175i
\(365\) 0 0
\(366\) −19.8971 12.7278i −1.04004 0.665293i
\(367\) 2.17316 + 2.17316i 0.113438 + 0.113438i 0.761547 0.648109i \(-0.224440\pi\)
−0.648109 + 0.761547i \(0.724440\pi\)
\(368\) −0.986092 + 21.1121i −0.0514036 + 1.10054i
\(369\) 16.2294 + 14.2959i 0.844868 + 0.744214i
\(370\) 0 0
\(371\) 11.0913 0.575832
\(372\) −18.1178 + 0.150230i −0.939362 + 0.00778905i
\(373\) −19.7420 19.7420i −1.02220 1.02220i −0.999748 0.0224556i \(-0.992852\pi\)
−0.0224556 0.999748i \(-0.507148\pi\)
\(374\) 5.49603 + 1.16005i 0.284193 + 0.0599849i
\(375\) 0 0
\(376\) 9.54706 13.2589i 0.492352 0.683778i
\(377\) −20.0136 + 20.0136i −1.03075 + 1.03075i
\(378\) 7.28380 13.1500i 0.374638 0.676365i
\(379\) −8.76740 −0.450351 −0.225176 0.974318i \(-0.572296\pi\)
−0.225176 + 0.974318i \(0.572296\pi\)
\(380\) 0 0
\(381\) −9.92724 + 26.2886i −0.508588 + 1.34680i
\(382\) 3.15804 2.05724i 0.161579 0.105258i
\(383\) 16.7382 + 16.7382i 0.855284 + 0.855284i 0.990778 0.135495i \(-0.0432623\pi\)
−0.135495 + 0.990778i \(0.543262\pi\)
\(384\) −4.77972 + 19.0041i −0.243914 + 0.969797i
\(385\) 0 0
\(386\) 15.1413 + 3.19588i 0.770670 + 0.162666i
\(387\) −18.5091 + 1.17239i −0.940872 + 0.0595961i
\(388\) 2.93663 1.13686i 0.149085 0.0577152i
\(389\) 20.9924i 1.06435i 0.846633 + 0.532177i \(0.178626\pi\)
−0.846633 + 0.532177i \(0.821374\pi\)
\(390\) 0 0
\(391\) −32.7263 −1.65504
\(392\) 1.27917 + 7.85926i 0.0646077 + 0.396953i
\(393\) −11.1564 24.6947i −0.562765 1.24568i
\(394\) 3.23310 15.3176i 0.162881 0.771689i
\(395\) 0 0
\(396\) −1.61314 3.49319i −0.0810631 0.175539i
\(397\) 22.7486 22.7486i 1.14172 1.14172i 0.153584 0.988136i \(-0.450918\pi\)
0.988136 0.153584i \(-0.0490815\pi\)
\(398\) 19.9794 13.0152i 1.00148 0.652393i
\(399\) 6.17264 16.3459i 0.309018 0.818319i
\(400\) 0 0
\(401\) 24.2516i 1.21107i 0.795819 + 0.605535i \(0.207041\pi\)
−0.795819 + 0.605535i \(0.792959\pi\)
\(402\) 1.93074 + 8.78615i 0.0962964 + 0.438213i
\(403\) 10.6334 + 10.6334i 0.529689 + 0.529689i
\(404\) −3.49364 + 7.90728i −0.173815 + 0.393402i
\(405\) 0 0
\(406\) −27.8655 5.88160i −1.38294 0.291899i
\(407\) 2.20773 2.20773i 0.109433 0.109433i
\(408\) −29.7398 6.02007i −1.47234 0.298038i
\(409\) 24.0958i 1.19146i 0.803184 + 0.595731i \(0.203137\pi\)
−0.803184 + 0.595731i \(0.796863\pi\)
\(410\) 0 0
\(411\) 20.4908 + 7.73784i 1.01074 + 0.381680i
\(412\) 8.69857 + 22.4694i 0.428548 + 1.10699i
\(413\) 3.62127 3.62127i 0.178191 0.178191i
\(414\) 13.3989 + 17.9722i 0.658519 + 0.883284i
\(415\) 0 0
\(416\) 14.0271 8.23206i 0.687737 0.403610i
\(417\) 0.724763 + 1.60426i 0.0354918 + 0.0785611i
\(418\) −2.44107 3.74724i −0.119397 0.183284i
\(419\) 39.9565i 1.95200i −0.217767 0.976001i \(-0.569877\pi\)
0.217767 0.976001i \(-0.430123\pi\)
\(420\) 0 0
\(421\) 27.1153i 1.32152i −0.750599 0.660758i \(-0.770235\pi\)
0.750599 0.660758i \(-0.229765\pi\)
\(422\) 7.65274 4.98523i 0.372530 0.242677i
\(423\) −1.09548 17.2949i −0.0532642 0.840907i
\(424\) −8.96087 + 12.4448i −0.435178 + 0.604375i
\(425\) 0 0
\(426\) −34.4950 22.0659i −1.67129 1.06910i
\(427\) −13.9482 + 13.9482i −0.675002 + 0.675002i
\(428\) −27.2831 + 10.5621i −1.31878 + 0.510538i
\(429\) −1.12819 + 2.98758i −0.0544694 + 0.144242i
\(430\) 0 0
\(431\) 30.9739i 1.49196i −0.665969 0.745979i \(-0.731982\pi\)
0.665969 0.745979i \(-0.268018\pi\)
\(432\) 8.87011 + 18.7968i 0.426763 + 0.904363i
\(433\) −8.18096 + 8.18096i −0.393152 + 0.393152i −0.875809 0.482658i \(-0.839672\pi\)
0.482658 + 0.875809i \(0.339672\pi\)
\(434\) −3.12495 + 14.8052i −0.150002 + 0.710673i
\(435\) 0 0
\(436\) 9.25160 20.9395i 0.443071 1.00282i
\(437\) 18.4242 + 18.4242i 0.881351 + 0.881351i
\(438\) 6.25069 + 28.4449i 0.298670 + 1.35915i
\(439\) 9.63432i 0.459821i 0.973212 + 0.229910i \(0.0738433\pi\)
−0.973212 + 0.229910i \(0.926157\pi\)
\(440\) 0 0
\(441\) 6.33759 + 5.58255i 0.301790 + 0.265836i
\(442\) 13.7463 + 21.1017i 0.653844 + 1.00370i
\(443\) 5.86218 5.86218i 0.278521 0.278521i −0.553998 0.832518i \(-0.686898\pi\)
0.832518 + 0.553998i \(0.186898\pi\)
\(444\) −11.8266 + 12.0244i −0.561265 + 0.570651i
\(445\) 0 0
\(446\) −16.4609 3.47442i −0.779445 0.164518i
\(447\) 4.76440 2.15243i 0.225348 0.101806i
\(448\) 14.6445 + 7.30508i 0.691887 + 0.345132i
\(449\) 6.40566 0.302302 0.151151 0.988511i \(-0.451702\pi\)
0.151151 + 0.988511i \(0.451702\pi\)
\(450\) 0 0
\(451\) 4.62317i 0.217696i
\(452\) −19.2279 + 7.44371i −0.904406 + 0.350122i
\(453\) −5.32079 11.7776i −0.249993 0.553358i
\(454\) 0.0330201 0.156440i 0.00154971 0.00734211i
\(455\) 0 0
\(456\) 13.3537 + 20.1321i 0.625345 + 0.942771i
\(457\) 16.7031 + 16.7031i 0.781338 + 0.781338i 0.980057 0.198719i \(-0.0636781\pi\)
−0.198719 + 0.980057i \(0.563678\pi\)
\(458\) 10.0142 + 15.3726i 0.467931 + 0.718313i
\(459\) −28.4331 + 15.0778i −1.32714 + 0.703770i
\(460\) 0 0
\(461\) 35.5078 1.65376 0.826882 0.562376i \(-0.190113\pi\)
0.826882 + 0.562376i \(0.190113\pi\)
\(462\) −3.13847 + 0.689670i −0.146015 + 0.0320864i
\(463\) −9.79796 + 9.79796i −0.455350 + 0.455350i −0.897126 0.441776i \(-0.854349\pi\)
0.441776 + 0.897126i \(0.354349\pi\)
\(464\) 29.1124 26.5142i 1.35151 1.23089i
\(465\) 0 0
\(466\) 0.879707 4.16782i 0.0407517 0.193071i
\(467\) 8.06737 + 8.06737i 0.373313 + 0.373313i 0.868683 0.495369i \(-0.164967\pi\)
−0.495369 + 0.868683i \(0.664967\pi\)
\(468\) 5.96030 16.1885i 0.275515 0.748314i
\(469\) 7.51276 0.346907
\(470\) 0 0
\(471\) −13.9472 5.26682i −0.642653 0.242682i
\(472\) 1.13751 + 6.98889i 0.0523579 + 0.321690i
\(473\) 2.80328 + 2.80328i 0.128895 + 0.128895i
\(474\) 10.9725 + 7.01891i 0.503982 + 0.322389i
\(475\) 0 0
\(476\) −10.2411 + 23.1791i −0.469401 + 1.06241i
\(477\) 1.02822 + 16.2330i 0.0470790 + 0.743258i
\(478\) −12.9044 19.8094i −0.590235 0.906060i
\(479\) −4.04697 −0.184911 −0.0924553 0.995717i \(-0.529472\pi\)
−0.0924553 + 0.995717i \(0.529472\pi\)
\(480\) 0 0
\(481\) 13.9983 0.638267
\(482\) −3.61809 5.55406i −0.164799 0.252981i
\(483\) 17.0612 7.70779i 0.776312 0.350717i
\(484\) 8.55863 19.3710i 0.389029 0.880502i
\(485\) 0 0
\(486\) 19.9214 + 9.44134i 0.903652 + 0.428268i
\(487\) 6.28516 + 6.28516i 0.284808 + 0.284808i 0.835023 0.550215i \(-0.185454\pi\)
−0.550215 + 0.835023i \(0.685454\pi\)
\(488\) −4.38139 26.9194i −0.198336 1.21859i
\(489\) 11.7240 31.0466i 0.530178 1.40398i
\(490\) 0 0
\(491\) −25.1486 −1.13494 −0.567471 0.823393i \(-0.692078\pi\)
−0.567471 + 0.823393i \(0.692078\pi\)
\(492\) 0.207071 + 24.9729i 0.00933550 + 1.12586i
\(493\) 43.1140 + 43.1140i 1.94176 + 1.94176i
\(494\) 4.14094 19.6187i 0.186310 0.882688i
\(495\) 0 0
\(496\) −14.0873 15.4677i −0.632537 0.694520i
\(497\) −24.1817 + 24.1817i −1.08470 + 1.08470i
\(498\) −1.63623 7.44597i −0.0733214 0.333662i
\(499\) −4.01216 −0.179609 −0.0898044 0.995959i \(-0.528624\pi\)
−0.0898044 + 0.995959i \(0.528624\pi\)
\(500\) 0 0
\(501\) −20.1109 7.59439i −0.898488 0.339292i
\(502\) −14.1542 21.7279i −0.631734 0.969765i
\(503\) 13.7823 + 13.7823i 0.614523 + 0.614523i 0.944121 0.329598i \(-0.106913\pi\)
−0.329598 + 0.944121i \(0.606913\pi\)
\(504\) 16.9221 3.86595i 0.753770 0.172203i
\(505\) 0 0
\(506\) 0.989624 4.68858i 0.0439942 0.208433i
\(507\) 7.47162 3.37548i 0.331826 0.149910i
\(508\) −30.2593 + 11.7143i −1.34254 + 0.519738i
\(509\) 10.5288i 0.466680i 0.972395 + 0.233340i \(0.0749656\pi\)
−0.972395 + 0.233340i \(0.925034\pi\)
\(510\) 0 0
\(511\) 24.3223 1.07595
\(512\) −20.0281 + 10.5297i −0.885125 + 0.465353i
\(513\) 24.4958 + 7.51879i 1.08151 + 0.331963i
\(514\) −2.51825 0.531531i −0.111075 0.0234448i
\(515\) 0 0
\(516\) −15.2680 15.0169i −0.672135 0.661080i
\(517\) −2.61938 + 2.61938i −0.115200 + 0.115200i
\(518\) 7.68818 + 11.8020i 0.337799 + 0.518550i
\(519\) 35.0208 + 13.2248i 1.53724 + 0.580503i
\(520\) 0 0
\(521\) 32.5500i 1.42604i 0.701144 + 0.713020i \(0.252673\pi\)
−0.701144 + 0.713020i \(0.747327\pi\)
\(522\) 6.02492 41.3286i 0.263703 1.80890i
\(523\) 9.90568 + 9.90568i 0.433145 + 0.433145i 0.889697 0.456552i \(-0.150916\pi\)
−0.456552 + 0.889697i \(0.650916\pi\)
\(524\) 12.6454 28.6208i 0.552417 1.25030i
\(525\) 0 0
\(526\) 1.63602 7.75105i 0.0713340 0.337962i
\(527\) 22.9069 22.9069i 0.997839 0.997839i
\(528\) 1.76179 4.07867i 0.0766720 0.177501i
\(529\) 4.91829i 0.213839i
\(530\) 0 0
\(531\) 5.63573 + 4.96431i 0.244570 + 0.215433i
\(532\) 18.8149 7.28380i 0.815729 0.315793i
\(533\) 14.6568 14.6568i 0.634855 0.634855i
\(534\) −5.23484 + 8.18348i −0.226534 + 0.354134i
\(535\) 0 0
\(536\) −6.06969 + 8.42958i −0.262171 + 0.364102i
\(537\) −3.34576 + 1.51153i −0.144380 + 0.0652271i
\(538\) 2.15531 1.40404i 0.0929220 0.0605322i
\(539\) 1.80535i 0.0777619i
\(540\) 0 0
\(541\) 44.0216i 1.89264i 0.323234 + 0.946319i \(0.395230\pi\)
−0.323234 + 0.946319i \(0.604770\pi\)
\(542\) 5.82705 + 8.94500i 0.250293 + 0.384221i
\(543\) 30.6838 13.8621i 1.31677 0.594880i
\(544\) −17.7337 30.2177i −0.760328 1.29557i
\(545\) 0 0
\(546\) −12.1363 7.76338i −0.519385 0.332242i
\(547\) 5.74698 5.74698i 0.245723 0.245723i −0.573490 0.819213i \(-0.694411\pi\)
0.819213 + 0.573490i \(0.194411\pi\)
\(548\) 9.13077 + 23.5858i 0.390047 + 1.00754i
\(549\) −21.7074 19.1213i −0.926450 0.816076i
\(550\) 0 0
\(551\) 48.5446i 2.06807i
\(552\) −5.13563 + 25.3705i −0.218587 + 1.07984i
\(553\) 7.69193 7.69193i 0.327094 0.327094i
\(554\) −11.9352 2.51919i −0.507080 0.107030i
\(555\) 0 0
\(556\) −0.821496 + 1.85932i −0.0348392 + 0.0788527i
\(557\) −24.0378 24.0378i −1.01851 1.01851i −0.999825 0.0186883i \(-0.994051\pi\)
−0.0186883 0.999825i \(-0.505949\pi\)
\(558\) −21.9583 3.20110i −0.929568 0.135513i
\(559\) 17.7744i 0.751776i
\(560\) 0 0
\(561\) 6.43594 + 2.43038i 0.271726 + 0.102611i
\(562\) 5.12164 3.33639i 0.216043 0.140737i
\(563\) 14.5105 14.5105i 0.611544 0.611544i −0.331805 0.943348i \(-0.607657\pi\)
0.943348 + 0.331805i \(0.107657\pi\)
\(564\) 14.0317 14.2664i 0.590842 0.600723i
\(565\) 0 0
\(566\) 2.70814 12.8305i 0.113832 0.539305i
\(567\) 11.2719 14.5572i 0.473375 0.611343i
\(568\) −7.59590 46.6695i −0.318717 1.95821i
\(569\) 31.0050 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(570\) 0 0
\(571\) 33.0629i 1.38364i 0.722070 + 0.691820i \(0.243191\pi\)
−0.722070 + 0.691820i \(0.756809\pi\)
\(572\) −3.43884 + 1.33128i −0.143785 + 0.0556636i
\(573\) 4.20671 1.90048i 0.175738 0.0793936i
\(574\) 20.4070 + 4.30732i 0.851771 + 0.179784i
\(575\) 0 0
\(576\) −9.33394 + 22.1106i −0.388914 + 0.921274i
\(577\) 17.5957 + 17.5957i 0.732519 + 0.732519i 0.971118 0.238599i \(-0.0766881\pi\)
−0.238599 + 0.971118i \(0.576688\pi\)
\(578\) 25.3135 16.4900i 1.05290 0.685894i
\(579\) 17.7307 + 6.69556i 0.736861 + 0.278258i
\(580\) 0 0
\(581\) −6.36681 −0.264140
\(582\) 3.76685 0.827757i 0.156141 0.0343116i
\(583\) 2.45855 2.45855i 0.101823 0.101823i
\(584\) −19.6504 + 27.2905i −0.813140 + 1.12929i
\(585\) 0 0
\(586\) −7.54706 1.59297i −0.311766 0.0658048i
\(587\) −6.48696 6.48696i −0.267746 0.267746i 0.560446 0.828191i \(-0.310630\pi\)
−0.828191 + 0.560446i \(0.810630\pi\)
\(588\) 0.0808615 + 9.75192i 0.00333467 + 0.402162i
\(589\) −25.7922 −1.06275
\(590\) 0 0
\(591\) 6.77353 17.9372i 0.278626 0.737836i
\(592\) −19.4537 0.908632i −0.799542 0.0373445i
\(593\) 2.17189 + 2.17189i 0.0891890 + 0.0891890i 0.750294 0.661105i \(-0.229912\pi\)
−0.661105 + 0.750294i \(0.729912\pi\)
\(594\) −1.30034 4.52946i −0.0533535 0.185846i
\(595\) 0 0
\(596\) 5.52187 + 2.43971i 0.226185 + 0.0999343i
\(597\) 26.6138 12.0234i 1.08923 0.492086i
\(598\) 18.0015 11.7267i 0.736137 0.479542i
\(599\) −7.56553 −0.309119 −0.154560 0.987983i \(-0.549396\pi\)
−0.154560 + 0.987983i \(0.549396\pi\)
\(600\) 0 0
\(601\) 29.2389 1.19268 0.596339 0.802732i \(-0.296621\pi\)
0.596339 + 0.802732i \(0.296621\pi\)
\(602\) −14.9856 + 9.76209i −0.610768 + 0.397873i
\(603\) 0.696471 + 10.9955i 0.0283625 + 0.447772i
\(604\) 6.03095 13.6500i 0.245396 0.555412i
\(605\) 0 0
\(606\) −5.70525 + 8.91886i −0.231760 + 0.362304i
\(607\) −28.6094 28.6094i −1.16122 1.16122i −0.984209 0.177009i \(-0.943358\pi\)
−0.177009 0.984209i \(-0.556642\pi\)
\(608\) −7.02820 + 26.9957i −0.285031 + 1.09482i
\(609\) −32.6310 12.3223i −1.32227 0.499324i
\(610\) 0 0
\(611\) −16.6084 −0.671902
\(612\) −34.8738 12.8399i −1.40969 0.519021i
\(613\) −9.80228 9.80228i −0.395910 0.395910i 0.480878 0.876788i \(-0.340318\pi\)
−0.876788 + 0.480878i \(0.840318\pi\)
\(614\) −6.30161 1.33009i −0.254312 0.0536780i
\(615\) 0 0
\(616\) −3.01110 2.16813i −0.121321 0.0873564i
\(617\) −6.03941 + 6.03941i −0.243138 + 0.243138i −0.818147 0.575009i \(-0.804998\pi\)
0.575009 + 0.818147i \(0.304998\pi\)
\(618\) 6.33352 + 28.8218i 0.254772 + 1.15938i
\(619\) −16.8314 −0.676509 −0.338255 0.941055i \(-0.609837\pi\)
−0.338255 + 0.941055i \(0.609837\pi\)
\(620\) 0 0
\(621\) 12.8626 + 24.2559i 0.516159 + 0.973354i
\(622\) −14.6287 + 9.52958i −0.586557 + 0.382101i
\(623\) 5.73679 + 5.73679i 0.229840 + 0.229840i
\(624\) 18.5159 7.34517i 0.741230 0.294042i
\(625\) 0 0
\(626\) −22.8922 4.83188i −0.914956 0.193121i
\(627\) −2.25505 4.99156i −0.0900582 0.199344i
\(628\) −6.21493 16.0539i −0.248003 0.640619i
\(629\) 30.1556i 1.20238i
\(630\) 0 0
\(631\) 20.4913 0.815744 0.407872 0.913039i \(-0.366271\pi\)
0.407872 + 0.913039i \(0.366271\pi\)
\(632\) 2.41617 + 14.8451i 0.0961101 + 0.590505i
\(633\) 10.1939 4.60535i 0.405173 0.183046i
\(634\) 2.12994 10.0911i 0.0845909 0.400769i
\(635\) 0 0
\(636\) −13.1702 + 13.3904i −0.522232 + 0.530965i
\(637\) 5.72347 5.72347i 0.226772 0.226772i
\(638\) −7.48053 + 4.87305i −0.296157 + 0.192926i
\(639\) −37.6336 33.1500i −1.48876 1.31140i
\(640\) 0 0
\(641\) 25.3407i 1.00090i −0.865767 0.500448i \(-0.833169\pi\)
0.865767 0.500448i \(-0.166831\pi\)
\(642\) −34.9964 + 7.69037i −1.38120 + 0.303515i
\(643\) 16.2516 + 16.2516i 0.640899 + 0.640899i 0.950776 0.309878i \(-0.100288\pi\)
−0.309878 + 0.950776i \(0.600288\pi\)
\(644\) 19.7737 + 8.73654i 0.779193 + 0.344268i
\(645\) 0 0
\(646\) −42.2632 8.92055i −1.66282 0.350974i
\(647\) 3.30434 3.30434i 0.129907 0.129907i −0.639164 0.769071i \(-0.720719\pi\)
0.769071 + 0.639164i \(0.220719\pi\)
\(648\) 7.22689 + 24.4084i 0.283899 + 0.958854i
\(649\) 1.60541i 0.0630180i
\(650\) 0 0
\(651\) −6.54695 + 17.3371i −0.256595 + 0.679496i
\(652\) 35.7361 13.8345i 1.39953 0.541801i
\(653\) 2.00144 2.00144i 0.0783225 0.0783225i −0.666860 0.745183i \(-0.732362\pi\)
0.745183 + 0.666860i \(0.232362\pi\)
\(654\) 15.1082 23.6183i 0.590778 0.923547i
\(655\) 0 0
\(656\) −21.3201 + 19.4174i −0.832411 + 0.758122i
\(657\) 2.25480 + 35.5976i 0.0879681 + 1.38879i
\(658\) −9.12169 14.0025i −0.355600 0.545876i
\(659\) 14.5552i 0.566989i 0.958974 + 0.283495i \(0.0914938\pi\)
−0.958974 + 0.283495i \(0.908506\pi\)
\(660\) 0 0
\(661\) 10.7204i 0.416977i −0.978025 0.208488i \(-0.933146\pi\)
0.978025 0.208488i \(-0.0668544\pi\)
\(662\) 16.6440 10.8424i 0.646887 0.421402i
\(663\) 12.6988 + 28.1088i 0.493180 + 1.09165i
\(664\) 5.14386 7.14379i 0.199620 0.277233i
\(665\) 0 0
\(666\) −16.5604 + 12.3464i −0.641703 + 0.478412i
\(667\) 36.7799 36.7799i 1.42412 1.42412i
\(668\) −8.96149 23.1486i −0.346731 0.895644i
\(669\) −19.2760 7.27910i −0.745252 0.281426i
\(670\) 0 0
\(671\) 6.18365i 0.238717i
\(672\) 16.3621 + 11.5767i 0.631181 + 0.446580i
\(673\) −12.2384 + 12.2384i −0.471755 + 0.471755i −0.902482 0.430727i \(-0.858257\pi\)
0.430727 + 0.902482i \(0.358257\pi\)
\(674\) 4.36590 20.6845i 0.168168 0.796737i
\(675\) 0 0
\(676\) 8.65950 + 3.82599i 0.333058 + 0.147154i
\(677\) 3.99371 + 3.99371i 0.153491 + 0.153491i 0.779675 0.626184i \(-0.215384\pi\)
−0.626184 + 0.779675i \(0.715384\pi\)
\(678\) −24.6639 + 5.41984i −0.947212 + 0.208148i
\(679\) 3.22091i 0.123607i
\(680\) 0 0
\(681\) 0.0691789 0.183194i 0.00265094 0.00702002i
\(682\) 2.58910 + 3.97448i 0.0991416 + 0.152191i
\(683\) 7.19759 7.19759i 0.275408 0.275408i −0.555865 0.831273i \(-0.687613\pi\)
0.831273 + 0.555865i \(0.187613\pi\)
\(684\) 12.4047 + 26.8618i 0.474304 + 1.02709i
\(685\) 0 0
\(686\) 27.7835 + 5.86429i 1.06078 + 0.223900i
\(687\) 9.25106 + 20.4772i 0.352950 + 0.781255i
\(688\) 1.15374 24.7014i 0.0439859 0.941731i
\(689\) 15.5886 0.593879
\(690\) 0 0
\(691\) 24.1691i 0.919434i 0.888065 + 0.459717i \(0.152049\pi\)
−0.888065 + 0.459717i \(0.847951\pi\)
\(692\) 15.6054 + 40.3106i 0.593229 + 1.53238i
\(693\) −3.92766 + 0.248783i −0.149200 + 0.00945050i
\(694\) 8.35055 39.5627i 0.316983 1.50178i
\(695\) 0 0
\(696\) 40.1892 26.6577i 1.52337 1.01046i
\(697\) −31.5740 31.5740i −1.19595 1.19595i
\(698\) 0.465482 + 0.714553i 0.0176187 + 0.0270462i
\(699\) 1.84304 4.88059i 0.0697100 0.184601i
\(700\) 0 0
\(701\) 30.9018 1.16714 0.583572 0.812061i \(-0.301655\pi\)
0.583572 + 0.812061i \(0.301655\pi\)
\(702\) 10.2372 18.4821i 0.386379 0.697563i
\(703\) −16.9770 + 16.9770i −0.640299 + 0.640299i
\(704\) 4.86544 1.62689i 0.183373 0.0613156i
\(705\) 0 0
\(706\) 8.11559 38.4495i 0.305434 1.44707i
\(707\) 6.25230 + 6.25230i 0.235142 + 0.235142i
\(708\) 0.0719064 + 8.67194i 0.00270241 + 0.325911i
\(709\) 20.8029 0.781269 0.390634 0.920546i \(-0.372256\pi\)
0.390634 + 0.920546i \(0.372256\pi\)
\(710\) 0 0
\(711\) 11.9708 + 10.5447i 0.448941 + 0.395456i
\(712\) −11.0717 + 1.80203i −0.414931 + 0.0675338i
\(713\) −19.5415 19.5415i −0.731835 0.731835i
\(714\) −16.7241 + 26.1444i −0.625884 + 0.978428i
\(715\) 0 0
\(716\) −3.87769 1.71327i −0.144916 0.0640277i
\(717\) −11.9211 26.3873i −0.445201 0.985453i
\(718\) −9.78050 15.0139i −0.365005 0.560313i
\(719\) 34.2881 1.27873 0.639364 0.768904i \(-0.279198\pi\)
0.639364 + 0.768904i \(0.279198\pi\)
\(720\) 0 0
\(721\) 24.6446 0.917812
\(722\) 4.10476 + 6.30114i 0.152763 + 0.234504i
\(723\) −3.34238 7.39836i −0.124304 0.275148i
\(724\) 35.5621 + 15.7123i 1.32165 + 0.583941i
\(725\) 0 0
\(726\) 13.9766 21.8492i 0.518719 0.810899i
\(727\) −2.33356 2.33356i −0.0865468 0.0865468i 0.662508 0.749055i \(-0.269492\pi\)
−0.749055 + 0.662508i \(0.769492\pi\)
\(728\) −2.67244 16.4196i −0.0990474 0.608552i
\(729\) 22.3505 + 15.1478i 0.827797 + 0.561028i
\(730\) 0 0
\(731\) 38.2901 1.41621
\(732\) −0.276966 33.4021i −0.0102369 1.23458i
\(733\) 35.6179 + 35.6179i 1.31558 + 1.31558i 0.917237 + 0.398342i \(0.130414\pi\)
0.398342 + 0.917237i \(0.369586\pi\)
\(734\) −0.897608 + 4.25263i −0.0331313 + 0.156967i
\(735\) 0 0
\(736\) −25.7782 + 15.1284i −0.950198 + 0.557640i
\(737\) 1.66531 1.66531i 0.0613425 0.0613425i
\(738\) −4.41228 + 30.2665i −0.162418 + 1.11413i
\(739\) 14.3621 0.528318 0.264159 0.964479i \(-0.414906\pi\)
0.264159 + 0.964479i \(0.414906\pi\)
\(740\) 0 0
\(741\) 8.67551 22.9738i 0.318703 0.843965i
\(742\) 8.56162 + 13.1428i 0.314307 + 0.482487i
\(743\) 1.87689 + 1.87689i 0.0688563 + 0.0688563i 0.740696 0.671840i \(-0.234496\pi\)
−0.671840 + 0.740696i \(0.734496\pi\)
\(744\) −14.1635 21.3529i −0.519259 0.782835i
\(745\) 0 0
\(746\) 8.15428 38.6329i 0.298550 1.41445i
\(747\) −0.590235 9.31833i −0.0215956 0.340940i
\(748\) 2.86788 + 7.40806i 0.104860 + 0.270866i
\(749\) 29.9243i 1.09341i
\(750\) 0 0
\(751\) −30.0439 −1.09632 −0.548158 0.836375i \(-0.684671\pi\)
−0.548158 + 0.836375i \(0.684671\pi\)
\(752\) 23.0809 + 1.07805i 0.841675 + 0.0393125i
\(753\) −13.0757 28.9430i −0.476503 1.05474i
\(754\) −39.1644 8.26647i −1.42628 0.301047i
\(755\) 0 0
\(756\) 21.2048 1.51977i 0.771212 0.0552735i
\(757\) −34.9468 + 34.9468i −1.27016 + 1.27016i −0.324162 + 0.946002i \(0.605082\pi\)
−0.946002 + 0.324162i \(0.894918\pi\)
\(758\) −6.76775 10.3891i −0.245816 0.377347i
\(759\) 2.07332 5.49040i 0.0752567 0.199289i
\(760\) 0 0
\(761\) 2.88711i 0.104657i −0.998630 0.0523287i \(-0.983336\pi\)
0.998630 0.0523287i \(-0.0166644\pi\)
\(762\) −38.8140 + 8.52929i −1.40608 + 0.308984i
\(763\) −16.5569 16.5569i −0.599399 0.599399i
\(764\) 4.87552 + 2.15413i 0.176390 + 0.0779337i
\(765\) 0 0
\(766\) −6.91359 + 32.7548i −0.249798 + 1.18348i
\(767\) 5.08962 5.08962i 0.183776 0.183776i
\(768\) −26.2087 + 9.00584i −0.945724 + 0.324970i
\(769\) 19.0345i 0.686400i 0.939262 + 0.343200i \(0.111511\pi\)
−0.939262 + 0.343200i \(0.888489\pi\)
\(770\) 0 0
\(771\) −2.94892 1.11359i −0.106203 0.0401048i
\(772\) 7.90085 + 20.4088i 0.284358 + 0.734529i
\(773\) −18.9794 + 18.9794i −0.682642 + 0.682642i −0.960595 0.277953i \(-0.910344\pi\)
0.277953 + 0.960595i \(0.410344\pi\)
\(774\) −15.6768 21.0276i −0.563492 0.755823i
\(775\) 0 0
\(776\) 3.61398 + 2.60223i 0.129734 + 0.0934148i
\(777\) 7.10233 + 15.7210i 0.254795 + 0.563988i
\(778\) −24.8752 + 16.2044i −0.891818 + 0.580958i
\(779\) 35.5511i 1.27375i
\(780\) 0 0
\(781\) 10.7204i 0.383608i
\(782\) −25.2621 38.7794i −0.903371 1.38675i
\(783\) 15.0096 48.9003i 0.536399 1.74756i
\(784\) −8.32552 + 7.58250i −0.297340 + 0.270804i
\(785\) 0 0
\(786\) 20.6504 32.2823i 0.736576 1.15147i
\(787\) −28.3424 + 28.3424i −1.01030 + 1.01030i −0.0103521 + 0.999946i \(0.503295\pi\)
−0.999946 + 0.0103521i \(0.996705\pi\)
\(788\) 20.6465 7.99286i 0.735500 0.284734i
\(789\) 3.42756 9.07661i 0.122024 0.323136i
\(790\) 0 0
\(791\) 21.0893i 0.749850i
\(792\) 2.89408 4.60797i 0.102837 0.163737i
\(793\) −19.6040 + 19.6040i −0.696157 + 0.696157i
\(794\) 44.5164 + 9.39613i 1.57983 + 0.333456i
\(795\) 0 0
\(796\) 30.8451 + 13.6282i 1.09327 + 0.483037i
\(797\) 15.8150 + 15.8150i 0.560195 + 0.560195i 0.929363 0.369168i \(-0.120357\pi\)
−0.369168 + 0.929363i \(0.620357\pi\)
\(798\) 24.1341 5.30341i 0.854338 0.187739i
\(799\) 35.7782i 1.26574i
\(800\) 0 0
\(801\) −7.86441 + 8.92807i −0.277875 + 0.315458i
\(802\) −28.7373 + 18.7204i −1.01475 + 0.661039i
\(803\) 5.39139 5.39139i 0.190258 0.190258i
\(804\) −8.92089 + 9.07007i −0.314616 + 0.319877i
\(805\) 0 0
\(806\) −4.39206 + 20.8084i −0.154704 + 0.732945i
\(807\) 2.87101 1.29704i 0.101064 0.0456581i
\(808\) −12.0666 + 1.96396i −0.424503 + 0.0690918i
\(809\) −49.0232 −1.72356 −0.861782 0.507279i \(-0.830651\pi\)
−0.861782 + 0.507279i \(0.830651\pi\)
\(810\) 0 0
\(811\) 21.1676i 0.743295i −0.928374 0.371648i \(-0.878793\pi\)
0.928374 0.371648i \(-0.121207\pi\)
\(812\) −14.5405 37.5597i −0.510271 1.31809i
\(813\) 5.38302 + 11.9153i 0.188791 + 0.417888i
\(814\) 4.32028 + 0.911887i 0.151426 + 0.0319616i
\(815\) 0 0
\(816\) −15.8232 39.8875i −0.553922 1.39634i
\(817\) −21.5566 21.5566i −0.754169 0.754169i
\(818\) −28.5527 + 18.6001i −0.998320 + 0.650336i
\(819\) −13.2405 11.6631i −0.462661 0.407542i
\(820\) 0 0
\(821\) −13.4855 −0.470649 −0.235324 0.971917i \(-0.575615\pi\)
−0.235324 + 0.971917i \(0.575615\pi\)
\(822\) 6.64821 + 30.2538i 0.231883 + 1.05522i
\(823\) 19.8632 19.8632i 0.692387 0.692387i −0.270370 0.962757i \(-0.587146\pi\)
0.962757 + 0.270370i \(0.0871459\pi\)
\(824\) −19.9108 + 27.6521i −0.693626 + 0.963306i
\(825\) 0 0
\(826\) 7.08641 + 1.49574i 0.246568 + 0.0520433i
\(827\) 36.8216 + 36.8216i 1.28041 + 1.28041i 0.940432 + 0.339982i \(0.110421\pi\)
0.339982 + 0.940432i \(0.389579\pi\)
\(828\) −10.9535 + 29.7503i −0.380660 + 1.03389i
\(829\) −34.1845 −1.18728 −0.593638 0.804732i \(-0.702309\pi\)
−0.593638 + 0.804732i \(0.702309\pi\)
\(830\) 0 0
\(831\) −13.9764 5.27784i −0.484835 0.183086i
\(832\) 20.5825 + 10.2671i 0.713571 + 0.355949i
\(833\) −12.3297 12.3297i −0.427198 0.427198i
\(834\) −1.34153 + 2.09718i −0.0464535 + 0.0726195i
\(835\) 0 0
\(836\) 2.55603 5.78515i 0.0884022 0.200084i
\(837\) −25.9812 7.97474i −0.898042 0.275647i
\(838\) 47.3469 30.8432i 1.63557 1.06546i
\(839\) −19.6854 −0.679616 −0.339808 0.940495i \(-0.610362\pi\)
−0.339808 + 0.940495i \(0.610362\pi\)
\(840\) 0 0
\(841\) −67.9085 −2.34167
\(842\) 32.1306 20.9308i 1.10729 0.721324i
\(843\) 6.82234 3.08215i 0.234974 0.106155i
\(844\) 11.8146 + 5.22001i 0.406676 + 0.179680i
\(845\) 0 0
\(846\) 19.6482 14.6484i 0.675519 0.503623i
\(847\) −15.3167 15.3167i −0.526289 0.526289i
\(848\) −21.6638 1.01186i −0.743937 0.0347474i
\(849\) 5.67371 15.0247i 0.194721 0.515647i
\(850\) 0 0
\(851\) −25.7252 −0.881850
\(852\) −0.480168 57.9084i −0.0164503 1.98391i
\(853\) −29.0954 29.0954i −0.996209 0.996209i 0.00378410 0.999993i \(-0.498795\pi\)
−0.999993 + 0.00378410i \(0.998795\pi\)
\(854\) −27.2951 5.76121i −0.934018 0.197144i
\(855\) 0 0
\(856\) −33.5761 24.1764i −1.14761 0.826331i
\(857\) 8.71719 8.71719i 0.297773 0.297773i −0.542368 0.840141i \(-0.682472\pi\)
0.840141 + 0.542368i \(0.182472\pi\)
\(858\) −4.41105 + 0.969317i −0.150591 + 0.0330920i
\(859\) 49.6253 1.69319 0.846597 0.532235i \(-0.178648\pi\)
0.846597 + 0.532235i \(0.178648\pi\)
\(860\) 0 0
\(861\) 23.8969 + 9.02409i 0.814405 + 0.307540i
\(862\) 36.7029 23.9094i 1.25011 0.814357i
\(863\) −26.7844 26.7844i −0.911750 0.911750i 0.0846599 0.996410i \(-0.473020\pi\)
−0.996410 + 0.0846599i \(0.973020\pi\)
\(864\) −15.4265 + 25.0204i −0.524821 + 0.851212i
\(865\) 0 0
\(866\) −16.0092 3.37908i −0.544014 0.114826i
\(867\) 33.7192 15.2334i 1.14516 0.517354i
\(868\) −19.9558 + 7.72550i −0.677345 + 0.262220i
\(869\) 3.41005i 0.115678i
\(870\) 0 0
\(871\) 10.5590 0.357779
\(872\) 31.9540 5.20081i 1.08210 0.176122i
\(873\) 4.71406 0.298595i 0.159547 0.0101059i
\(874\) −7.60998 + 36.0541i −0.257412 + 1.21955i
\(875\) 0 0
\(876\) −28.8811 + 29.3640i −0.975801 + 0.992119i
\(877\) −13.3952 + 13.3952i −0.452323 + 0.452323i −0.896125 0.443802i \(-0.853629\pi\)
0.443802 + 0.896125i \(0.353629\pi\)
\(878\) −11.4163 + 7.43694i −0.385282 + 0.250984i
\(879\) −8.83773 3.33735i −0.298089 0.112566i
\(880\) 0 0
\(881\) 11.8169i 0.398120i 0.979987 + 0.199060i \(0.0637889\pi\)
−0.979987 + 0.199060i \(0.936211\pi\)
\(882\) −1.72300 + 11.8191i −0.0580163 + 0.397970i
\(883\) 19.7888 + 19.7888i 0.665947 + 0.665947i 0.956775 0.290828i \(-0.0939308\pi\)
−0.290828 + 0.956775i \(0.593931\pi\)
\(884\) −14.3937 + 32.5777i −0.484112 + 1.09571i
\(885\) 0 0
\(886\) 11.4716 + 2.42133i 0.385396 + 0.0813461i
\(887\) −0.472133 + 0.472133i −0.0158527 + 0.0158527i −0.714989 0.699136i \(-0.753568\pi\)
0.699136 + 0.714989i \(0.253568\pi\)
\(888\) −23.3776 4.73222i −0.784502 0.158803i
\(889\) 33.1886i 1.11311i
\(890\) 0 0
\(891\) −0.728228 5.72538i −0.0243966 0.191807i
\(892\) −8.58944 22.1875i −0.287596 0.742893i
\(893\) 20.1424 20.1424i 0.674041 0.674041i
\(894\) 6.22828 + 3.98413i 0.208305 + 0.133249i
\(895\) 0 0
\(896\) 2.64814 + 22.9921i 0.0884683 + 0.768113i
\(897\) 23.9792 10.8331i 0.800641 0.361708i
\(898\) 4.94467 + 7.59048i 0.165006 + 0.253297i
\(899\) 51.4884i 1.71723i
\(900\) 0 0
\(901\) 33.5815i 1.11876i
\(902\) 5.47828 3.56872i 0.182407 0.118825i
\(903\) −19.9618 + 9.01820i −0.664287 + 0.300107i
\(904\) −23.6630 17.0384i −0.787019 0.566690i
\(905\) 0 0
\(906\) 9.84875 15.3963i 0.327203 0.511508i
\(907\) −38.0394 + 38.0394i −1.26308 + 1.26308i −0.313482 + 0.949594i \(0.601495\pi\)
−0.949594 + 0.313482i \(0.898505\pi\)
\(908\) 0.210865 0.0816321i 0.00699780 0.00270906i
\(909\) −8.57111 + 9.73035i −0.284286 + 0.322735i
\(910\) 0 0
\(911\) 50.1309i 1.66091i 0.557086 + 0.830455i \(0.311919\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(912\) −13.5478 + 31.3640i −0.448611 + 1.03857i
\(913\) −1.41129 + 1.41129i −0.0467070 + 0.0467070i
\(914\) −6.89908 + 32.6860i −0.228201 + 1.08116i
\(915\) 0 0
\(916\) −10.4858 + 23.7328i −0.346460 + 0.784154i
\(917\) −22.6305 22.6305i −0.747325 0.747325i
\(918\) −39.8147 22.0533i −1.31408 0.727869i
\(919\) 21.5999i 0.712514i −0.934388 0.356257i \(-0.884053\pi\)
0.934388 0.356257i \(-0.115947\pi\)
\(920\) 0 0
\(921\) −7.37929 2.78661i −0.243156 0.0918219i
\(922\) 27.4092 + 42.0754i 0.902675 + 1.38568i
\(923\) −33.9869 + 33.9869i −1.11869 + 1.11869i
\(924\) −3.23988 3.18659i −0.106584 0.104831i
\(925\) 0 0
\(926\) −19.1735 4.04697i −0.630079 0.132992i
\(927\) 2.28468 + 36.0693i 0.0750387 + 1.18467i
\(928\) 53.8909 + 14.0302i 1.76905 + 0.460565i
\(929\) −0.457555 −0.0150119 −0.00750595 0.999972i \(-0.502389\pi\)
−0.00750595 + 0.999972i \(0.502389\pi\)
\(930\) 0 0
\(931\) 13.8827i 0.454988i
\(932\) 5.61778 2.17481i 0.184017 0.0712383i
\(933\) −19.4863 + 8.80340i −0.637954 + 0.288211i
\(934\) −3.33216 + 15.7869i −0.109032 + 0.516563i
\(935\) 0 0
\(936\) 23.7837 5.43352i 0.777394 0.177600i
\(937\) 7.63736 + 7.63736i 0.249502 + 0.249502i 0.820766 0.571264i \(-0.193547\pi\)
−0.571264 + 0.820766i \(0.693547\pi\)
\(938\) 5.79926 + 8.90234i 0.189352 + 0.290672i
\(939\) −26.8071 10.1231i −0.874818 0.330354i
\(940\) 0 0
\(941\) −52.1835 −1.70113 −0.850567 0.525867i \(-0.823741\pi\)
−0.850567 + 0.525867i \(0.823741\pi\)
\(942\) −4.52515 20.5925i −0.147437 0.670940i
\(943\) −26.9353 + 26.9353i −0.877135 + 0.877135i
\(944\) −7.40351 + 6.74277i −0.240964 + 0.219459i
\(945\) 0 0
\(946\) −1.15787 + 5.48569i −0.0376456 + 0.178355i
\(947\) −28.3995 28.3995i −0.922860 0.922860i 0.0743707 0.997231i \(-0.476305\pi\)
−0.997231 + 0.0743707i \(0.976305\pi\)
\(948\) 0.152736 + 18.4200i 0.00496064 + 0.598255i
\(949\) 34.1845 1.10968
\(950\) 0 0
\(951\) 4.46235 11.8169i 0.144702 0.383188i
\(952\) −35.3717 + 5.75706i −1.14640 + 0.186587i
\(953\) 23.6130 + 23.6130i 0.764900 + 0.764900i 0.977204 0.212304i \(-0.0680967\pi\)
−0.212304 + 0.977204i \(0.568097\pi\)
\(954\) −18.4418 + 13.7490i −0.597076 + 0.445141i
\(955\) 0 0
\(956\) 13.5122 30.5826i 0.437015 0.989111i
\(957\) −9.96454 + 4.50171i −0.322108 + 0.145520i
\(958\) −3.12394 4.79551i −0.100930 0.154936i
\(959\) 25.8691 0.835356
\(960\) 0 0
\(961\) −3.64371 −0.117539
\(962\) 10.8056 + 16.5875i 0.348386 + 0.534801i
\(963\) −43.7965 + 2.77413i −1.41132 + 0.0893952i
\(964\) 3.78848 8.57460i 0.122019 0.276169i
\(965\) 0 0
\(966\) 22.3034 + 14.2671i 0.717599 + 0.459036i
\(967\) −3.10676 3.10676i −0.0999067 0.0999067i 0.655387 0.755293i \(-0.272506\pi\)
−0.755293 + 0.655387i \(0.772506\pi\)
\(968\) 29.5606 4.81125i 0.950112 0.154640i
\(969\) −49.4909 18.6891i −1.58988 0.600379i
\(970\) 0 0
\(971\) −16.7395 −0.537196 −0.268598 0.963252i \(-0.586560\pi\)
−0.268598 + 0.963252i \(0.586560\pi\)
\(972\) 4.19010 + 30.8941i 0.134397 + 0.990928i
\(973\) 1.47017 + 1.47017i 0.0471314 + 0.0471314i
\(974\) −2.59603 + 12.2993i −0.0831823 + 0.394096i
\(975\) 0 0
\(976\) 28.5165 25.9715i 0.912790 0.831327i
\(977\) 38.9727 38.9727i 1.24685 1.24685i 0.289745 0.957104i \(-0.406430\pi\)
0.957104 0.289745i \(-0.0935704\pi\)
\(978\) 45.8391 10.0730i 1.46577 0.322100i
\(979\) 2.54328 0.0812837
\(980\) 0 0
\(981\) 22.6974 25.7672i 0.724672 0.822683i
\(982\) −19.4128 29.8002i −0.619486 0.950963i
\(983\) −21.8279 21.8279i −0.696200 0.696200i 0.267388 0.963589i \(-0.413839\pi\)
−0.963589 + 0.267388i \(0.913839\pi\)
\(984\) −29.4321 + 19.5225i −0.938261 + 0.622353i
\(985\) 0 0
\(986\) −17.8079 + 84.3691i −0.567119 + 2.68686i
\(987\) −8.42660 18.6523i −0.268222 0.593708i
\(988\) 26.4439 10.2372i 0.841294 0.325690i
\(989\) 32.6647i 1.03868i
\(990\) 0 0
\(991\) −1.28868 −0.0409363 −0.0204681 0.999791i \(-0.506516\pi\)
−0.0204681 + 0.999791i \(0.506516\pi\)
\(992\) 7.45440 28.6327i 0.236677 0.909090i
\(993\) 22.1708 10.0162i 0.703570 0.317854i
\(994\) −47.3208 9.98805i −1.50092 0.316802i
\(995\) 0 0
\(996\) 7.56016 7.68658i 0.239553 0.243559i
\(997\) 17.8369 17.8369i 0.564900 0.564900i −0.365795 0.930695i \(-0.619203\pi\)
0.930695 + 0.365795i \(0.119203\pi\)
\(998\) −3.09707 4.75426i −0.0980361 0.150493i
\(999\) −22.3505 + 11.8522i −0.707139 + 0.374988i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.k.557.24 yes 64
3.2 odd 2 inner 600.2.w.k.557.10 yes 64
5.2 odd 4 inner 600.2.w.k.293.8 yes 64
5.3 odd 4 inner 600.2.w.k.293.25 yes 64
5.4 even 2 inner 600.2.w.k.557.9 yes 64
8.5 even 2 inner 600.2.w.k.557.7 yes 64
15.2 even 4 inner 600.2.w.k.293.26 yes 64
15.8 even 4 inner 600.2.w.k.293.7 64
15.14 odd 2 inner 600.2.w.k.557.23 yes 64
24.5 odd 2 inner 600.2.w.k.557.25 yes 64
40.13 odd 4 inner 600.2.w.k.293.10 yes 64
40.29 even 2 inner 600.2.w.k.557.26 yes 64
40.37 odd 4 inner 600.2.w.k.293.23 yes 64
120.29 odd 2 inner 600.2.w.k.557.8 yes 64
120.53 even 4 inner 600.2.w.k.293.24 yes 64
120.77 even 4 inner 600.2.w.k.293.9 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.k.293.7 64 15.8 even 4 inner
600.2.w.k.293.8 yes 64 5.2 odd 4 inner
600.2.w.k.293.9 yes 64 120.77 even 4 inner
600.2.w.k.293.10 yes 64 40.13 odd 4 inner
600.2.w.k.293.23 yes 64 40.37 odd 4 inner
600.2.w.k.293.24 yes 64 120.53 even 4 inner
600.2.w.k.293.25 yes 64 5.3 odd 4 inner
600.2.w.k.293.26 yes 64 15.2 even 4 inner
600.2.w.k.557.7 yes 64 8.5 even 2 inner
600.2.w.k.557.8 yes 64 120.29 odd 2 inner
600.2.w.k.557.9 yes 64 5.4 even 2 inner
600.2.w.k.557.10 yes 64 3.2 odd 2 inner
600.2.w.k.557.23 yes 64 15.14 odd 2 inner
600.2.w.k.557.24 yes 64 1.1 even 1 trivial
600.2.w.k.557.25 yes 64 24.5 odd 2 inner
600.2.w.k.557.26 yes 64 40.29 even 2 inner